https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

园艺学报 ›› 2019, Vol. 46 ›› Issue (7): 1225-1237.doi: 10.16420/j.issn.0513-353x.2018-0631;http://www. ahs. ac. cn

• 研究论文 •    下一篇

中国山荆子和楸子种质资源遗传多样性和遗传结构的荧光SSR分析

高 源,王 昆*,王大江,刘立军,李连文,朴继成   

  1. 中国农业科学院果树研究所,农业部园艺作物种质资源利用重点实验室,辽宁兴城 125100
  • 出版日期:2019-07-25 发布日期:2019-07-25
  • 基金资助:
    中国农业科学院创新工程项目(CAAS-ASTIP-2016-RIP-02);农业部农作物种质资源保护项目(NB2015-2130135-39);国家公益性行业(农业)科研专项(201303093)

Genetic Diversity and Genetic Structure of Malus baccata and Malus prunifolia from China as Revealed by Fluorescent SSR Markers

GAO Yuan,WANG Kun*,WANG Dajiang,LIU Lijun,LI Lianwen,and PIAO Jicheng   

  1. Research Institute of Pomology,Chinese Academy of Agricultural Sciences,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops Germplasm Resources Utilization,Ministry of Agriculture,Xingcheng,Liaoning 125100,China
  • Online:2019-07-25 Published:2019-07-25

摘要: 采用荧光SSR分子标记对来源于中国9个省的苹果属山荆子8个种群和楸子9个种群共288份种质的遗传多样性和种群遗传结构进行了研究。结果显示:19对SSR引物对288份种质共扩增出416个多态性等位基因,平均每个位点等位基因21.895个,多态性位点百分率(PPB)为100%。山荆子和楸子共计17个种群总体的遗传多样性较高,有效等位基因数(Ne)为9.284,平均期望杂合度(He)为0.862,Shannon’s多样性指数(I)为2.432;种群水平上,楸子的遗传多样性水平(He = 0.870,I = 2.412,Ne = 9.019)高于山荆子(He = 0.848,I = 2.350,Ne = 8.652)。分子方差分析(AMOVA)表明,遗传变异主要来自种群内(95%)。种群间的遗传分化系数(Fst)为0.278,基因流(Nm)为5.031,表明楸子和山荆子均为异交的混交类群,各个种群在过去的某个时间都可能相互发生过基因交流,抵制了由于基因漂变而导致的种群间遗传分化。通过NJ聚类和Structure分组划分类群,种群间遗传距离和类群归属与地理位置不完全相关。

关键词: 山荆子, 楸子, 荧光SSR, 遗传多样性, 遗传结构

Abstract: This study used fluorescent SSR molecular marker to analyze the genetic diversity and genetic structure of 17 populations of Malus baccata and Malus prunifolia from nine provinces. The results showed that 416 polymorphic alleles were amplified by 19 SSR primers,the percentage of polymorphic bands was 100%. The genetic diversity of overall 17 populations was high(Ne = 9.284,He = 0.862,I = 2.432),while at population level the genetic diversity of Malus prunifolia(He = 0.870,I = 2.412,Ne = 9.019)was higher than that of Malus baccata(He = 0.848,I = 2.350,Ne = 8.652). The analysis of molecular variance(AMOVA)revealed the genetic differentiation mainly within populations(95%).The genetic differentiation coefficient(Fst)among populations was 0.278,and gene flow(Nm)was 5.031. These results indicated that Malus baccata and Malus prunifolia were all hybrid groups by outcrossing,and there might have been genetic communication among groups at some time in the past,but at the same time they had resisted genetic differentiation among groups due to gene drift. Neighbour-Joining clustering and Structure grouping were used to classify populations,and the genetic distance between every two populations and group affiliation were not completely related to geographical location.

Key words: Malus baccata, Malus prunifolia, fluorescent SSR, genetic diversity, genetic structure

中图分类号: