Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (1): 15-25.doi: 10.16420/j.issn.0513-353x.2020-0261
• Research Papers • Previous Articles Next Articles
DU Yanmin, WANG Wenhui*(), JIA Xiaohui, WANG Zhihua, TONG Wei, and ZHANG Xinnan
Received:
2020-05-25
Revised:
2020-09-15
Online:
2021-01-25
Published:
2021-01-29
Contact:
WANG Wenhui
E-mail:wangwenhui@caas.cn
CLC Number:
DU Yanmin, WANG Wenhui, JIA Xiaohui, WANG Zhihua, TONG Wei, and ZHANG Xinnan. Effects of Initial Low Oxygen Treatments on Superficial Scald Prevention and Ethylene Release in Pear[J]. Acta Horticulturae Sinica, 2021, 48(1): 15-25.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0261
基因名称 Gene Name | 基因ID Gene ID | 正向引物(5′-3′) Forward primer sequence | 反向引物(5′-3′) Reverse primer sequence |
---|---|---|---|
Actin | GGACATTCAACCCCTCGTCT | ATCCTTCTGACCCATACCAACC | |
PbACO1 | Pbr000093.1 | GACGCTGGTGGTATCATCCT | TTCCGTCCGACTGAGCTATC |
PbACO3 | Pbr031954.1 | CAAGGATGGTGAATGGGTGGA | TCATCGCCTGGGTTGTAGAAC |
PbACS1 | Pbr015575.1 | CCTGGGGTTCAAAGGGATCA | CCGCCGTTAAGACTACCCTA |
PbACS3 | Pbr029891.1 | GAAGTTTGGCAGCGAGTTCA | CAGATAGCATGGCGGAGAGA |
PbCTR1 | Pbr005495.1 | GGTTTTGGGTGAATGGCTGT | TGCTAGAACCAATGCCAGGA |
PbETR1 | Pbr011796.1 | AGTGAAGGTGTTGAGGAGGG | TGGAATGTGGGTGCTCTGAT |
PbETR2 | Pbr022706.1 | TTGGAGATGAGAACCGGCTT | CGTAGGTAGAAGTGGCCCTC |
PbERF1 | Pbr012684.1 | GTTGGATCATGACGACCGTG | GTATCTCCGCCGCGAATTTT |
Table 1 Primer sequences
基因名称 Gene Name | 基因ID Gene ID | 正向引物(5′-3′) Forward primer sequence | 反向引物(5′-3′) Reverse primer sequence |
---|---|---|---|
Actin | GGACATTCAACCCCTCGTCT | ATCCTTCTGACCCATACCAACC | |
PbACO1 | Pbr000093.1 | GACGCTGGTGGTATCATCCT | TTCCGTCCGACTGAGCTATC |
PbACO3 | Pbr031954.1 | CAAGGATGGTGAATGGGTGGA | TCATCGCCTGGGTTGTAGAAC |
PbACS1 | Pbr015575.1 | CCTGGGGTTCAAAGGGATCA | CCGCCGTTAAGACTACCCTA |
PbACS3 | Pbr029891.1 | GAAGTTTGGCAGCGAGTTCA | CAGATAGCATGGCGGAGAGA |
PbCTR1 | Pbr005495.1 | GGTTTTGGGTGAATGGCTGT | TGCTAGAACCAATGCCAGGA |
PbETR1 | Pbr011796.1 | AGTGAAGGTGTTGAGGAGGG | TGGAATGTGGGTGCTCTGAT |
PbETR2 | Pbr022706.1 | TTGGAGATGAGAACCGGCTT | CGTAGGTAGAAGTGGCCCTC |
PbERF1 | Pbr012684.1 | GTTGGATCATGACGACCGTG | GTATCTCCGCCGCGAATTTT |
处理 Treatment | 不同贮藏期 + 货架期的虎皮指数/% Superficial scald incidence during storage and shelf-life | |||||||
---|---|---|---|---|---|---|---|---|
0 ~ 15 d | 16 ~ 240 d | |||||||
O2 | CO2 | O2 | CO2 | 180 d + 0 d | 180 d + 7 d | 240 d + 0 d | 240 d + 7 d | |
前期超低氧胁迫 Initial ultra-low oxygen stress | 0.8 | 0.5 | 5.0 | 0.5 | 0 | 28.33 ± 3.36 c | 20.83 ± 2.13 d | 53.57 ± 4.56 d |
静态低氧气调 Static low oxygen CA | 5.0 | 0.5 | 5.0 | 0.5 | 0 | 33.33 ± 3.33 c | 35.00 ± 3.56 c | 62.50 ± 7.23 c |
“两阶段”缓慢降氧气调 Two-stage oxygen reduction CA | 10.0 | 0.5 | 5.0 | 0.5 | 10.26 ± 1.02 b | 41.67 ± 5.12 b | 45.00 ± 5.12 b | 80.00 ± 6.23 b |
对照(空气)Control(air) | 21.0 | 0 | 21.0 | 0 | 33.33 ± 5.36 a | 91.67 ± 6.23 a | 95.00 ± 9.23 a | 93.75 ± 3.35 a |
Table 2 Changes in superficial scald incidence of‘Yali’pear during storage and Shelf-life under different initial low oxygen treatments
处理 Treatment | 不同贮藏期 + 货架期的虎皮指数/% Superficial scald incidence during storage and shelf-life | |||||||
---|---|---|---|---|---|---|---|---|
0 ~ 15 d | 16 ~ 240 d | |||||||
O2 | CO2 | O2 | CO2 | 180 d + 0 d | 180 d + 7 d | 240 d + 0 d | 240 d + 7 d | |
前期超低氧胁迫 Initial ultra-low oxygen stress | 0.8 | 0.5 | 5.0 | 0.5 | 0 | 28.33 ± 3.36 c | 20.83 ± 2.13 d | 53.57 ± 4.56 d |
静态低氧气调 Static low oxygen CA | 5.0 | 0.5 | 5.0 | 0.5 | 0 | 33.33 ± 3.33 c | 35.00 ± 3.56 c | 62.50 ± 7.23 c |
“两阶段”缓慢降氧气调 Two-stage oxygen reduction CA | 10.0 | 0.5 | 5.0 | 0.5 | 10.26 ± 1.02 b | 41.67 ± 5.12 b | 45.00 ± 5.12 b | 80.00 ± 6.23 b |
对照(空气)Control(air) | 21.0 | 0 | 21.0 | 0 | 33.33 ± 5.36 a | 91.67 ± 6.23 a | 95.00 ± 9.23 a | 93.75 ± 3.35 a |
Fig. 2 Changes in α-farnesene and CTols of‘Yali’pear during storage and shelf-life under different initial low oxygen treatments Different small letters indicated significant differences at 0.05 level among different oxygen treatments at the same period.
贮藏环境 Storage scenario | 贮藏期 + 货架期/d Storage + Shlef-life | 内在品质 Quality parameter | ||||
---|---|---|---|---|---|---|
可溶性固形物/% Soluble solids content | 可滴定酸/% Titrable acid content | 维生素C/ (mg · kg-1) Vitamin C | 乙醇/(mg · L-1) Ethanol | 乙醛/(mg · L-1) Acetaldehyde | ||
采收 At harvest | 0 + 0 | 10.87 ± 0.33 | 0.147 ± 0.003 | 53.4 ± 5.3 | 5.01 ± 0.05 | 2.56 ± 0.032 |
前期超低氧胁迫 Initial ultra-low oxygen stress | 180 + 0 | 12.03 ± 0.50 b | 0.109 ± 0.004 d | 11.2 ± 0.7 a | 4.15 ± 0.07 a | 5.90 ± 1.042 a |
180 + 7 | 12.25 ± 0.49 b | 0.127 ± 0.003 b | 40.4 ± 1.2 b | 18.57 ± 0.82 d | 4.10 ± 0.851 b | |
240 + 0 | 12.28 ± 0.61 b | 0.130 ± 0.001 b | 20.3 ± 0.6 a | 4.15 ± 0.68 c | 5.90 ± 1.042 a | |
240 + 7 | 13.04 ± 0.78 a | 0.062 ± 0.001 a | 33.1 ± 0.2 b | 26.74 ± 1.68 c | 3.26 ± 0.567 c | |
静态低氧气调 Static low oxygen CA | 180 + 0 | 12.13 ± 0.27 a | 0.121 ± 0.002 b | 10.2 ± 0.1 b | 4.44 ± 0.39 a | 4.78 ± 0.573 a |
180 + 7 | 11.95 ± 0.82 b | 0.166 ± 0.001 a | 39.1 ± 0.1 b | 35.32 ± 5.06 a | 3.05 ± 0.594 b | |
240 + 0 | 12.22 ± 0.38 a | 0.138 ± 0.002 b | 22.8 ± 1.0 a | 4.44 ± 0.16 c | 4.78 ± 0.090 a | |
240 + 7 | 11.84 ± 0.51 b | 0.050 ± 0.001 b | 29.5 ± 0.1 c | 24.14 ± 3.40 b | 4.12 ± 0.487 b | |
“两阶段”缓慢降氧气调 Two-stage oxygen reduction CA | 180 + 0 | 12.22 ± 0.81 a | 0.133 ± 0.002 b | 10.3 ± 0.5 b | 4.23 ± 0.01 a | 3.17 ± 0.450 b |
180 + 7 | 11.60 ± 0.43 b | 0.125 ± 0.001 b | 36.1 ± 0.6 c | 31.23 ± 0.95 b | 8.29 ± 1.278 a | |
240 + 0 | 12.28 ± 0.41 a | 0.151 ± 0.001 a | 10.0 ± 1.1 c | 5.27 ± 0.50 c | 3.20 ± 0.448 b | |
240 + 7 | 12.32 ± 0.31 a | 0.047 ± 0.001 bc | 34.9 ± 0.1 b | 23.09 ± 1.30 b | 7.12 ± 1.254 a | |
对照(空气) Control(air) | 180 + 0 | 12.37 ± 0.62 a | 0.140 ± 0.001 a | 11.6 ± 0.3 a | 4.13 ± 0.35 a | 5.24 ± 0.881 a |
180 + 7 | 12.45 ± 0.64 a | 0.168 ± 0.001 a | 44.0 ± 0.4 a | 26.06 ± 0.45 c | 3.96 ± 1.152 b | |
240 + 0 | 11.84 ± 0.32 b | 0.153 ± 0.001 a | 15.1 ± 0.5 b | 4.14 ± 0.35 b | 5.38 ± 0.908 a | |
240 + 7 | 12.55 ± 0.96 a | 0.042 ± 0.001 c | 44.2 ± 0.1 a | 28.55 ± 6.17 a | 2.24 ± 0.326 c |
Table 3 Changes in quality parameters of‘Yali’pear during storage and shelf-life under different storage scenario
贮藏环境 Storage scenario | 贮藏期 + 货架期/d Storage + Shlef-life | 内在品质 Quality parameter | ||||
---|---|---|---|---|---|---|
可溶性固形物/% Soluble solids content | 可滴定酸/% Titrable acid content | 维生素C/ (mg · kg-1) Vitamin C | 乙醇/(mg · L-1) Ethanol | 乙醛/(mg · L-1) Acetaldehyde | ||
采收 At harvest | 0 + 0 | 10.87 ± 0.33 | 0.147 ± 0.003 | 53.4 ± 5.3 | 5.01 ± 0.05 | 2.56 ± 0.032 |
前期超低氧胁迫 Initial ultra-low oxygen stress | 180 + 0 | 12.03 ± 0.50 b | 0.109 ± 0.004 d | 11.2 ± 0.7 a | 4.15 ± 0.07 a | 5.90 ± 1.042 a |
180 + 7 | 12.25 ± 0.49 b | 0.127 ± 0.003 b | 40.4 ± 1.2 b | 18.57 ± 0.82 d | 4.10 ± 0.851 b | |
240 + 0 | 12.28 ± 0.61 b | 0.130 ± 0.001 b | 20.3 ± 0.6 a | 4.15 ± 0.68 c | 5.90 ± 1.042 a | |
240 + 7 | 13.04 ± 0.78 a | 0.062 ± 0.001 a | 33.1 ± 0.2 b | 26.74 ± 1.68 c | 3.26 ± 0.567 c | |
静态低氧气调 Static low oxygen CA | 180 + 0 | 12.13 ± 0.27 a | 0.121 ± 0.002 b | 10.2 ± 0.1 b | 4.44 ± 0.39 a | 4.78 ± 0.573 a |
180 + 7 | 11.95 ± 0.82 b | 0.166 ± 0.001 a | 39.1 ± 0.1 b | 35.32 ± 5.06 a | 3.05 ± 0.594 b | |
240 + 0 | 12.22 ± 0.38 a | 0.138 ± 0.002 b | 22.8 ± 1.0 a | 4.44 ± 0.16 c | 4.78 ± 0.090 a | |
240 + 7 | 11.84 ± 0.51 b | 0.050 ± 0.001 b | 29.5 ± 0.1 c | 24.14 ± 3.40 b | 4.12 ± 0.487 b | |
“两阶段”缓慢降氧气调 Two-stage oxygen reduction CA | 180 + 0 | 12.22 ± 0.81 a | 0.133 ± 0.002 b | 10.3 ± 0.5 b | 4.23 ± 0.01 a | 3.17 ± 0.450 b |
180 + 7 | 11.60 ± 0.43 b | 0.125 ± 0.001 b | 36.1 ± 0.6 c | 31.23 ± 0.95 b | 8.29 ± 1.278 a | |
240 + 0 | 12.28 ± 0.41 a | 0.151 ± 0.001 a | 10.0 ± 1.1 c | 5.27 ± 0.50 c | 3.20 ± 0.448 b | |
240 + 7 | 12.32 ± 0.31 a | 0.047 ± 0.001 bc | 34.9 ± 0.1 b | 23.09 ± 1.30 b | 7.12 ± 1.254 a | |
对照(空气) Control(air) | 180 + 0 | 12.37 ± 0.62 a | 0.140 ± 0.001 a | 11.6 ± 0.3 a | 4.13 ± 0.35 a | 5.24 ± 0.881 a |
180 + 7 | 12.45 ± 0.64 a | 0.168 ± 0.001 a | 44.0 ± 0.4 a | 26.06 ± 0.45 c | 3.96 ± 1.152 b | |
240 + 0 | 11.84 ± 0.32 b | 0.153 ± 0.001 a | 15.1 ± 0.5 b | 4.14 ± 0.35 b | 5.38 ± 0.908 a | |
240 + 7 | 12.55 ± 0.96 a | 0.042 ± 0.001 c | 44.2 ± 0.1 a | 28.55 ± 6.17 a | 2.24 ± 0.326 c |
Fig. 4 Changes in relative expression of ethylene biosynthesis and signaling transductiong key genes during storage and shelf-life under different initial low oxygen treatments in‘Yali’pear
[1] | Adams D O, Yang S F. 1979. Ethylene biosynthesis:identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences USA, 76:170-174. |
[2] |
Bai J, Mattheis J P, Reed N. 2006. Re-initiating softening ability of 1-methylcyclopropene treated‘Bartlett’and‘d’Anjou’pears after regular air or controlled atmosphere storage. Journal of Horticultural Science and Biotechnology, 81:959-964.
doi: 10.1080/14620316.2006.11512182 URL |
[3] |
Bai J, Yin X, Whitaker B D, Deschuytter K, Chen P M. 2009. Combination of 1-methylcyclopene and ethoxyquin to control superficial scald of ‘Anjou’pears. HortTechnology, 19:521-525.
doi: 10.21273/HORTSCI.19.3.521 URL |
[4] |
Bain J M, Mercer F J. 1963. The submicroscopic cytology of superficial scald,a physiological disease of apples. Australian Journal of Biological Sciences, 16:442-449.
doi: 10.1071/BI9630442 URL |
[5] |
Barry C S, Giovannoni J J. 2007. Ethylene and fruit ripening. Journal of Plant Growth Regulation, 26:143-159.
doi: 10.1007/s00344-007-9002-y URL |
[6] |
Bessemans N, Verboven P, Verlinden B E, Nicolaï B M. 2016. A novel type of dynamic controlled atmosphere storage based on the respiratory quotient(RQ-DCA). Postharvest Biology and Technology, 115:91-102.
doi: 10.1016/j.postharvbio.2015.12.019 URL |
[7] |
Bolt S, Zuther E, Zintl S, Hincha D K, Schmülling T. 2017. ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Plant Cell and Environment, 40, 108-120.
doi: 10.1111/pce.12838 URL |
[8] |
Bordonaba J G, Matthieu-Hurtiger V, Westercamp P, Coureau C, Dupille E, Larrigaudière C. 2013. Dynamic changes in conjugated trienols during storage may be employed to predict superficial scald in‘Granny Smith’apples. LWT-Food Science and Technology, 54:535-541.
doi: 10.1016/j.lwt.2013.06.025 URL |
[9] |
Brenton C P, James P M, David R R. 2020. Extending‘Granny Smith’apple superficial scald control following long term ultra-low oxygen controlled atmosphere storage. Postharvest Biology and Technology, 161:111062.
doi: 10.1016/j.postharvbio.2019.111062 URL |
[10] |
Calvo G, Candan A P, Civello M, Giné-Bordonaba J, Larrigaudière C. 2015. An insight into the role of fruit maturity at harvest on superficial scald development in‘Beurré D’Anjou’pear. Scientia Horticulturae, 192:173-179.
doi: 10.1016/j.scienta.2015.05.032 URL |
[11] | Chen Kun-song, Yu Liang, Zhou Shan-tao. 1991. A study on controlled atmosphere storage of‘Yali’pears. Acta Horticulture Sinica, 18(2):131-137. (in Chinese) |
陈昆松, 于梁, 周山涛. 1991. ‘鸭梨’果实气调贮藏的研究. 园艺学报, 18(2):131-137. | |
[12] |
Cheng Y D, Liu L Q, Feng Y X, Dong Y, Guan J F. 2019. Effects of 1-MCP on fruit quality and core browning in‘Yali’pear during cold storage. Scientia Horticulturae, 243:350-356.
doi: 10.1016/j.scienta.2018.08.041 URL |
[13] |
Chiriboga M, Saladie M, Bordonaba J, Recasens I, Garcia-mas J, Larrigaudière C. 2013. Effect of cold storage and 1-MCP treatment on ethylene perception,signaling and synthesis:influence on the devel opment of the evergreen behavior in‘Conference’pears. Postharvest Biology and Technology, 86:212-220.
doi: 10.1016/j.postharvbio.2013.07.003 URL |
[14] |
Costa F, Alba R, Schouten H, Soglio V, Gianfranceschi L, Serra S, Musacchi S, Sansavini S, Costa G, Fei Z, Giovannoni J. 2010. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening. BMC Plant Biology, 10:229.
doi: 10.1186/1471-2229-10-229 URL |
[15] |
Defilippi B G, Kader A A, Dandekar A M. 2005. Apple aroma:alcohol acyltrans-ferase,a rate limiting step for ester biosynthesis,is regulated by ethylene. Plant Science, 168:1199-1210.
doi: 10.1016/j.plantsci.2004.12.018 URL |
[16] |
Delele M A, Bessemans N, Gruyters W, Rogge S, Janssen S, Verlinden B E, Smeets B. 2019. Spatial distribution of gas concentrations and RQ in a controlled atmosphere storage container with pear fruit in very low oxygen conditions. Postharvest Biology and Technology, 156:110903.
doi: 10.1016/j.postharvbio.2019.05.004 URL |
[17] | DeLong J M, Prange R K, Leyte J C, Harrison P A. 2004. A new technology that determines low-oxygen thresholds in controlled-atmosphere-stored apples. Hort Technology, 14:262-266. |
[18] |
Du L, Song J, Palmer L C, Fillmore S, Zhang Z Q. 2017. Quantitative proteomic changes in development of superficial scald disorder and its response to diphenylamine and 1-MCP treatments in apple fruit. Postharvest Biology and Technology, 123:33-50.
doi: 10.1016/j.postharvbio.2016.08.005 URL |
[19] | Du Yan-min, Wang Wen-hui, Jia Xiao-hui, Le Wen-quan, Wei Jian-mei, Guan Jun-feng. 2017. Development status and proposal of pear storage industry of Hebei Province. Storage and Process, 17(2):1-6. (in Chinese) |
杜艳民, 王文辉, 贾晓辉, 乐文全, 魏建梅, 关军锋. 2017. 河北省梨果贮藏产业发展现状及建议. 保鲜与加工, 17(2):1-6. | |
[20] |
El-Sharkawy I, Jones B, Li Z G, Lelièvre J M, Pech J C, Latché A. 2003. Isolation and characterization of four ethylene perception elements and their expression during ripening in pears(Pyrus communis L.)with/without cold requirement. Journal of Experimental Botany, 54:1615-1625.
doi: 10.1093/jxb/erg158 URL |
[21] |
Feng Y X, Cheng Y D, He J G, Li L M, Guan J F. 2018. Effects of 1-methylcyclopropene and modified atmosphere packaging on fruit quality and superficial scald in Yali pears during storage. Journal of Integrative Agriculture, 17(7):1667-1675.
doi: 10.1016/S2095-3119(18)61940-9 URL |
[22] |
Gapper N E, Bai J, Whitaker B D. 2006. Inhibition of ethylene-induced α-farnesene synthase gene PcAFS1 expression in‘d’Anjou’pears with 1-MCP reduces synthesis and oxidation of α-farnesene and delays development of superficial scald. Postharvest Biology and Technology, 41:225-233.
doi: 10.1016/j.postharvbio.2006.04.014 URL |
[23] |
Guerra R, Gardé I V, Antunes M D, Silva D A, Antunes R, Cavaco A M. 2012. A possibility for non-invasive diagnosis of superficial scald in‘Rocha’pear based on chlorophyll a fluorescence,colorimetry,and the relation between α-farnesene and conjugated trienols. Scientia Horticulturae, 134:127-138.
doi: 10.1016/j.scienta.2011.11.017 URL |
[24] |
Hui W, Niu J, Xu X, Guan J F. 2016. Evidence supporting the involvement of MHO in the formation of superficial scald in‘Dangshansuli’pears. Postharvest Biology and Technology, 121:43-50.
doi: 10.1016/j.postharvbio.2016.07.005 URL |
[25] | Ji Shu-juan, Yin Jing-nan, Li Jia-zheng, Huang Yan-feng. 2010. Determination of alcohol and acetaldehyde in pomelo by static head space gas chromatography. Storage and Process, 10(4):17-20. (in Chinese) |
纪淑娟, 尹竞男, 李家政, 黄艳凤. 2010. 静态顶空气相色谱法测定蜜柚中乙醇和乙醛含量. 保鲜与加工, 10(4):17-20. | |
[26] |
Larrigaudière C, Lindo-García V, Ubach D, Giné-Bordonaba J. 2019. 1-Methylcyclopropene and extreme ULO inhibit superficial scald in a different way highlighting the physiological basis of this disorder in pear. Scientia Horticulturae, 250:148-153.
doi: 10.1016/j.scienta.2019.02.049 URL |
[27] | Liu Yong, Wang Zeqiong, Gong Linzhong, Wang Furong, Wang Huiliang, Ai Xiaoyan, He Huaping. 2020. Cloning and functional analysis of ERF transcription factor gene PpERF1a in peach. Acta Horticulturae Sinica, 47(6):1165-1171. (in Chinese) |
刘勇, 王泽琼, 龚林忠, 王富荣, 王会良, 艾小艳, 何华平. 2020. 桃乙烯应答因子PpERF1a的克隆与功能分析. 园艺学报, 47(6):1165-1171. | |
[28] |
Lurie S, Watkins C B. 2012. Superficial scald,its etiology and control. Postharvest Biology and Technology, 65:44-60.
doi: 10.1016/j.postharvbio.2011.11.001 URL |
[29] | Ma Fengli, Du Yanmin, Wang Yang, Tong Wei, Liu Bailin, Wang Wenhui, Jia Xiaohui. 2019. Effect of 1-methylcyclopropene(1-MCP)on quality and chlorophyll maintenance of postharvest‘Yuluxiang’pear. Acta Horticultuae Sinica, 46(12):2299-2308. (in Chinese) |
马风丽, 杜艳民, 王阳, 佟伟, 刘佰霖, 王文辉, 贾晓辉. 2019. 1-MCP对‘玉露香’梨采后果实品质和叶绿素保持的影响. 园艺学报, 46(12):2299-2308. | |
[30] | Ma Fuli, Mu Wenlei, Zhou Junyong, Lu Lijuan, Sun Qibao, Wang Hai-Yan, Sun Jun. 2020. Activity and function analysis of MdRDACO1 flanking the retro- transposon Mdsolo-LTR1 insertion site in‘Red Delicious’apple spur mutants. Acta Horticultuae Sinica, 47(8):1429-1437. (in Chinese) |
马福利, 穆文磊, 周军永, 陆丽娟, 孙其宝, 王海燕, 孙俊. 2020. ‘元帅’苹果短枝变异逆转座子插入位点临近基因MdRDACO1的表达及功能分析. 园艺学报, 47(8):1429-1437. | |
[31] | Mu Qian. 2015. Functional analysis of the ethylene biosynthesis and signaling pathway related genes during the ripening of five species of fruit crops. [Ph. D. Dissertation]. Nanjing:Nanjing Agricultural University. (in Chinese) |
慕茜. 2015. 五种水果作物果实成熟过程中乙烯合成及应答途径相关基因的功能分析[博士论文]. 南京:南京农业大学. | |
[32] |
Niu J P, Hou Z, Ou Z F, Hui W. 2018. Comparative study of effects of resveratrol,1-MCP and DPA treatments on postharvest quality and superficial scald of‘Starkrimson’apples. Scientia Horticulturae, 240:516-521.
doi: 10.1016/j.scienta.2018.06.037 URL |
[33] |
Pesis E, Ibanez A M, Phu M L, Mitcham E J, Ebeler S E, Dandekar A M. 2009. Superficial scald and bitter pit development in cold-stored transgenic apples suppressed for ethylene biosynthesis. Journal of Agricultural and Food Chemistry, 57:2786-2792.
doi: 10.1021/jf802564z pmid: 19253953 |
[34] |
Sabban-Amin R, Feygenberg O, Belausov E, Pesis E. 2011. Low oxygen and 1-MCP pretreatments delay superficial scald development by reducing reactive oxygen species(ROS)accumulation in stored‘Granny Smith’apples. Postharvest Biology and Technology, 62:295-304.
doi: 10.1016/j.postharvbio.2011.06.016 URL |
[35] |
Watkins C B, Nock J F, Whitaker B D. 2000. Responses of early,mid and late season apple cultivars to postharvest application of 1-methylcyclopropene(1-MCP)under air and controlled atmosphere storage conditions. Postharvest Biology and Technology, 19:17-32.
doi: 10.1016/S0925-5214(00)00070-3 URL |
[36] |
Xiao Y Y, Chen J Y, Kuang J F, Shan W, Xie H, Jiang Y M, Lu W J. 2013. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. Journal of Experimental Botany, 64:2499-2510.
doi: 10.1093/jxb/ert108 URL |
[37] |
Xie X B, Song J K, Wang Y, Sugar D. 2014. Ethylene synthesis,ripening capacity,and superficial scald inhibition in 1-MCP treated‘d’Anjou’pears are affected by storage temperature. Postharvest Biology and Technology, 97:1-10.
doi: 10.1016/j.postharvbio.2014.06.002 URL |
[38] |
Yan S J, Li L, He L H, Liang L Y, Li X D. 2013. Maturity and cooling rate affects browning,polyphenol oxidase activity and gene expression of ‘Yali’pears during storage. Postharvest Biology and Technology, 85:39-44.
doi: 10.1016/j.postharvbio.2013.04.016 URL |
[39] |
Yang X T, Song J, Campbell-Palmer L, Fillmore S, Zhang Z. 2013. Effect of ethylene and 1-MCP on expression of genes involved in ethylene biosynthesis and perception during ripening of apple fruit. Postharvest Biology and Technology, 78:55-66.
doi: 10.1016/j.postharvbio.2012.11.012 URL |
[40] |
Yazdani N, Arzani K, Mostofi Y, Shekarchi M. 2011. α-Farnesene and antioxida-tive enzyme systems in Asian pear(Pyrus serotina Rehd.)fruit. Postharvest Biology and Technology, 59:227-231.
doi: 10.1016/j.postharvbio.2010.09.002 URL |
[41] |
Yu J F, Wang Y. 2017. The combination of ethoxyquin,1-methylcyclopropene and ethylene treatments controls superficial scald of‘d’Anjou’pears with recovery of ripening capacity after long-term controlled atmosphere storage. Postharvest Biology and Technology, 127:53-59.
doi: 10.1016/j.postharvbio.2017.01.012 URL |
[42] |
Zhou S, Cheng Y D, Guan J F. 2017. The molecular basis of superficial scald development related to ethylene perception and α-farnesene metabolism in‘Wujiuxiang’pear. Scientia Horticulturae, 216:76-82.
doi: 10.1016/j.scienta.2016.12.025 URL |
[43] |
Zhou X, Zhang Z L, Park J, Tyler L, Yusuke J, Qiu K, Nam EA, Lumba S, Desveaux D, McCourt P. 2016. The ERF11 transcription factor promotes internode elongation by activating gibberellin biosynthesis and signaling. Plant Physiology, 171:2760-2770.
doi: 10.1104/pp.16.00154 pmid: 27255484 |
[1] | SONG Jiankun, YANG Yingjie, LI Dingli, MA Chunhui, WANG Caihong, and WANG Ran. A New Pear Cultivar‘Luxiu’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 3-4. |
[2] | DONG Xingguang, CAO Yufen, ZHANG Ying, TIAN Luming, HUO Hongliang, QI Dan, XU Jiayu, LIU Chao, and WANG Lidong. A New Cold-resistant Crispy Pear Cultivar‘Yucuixiang’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 5-6. |
[3] | OU Chunqing, JIANG Shuling, WANG Fei, MA Li, ZHANG Yanjie, and LIU Zhenjie. A New Early-ripening Pear Cultivar‘Xingli Mishui’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 7-8. |
[4] | ZHANG Yanjie, WANG Fei, OU Chunqing, MA Li, JIANG Shuling, and LIU Zhenjie. A New Pear Cultivar‘Zhongli Yucui 3’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 9-10. |
[5] | WANG Suke, LI Xiugen, YANG Jian, WANG Long, SU Yanli, ZHANG Xiangzhan, and XUE Huabai. A New Red Pear Cultivar‘Danxiahong’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 13-14. |
[6] | WANG Fei, OU Chunqing, ZHANG Yanjie, MA Li, and JIANG Shuling. A New Late Ripening Pear Cultivar‘Huaqiu’with Long Storage Period [J]. Acta Horticulturae Sinica, 2022, 49(S1): 9-10. |
[7] | SONG Jiankun, LI Dingli, YANG Yingjie, MA Chunhui, WANG Caihong, and WANG Ran. A New Pear Cultivar‘Qindaohong’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 11-12. |
[8] | GUO Weizhen, ZHAO Jingxian, LI Ying. A New Mid-early Ripening Pear Cultivar‘Meiyu’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 2051-2052. |
[9] | LIU Jinming, GUO Caihua, YUAN Xing, KANG Chao, QUAN Shaowen, NIU Jianxin. Genome-wide Identification of Dof Family Genes and Expression Analysis Sepal Persistent and Abscission in Pear [J]. Acta Horticulturae Sinica, 2022, 49(8): 1637-1649. |
[10] | TAO Xin, ZHU Rongxiang, GONG Xin, WU Lei, ZHANG Shaoling, ZHAO Jianrong, ZHANG Huping. Fructokinase Gene PpyFRK5 Plays an Important Role in Sucrose Accumulation of Pear Fruit [J]. Acta Horticulturae Sinica, 2022, 49(7): 1429-1440. |
[11] | WANG Yan, SUN Zheng, FENG Shan, YUAN Xinyi, ZHONG Linlin, ZENG Yunliu, FU Xiaopeng, CHENG Yunjiang, Bao Manzhu, ZHANG Fan. The Negative Regulation of DcERF-1 on Senescence of Cut Carnation [J]. Acta Horticulturae Sinica, 2022, 49(6): 1313-1326. |
[12] | LIANG Qin, ZHANG Yanhui, KANG Kaiquan, LIU Jinhang, LI Liang, FENG Yu, WANG Chao, YANG Chao, LI Yongyu. Molecular Evolution of MiR168 Family and Their Expression Profiling During Dormancy of Pyrus pyrifolia [J]. Acta Horticulturae Sinica, 2022, 49(5): 958-972. |
[13] | XIANG Miaolian, WU Fan, LI Shucheng, MA Qiaoli, WANG Yinbao, XIAO Liuhua, CHEN Jinyin, CHEN Ming. Exogenous Melatonin Regulates Reactive Oxygen Metabolism to Induce Resistance of Postharvest Pear Fruit to Black Spot [J]. Acta Horticulturae Sinica, 2022, 49(5): 1102-1110. |
[14] | ZHAO Hui, GENG Xingmin, WANG Lulu, XU Shida. Research on the Effect of Ethylene in Heat Resistance Mechanism of Rhododendron [J]. Acta Horticulturae Sinica, 2022, 49(3): 561-570. |
[15] | CHEN Hemin, LI Zuo, MA Nan, XIAO Wenfang, CHEN Heming, LÜ Fubing, Li Zongyan, ZHU Genfa. Research Advances on Fresh-keeping Technologies of Orchid Cut Flowers and Potted Plants [J]. Acta Horticulturae Sinica, 2022, 49(12): 2743-2760. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd