https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

园艺学报 ›› 2016, Vol. 43 ›› Issue (7): 1348-1356.doi: 10.16420/j.issn.0513-353x.2016-0324

• 其它园艺植物 • 上一篇    下一篇

茶树亚硝酸还原酶基因CsNiR的克隆及表达分析

张 芬,王丽鸳,成 浩*,韦 康,胡 娟,张成才,刘 圆,吴立赟,李海琳   

  1. (中国农业科学院茶叶研究所,国家茶树改良中心,杭州 310008)
  • 出版日期:2016-07-25 发布日期:2016-07-25

Molecular Cloning and Expression Analysis of Nitrite Reductase Gene CsNiR in Tea Plant

ZHANG Fen,WANG Li-yuan,CHENG Hao*,WEI Kang,HU Juan,ZHANG Cheng-cai,LIU Yuan,WU Li-yun,and LI Hai-lin   

  1. (Tea Research Institute,the Chinese Academy of Agricultural Sciences,National Center for Tea Improvement,Hangzhou 310008,China)
  • Online:2016-07-25 Published:2016-07-25

摘要:

以‘龙井43’茶树叶片的cDNA为模板,利用RT?PCR技术克隆了茶树亚硝酸还原酶基因(CsNiR),得到完整的ORF全长为1 764 bp,编码587个氨基酸;所推导的氨基酸序列与垂枝桦(Betula pendula)、拟南芥(Arabidopsis thaliana)、菠菜(Spinacia oleracea)和水稻(Oryza sativa)的同源性均大于76%。生物信息学分析表明,CsNiR分子量为68.648 kD,等电点为6.12,为亲水性的非分泌蛋白;二级结构的预测显示,CsNiR具有完整的NiR 蛋白结构,含血红素蛋白β–化合物区域和4Fe-4S区域。实时荧光定量结果表明,该基因在成熟叶片中表达量高于一芽二叶和根。采用营养液水培3个茶树品种,在氮饥饿两周后分别供应正常氮素和低氮素(1和0.1 mmol · L-1 NH4NO3),qRT-PCR测定发现,正常氮素处理的2 h和6 h,诱导根CsNiR表达量显著增加,叶片中的表达量变化延迟到24 h之后,且变化幅度存在基因型之间的差异;低氮处理对CsNiR表达量的影响相对较小。因此,研究CsNiR基因的表达特性及其在茶树氮素利用中所发挥的作用,需结合茶树基因型、组织部位、供氮水平等进行综合评价。

关键词: 茶树, 亚硝酸还原酶, 克隆, 基因表达, 氮素

Abstract:

Teanitrite reductase(CsNiR)was cloned by RT-PCR from cDNA isolated from leaves of cultivar‘Longjing 43’. The complete ORF of the CsNiR was 1 764 bpencoding 587 amino acids. Alignment of amino acid sequences showed that CsNiR sharing more than 76% similarities to NiR in Betula pendulaArabidopsis thalianaSpinacia oleracea and Oryza sativa. Bioinformatics analysis indicated that the CsNiR was a hydrophilic non-secretory protein with molecular weight 68.648 kD and theoretical pI 6.12. Prediction results by InterProScan showed the secondary structure of CsNiR protein comprised of a hemoprotein beta component and a 4Fe-4S region,and its 3D structure was also predicted  by Swiss Model. qRT-PCR analysis revealed that the expression abundance of CsNiR in mature leaves was the highest among the three tested tissues(two leaves and a bud,mature leaves and roots). Meanwhile,the transcript changes of CsNiR responding to different nitrogen(N)levels were studied by qRT-PCR after resupplying normal N(1 mmol · L-1 NH4NO3)and low N(0.1 mmol · L-1 NH4NO3)on hydroponic seedlings of three tea varieties with treatment of two week N starvation. The CsNiR expression levels were increased significantly in roots at 2 h and 6 h under normal N treatment,but they were changed since 24 h after N supplied in leaves. Furthermore,the transcription of CsNiR was also different among varieties. The transcript abundance of CsNiR increased more greatly under the normal N condition compared to those under low N treatment. Thus,factors like genotypes,tissues,nitrogen levels should be taken into consideration for the role of CsNiR in nitrogen utilization in tea plants.

Key words: Camellia sinensis, nitrite reductase, cloning, gene expression, nitrogen

中图分类号: