https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

园艺学报 ›› 2018, Vol. 45 ›› Issue (10): 2045-2051.doi: 10.16420/j.issn.051-353x.2017-0632

• 研究报告 • 上一篇    下一篇

切花菊3个品种的飞燕草素苷合成能力分析

于凯丽,吴慧莹,曲爱爱,王艺光,房伟民,蒋甲福,陈发棣,陈素梅*   

  1. 南京农业大学园艺学院,农业部景观农业重点实验室,南京 210095
  • 出版日期:2018-10-25 发布日期:2018-10-25
  • 基金资助:

    江苏省重点研发计划项目(BE2017412);江苏省农业科技自主创新资金项目[CX(16)1025];中央高校基本科研业务费创新产业链项目(KYCYL201501);中央高校基本科研业务费重大专项(KYTZ201401)

Delphinidin Synthesis Ability in Three Cut Chrysanthemum Cultivars

YU Kaili,WU Huiying,QU Aiai,WANG Yiguang,FANG Weimin,JIANG Jiafu,CHEN Fadi,and CHEN Sumei*   

  1. College of Horticulture,Nanjing Agricultural University/Key Laboratory of Landscape Agriculture,Ministry of Agriculture,Nanjing 210095,China
  • Online:2018-10-25 Published:2018-10-25

摘要:

为了评价不同切花菊品种花瓣飞燕草素苷合成能力,以3个粉色系切花菊品种为材料,采用飞燕草素前体二氢杨梅素2 mg · mL-1溶液对花瓣进行离体添加培养,建立菊花飞燕草素苷超高效液相UPLC分析技术,并用于菊花花瓣中飞燕草素苷的鉴定。结果表明,菊花花青苷可采用0.1 mol · L-1盐酸甲醇及同体积的10%甲酸水提取,0.22 μm膜过滤。通过洗脱条件的优化可在9 min内实现飞燕草素苷与其他花青苷的分离,当飞燕草素在2.5 ~ 40 mg · L-1范围内时与色谱峰面积具有良好的线性关系,相关系数为0.997。3个粉色系菊花品种均具有催化二氢杨梅素合成飞燕草素的能力,且飞燕草素含量均在220 μg · g-1 FW以上,表明3个品种均可作为蓝色花色转基因候选品种。

关键词: 菊花, 二氢杨梅素, 飞燕草素苷, 超高效液相, 蓝色花色

Abstract:

To evaluate the delphinidin biosynthesis ability of different chrysanthemum varieties,three varieties of pink flowers were employed,and the petals were fed with 2 mg · mL-1 DHM. The delphinidin content in DHM fed petals was determined. By optimizing the analysis conditions,we established an effective way of quantitative determination of delphinidin via UPLC. The results showed that anthocyanin of chrysanthemum flowers can be extracted by 0.1 mol · L-1 hydrochloric acid methanol,and 10% formic acid in a ratio of 9︰1(v/v),and followed by filtering through 0.22 μm filter membrane. Through the optimization of elution conditions,delphinium can be separated from other anthocynins within nine minutes. Based on optimized UPLC analysis method,delphinium concentration within 2.5–40 mg · L-1 has a good linear relationship with peak area,and the correlation coefficient is 0.997. We found that all the varieties could produce delphinidin when fed with DHM,the contents of delphinidin in three varieties are all over 220 μg · g-1 FW,inferring the tested varieties are promising host varieties for blue flower genetic modification.

Key words: chrysanthemum, dihydromyricetin, delphinidin, ultral high performance liquid chromatography(UPLC), blue flower color

中图分类号: