https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

园艺学报 ›› 2019, Vol. 46 ›› Issue (9): 1752-1764.doi: 10.16420/j.issn.0513-353x.2019-0462

• 综述 • 上一篇    下一篇

十字花科蔬菜硫代葡萄糖苷合成相关转录因子调控研究进展

王军伟,黄 科,黄英娟,毛舒香,柏艾梅,刘明月,吴秋云*   

  1. 湖南农业大学园艺园林学院,长沙 410128
  • 出版日期:2019-09-25 发布日期:2019-09-25
  • 基金资助:
    国家自然科学基金项目(31772325,31902023);湖南省自然科学基金项目(2018JJ3217);湖南省科技计划项目(2018NK2022);农业部园艺作物生物学与种质创制综合性重点实验室开放基金项目(IVF201702);湖南农业大学校青年基金项目(17QN33)

The Research Progress of Transcription Factors Regulating Glucosinolates Biosynthesis in Cruciferous Vegetables

WANG Junwei,HUANG Ke,HUANG Yingjuan,MAO Shuxiang,BAI Aimei,LIU Mingyue,and WU Qiuyun*   

  1. College of Horticulture & Landscape,Hunan Agricultural University,Changsha 410128,China
  • Online:2019-09-25 Published:2019-09-25

摘要: 硫代葡萄糖苷是十字花科植物中重要的次生代谢产物,其衍生产物和降解产物在植物防卫反应、特殊风味形成和人体防癌抗癌等方面具有特殊作用。硫苷的合成代谢可以概括为:氨基酸侧链的延伸、核心结构的合成及R侧链的修饰,涉及BCATs、MAMs、CYP79s、CYP83s和AOPs等多个基因家族。综述了硫苷合成过程中几种重要的转录因子,其中MYB转录因子家族12亚族的MYB28、MYB29、MYB76、MYB34、MYB51和MYB122对十字花科植物硫苷合成起主要的调控作用,MYB28和MYB34分别为调控脂肪族硫苷和吲哚族硫苷的主效基因。bHLH类转录因子MYC2、MYC3和MYC4通过作用于MYB类转录因子对硫苷合成起调控作用,WRKY类转录因子WRKY18和WRKY40协同CYP81F2负调控吲哚族硫苷的合成。此外,还介绍了上述几种转录因子在外源生物或非生物刺激后的响应,及参与调控硫苷合成的作用机理。通过对调控硫苷合成的转录因子的研究,可进一步丰富硫苷合成的调控网路,为高含量硫苷的十字花科蔬菜作物的分子育种、优质栽培、病虫害生物防治提供新思路和新方法。

关键词: 十字花科, 硫代葡萄糖苷, 转录因子, 次生代谢, 转录调控

Abstract: Glucosinolates are important secondary metabolites in cruciferous plants,and their derivatives and degradation productions play a special function in plant defense reaction,formation of special flavor and cancer resistance. The glucosinolate biosynthesis is complex,including side chain elongation of amino acids,formation of the core glucosinolate structure and secondary modi?cations of the amino acid side chain,involving BCATs,MAMs,CYP79s,CYP83s,AOPs and other gene families. With gradual revelation of metabolic mechanism of glucosinolate,the transcriptional regulation model has become a hot topic in metabolic mechanism research. In this paper,three important transcription factors involved in glucosinolate metabolism were summarized,among which MYB transcription factors(MYB28,MYB29,MYB76,MYB34,MYB51,and MYB122)played major regulatory roles in glucosinolates biosynthesis. And MYB28 and MYB34 are the major genes on regulating aliphatic and indole glucosinolates biosynthesis,respectively. bHLH transcription factors (MYC2,MYC3 and MYC4) have regulating function on glucosinolate biosynthesis by conjunction with MYB transcription factors. WRKY transcription factors(WRKY18 and WRKY40)synergize with CYP81F2 to negatively regulate the biosynthesis of indole glucosinolates. In addition,the responsion of transcription factors to exogenous abiotic or biotic stimulation,and the regulation mechanism on glucosinolate biosynthesis are briefly introduced in this paper. The research on transcription factors can further enrich regulatory mechanism of glucosinolate biosynthesis and provide new idea and method for molecular breeding,high-quality cultivation,biological control of cruciferous vegetable crops with high glucosinolate content.

Key words: Cruciferae, glucosinolate, transcription factor, secondary metabolism, transcriptional regulation

中图分类号: