[1] |
Alves F R R, Lira B S, Pikart F C, Monteiro S S, Furlan C M, Purgatto E, Pascoal G B, Andrade S, Demarco D, Rossi M, Freschi L. 2020. Beyond the limits of photoperception:constitutively active PHYTOCHROME B 2 overexpression as a means of improving fruit nutritional quality in tomato. Plant Biotechnology Journal, 18 (10):2027-2041.
doi: 10.1111/pbi.v18.10
URL
|
[2] |
Ampomah-Dwamena C. Thrimawithana A H, Dejnoprat S, Lewis D, Espley R V, Allan A C. 2018. A kiwifruit(Actinidia deliciosa)R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. New Phytologist, 221 (1):309-325.
doi: 10.1111/nph.2019.221.issue-1
URL
|
[3] |
An X H, Tian Y, Chen Y H, Li E M, Li M, Cheng C G. 2018. Functional identification of apple MdGLK 1 which regulates chlorophyll biosynthesis in Arabidopsis. Journal of Plant Growth Regulation, 38 (3):778-787.
doi: 10.1007/s00344-018-9889-5
|
[4] |
Armstead I, Donnison I, Aubry S, Harper J, Hörtensteiner S, James C, Mani J, Moffet M, Ougham H, Roberts L, Thomas A. 2007. Cross-species identification of Mendel’s I locus. Science, 315 (5808):73.
doi: 10.1126/science.1132912
pmid: 17204643
|
[5] |
Arrones A, Mangino G, Alonso D, Plazas M, Prohens J, Portis E, Barchi L, Giuliano G, Vilanova S, Gramazio P. 2022. Mutations in the SmAPRR2 transcription factor suppressing chlorophyll pigmentation in the eggplant fruit peel are key drivers of a diversified colour palette. Frontiers in Plant Science, 13:1-14.
|
[6] |
Barry C S, Mcquinn R P, Chung M Y, Besuden A, Giovannoni J J. 2008. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiology, 147 (1):179-187.
doi: 10.1104/pp.108.118430
pmid: 18359841
|
[7] |
Bianchetti R, de Luca B, de Haro L A, Rosado D, Demarco D, Conte M, Bermudez L, Freschi L, Fernie A R, Michaelson L V, Haslam R P, Rossi M, Carrari F. 2020. Phytochrome-dependent temperature perception modulates isoprenoid metabolism. Plant Physiology, 183 (3):869-882.
doi: 10.1104/pp.20.00019
pmid: 32409479
|
[8] |
Bianchetti R E, Lira B S, Monteiro S S, Demarco D, Purgatto E, Rothan C, Rossi M, Freschi L. 2018. Fruit-localized phytochromes regulate plastid biogenesis,starch synthesis,and carotenoid metabolism in tomato. Journal of Experimental Botany, 69 (15):3573-3586.
doi: 10.1093/jxb/ery145
pmid: 29912373
|
[9] |
Borovsky Y, Monsonego N, Mohan V, Shabtai S, Kamara I, Faigenboim A, Hill T, Chen S, Stoffel K, van Deynze A, Paran I. 2019. The zinc-finger transcription factor CcLOL 1 controls chloroplast development and immature pepper fruit color in Capsicum chinense and its function is conserved in tomato. Plant Journal, 99 (1):41-55.
doi: 10.1111/tpj.14305
|
[10] |
Breitel D A, Chappell-Maor L, Meir S, Panizel I, Puig C P, Hao Y, Yifhar T, Yasuor H, Zouine M, Bouzayen M, Granell Richart A, Rogachev I, Aharoni A. 2016. AUXIN RESPONSE FACTOR 2 intersects hormonal signals in the regulation of tomato fruit ripening. PLoS GENETICS, 12 (3):e1005903.
|
[11] |
Buhr F, El Bakkouri M, Valdez O, Pollmann S, Lebedev N, Reinbothe S, Reinbothe C. 2008. Photoprotective role of NADPH: protochlorophyllide oxidoreductase A. Proceedings of the National Academy of Sciences of the United States of America, 105 (34):12629-12634.
|
[12] |
Cackett L, Luginbuehl L H, Schreier T B, Lopez-Juez E, Hibberd J M. 2021. Chloroplast development in green plant tissues:the interplay between light,hormone,and transcriptional regulation. New Phytologist, 233 (5):2000-2016.
doi: 10.1111/nph.17839
pmid: 34729790
|
[13] |
Chen M, Liu X, Jiang S, Wen B, Yang C, Xiao W, Fu X, Li D, Chen X, Gao D, Li L. 2018. Transcriptomic and functional analyses reveal that PpGLK 1 regulates chloroplast development in peach(Prunus persica). Frontiers in Plant Science, 9:34.
doi: 10.3389/fpls.2018.00034
pmid: 29434612
|
[14] |
Esparza-Araiza M J, Banuelos-Hernandez B, Arguello-Astorga G R, Lara-Avila J P, Goodwin P H, Isordia-Jasso M I, Castillo-Collazo R, Rougon-Cardoso A, Alpuche-Solis A G. 2015. Evaluation of a SUMO E 2 conjugating enzyme involved in resistance to Clavibacter michiganensis subsp. michiganensis in Solanum peruvianum,through a tomato mottle virus VIGS assay. Frontiers in Plant Science, 6:1019.
doi: 10.3389/fpls.2015.01019
pmid: 26734014
|
[15] |
Fitter D W, Martin D J, Copley M J, Scotland R W, Langdale J A. 2002. GLK gene pairs regulate chloroplast development in diverse plant species. Plant Journal, 31 (6):713-727.
doi: 10.1046/j.1365-313x.2002.01390.x
pmid: 12220263
|
[16] |
Fujisawa M, Nakano T, Shima Y, Ito Y. 2013. A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell, 25 (2):371-386.
doi: 10.1105/tpc.112.108118
URL
|
[17] |
Gallei M, Luschnig C, Friml J. 2020. Auxin signalling in growth:Schrodinger’s cat out of the bag. Current Opinion in Plant Biology, 53:43-49.
|
[18] |
Galpaz N, Wang Q, Menda N, Zamir D, Hirschberg J. 2008. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant Journal, 53 (5):717-730.
doi: 10.1111/tpj.2008.53.issue-5
URL
|
[19] |
Galvao V C, Fankhauser C. 2015. Sensing the light environment in plants:photoreceptors and early signaling steps. Current Opinion in Neurobiology, 34:46-53.
doi: 10.1016/j.conb.2015.01.013
URL
|
[20] |
Gangappa S N, Botto J F. 2016. The multifaceted roles of HY 5 in plant growth and development. Molecular Plant, 9 (10):1353-1365.
doi: 10.1016/j.molp.2016.07.002
URL
|
[21] |
Gao M, Hu L, Li Y, Weng Y. 2016a. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit. Theoretical and Applied Genetics, 129 (10):1961-1973.
doi: 10.1007/s00122-016-2752-9
URL
|
[22] |
Gao S, Gao J, Zhu X, Song Y, Li Z, Ren G, Zhou X, Kuai B. 2016b. ABF2,ABF3,and ABF 4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis. Molecular Plant, 9 (9):1272-1285.
doi: 10.1016/j.molp.2016.06.006
URL
|
[23] |
Gao Y, Wei W, Fan Z, Zhao X, Zhang Y, Jing Y, Zhu B, Zhu H, Shan W, Chen J, Grierson D, Luo Y, Jemric T, Jiang C Z, Fu Q. 2020. Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening. Journal of Experimental Botany, 71 (12):3560-3574.
doi: 10.1093/jxb/eraa131
pmid: 32338291
|
[24] |
Gao Y, Wei W, Zhao X, Tan X, Fan Z, Zhang Y, Jing Y, Meng L, Zhu B, Zhu H, Chen J, Jiang C Z, Grierson D, Luo Y, Fu D Q. 2018. A NAC transcription factor,NOR-like1,is a new positive regulator of tomato fruit ripening. Horticulture Research, 5:75.
doi: 10.1038/s41438-018-0111-5
URL
|
[25] |
Giovannoni J J. 2007. Fruit ripening mutants yield insights into ripening control. Current Opinion in Plant Biology, 10 (3):283-289.
doi: 10.1016/j.pbi.2007.04.008
pmid: 17442612
|
[26] |
Gupta S K, Sharma S, Santisree P, Kilambi H V, Appenroth K, Sreelakshmi Y, Sharma R. 2014. Complex and shifting interactions of phytochromes regulate fruit development in tomato. Plant,Cell and Environment, 37 (7):1688-1702.
doi: 10.1111/pce.2014.37.issue-7
URL
|
[27] |
Guyer L, Hofstetter S S, Christ B, Lira B S, Rossi M, Hortensteiner S. 2014. Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato. Plant Physiology, 166 (1):44-56.
doi: 10.1104/pp.114.239541
pmid: 25033826
|
[28] |
Hetherington S E, Smillie R M, Davies W J. 1998. Photosynthetic activities of vegetative and fruiting tissues of tomato. Journal of Experimental Botany, 49 (324):1173-1181.
doi: 10.1093/jxb/49.324.1173
URL
|
[29] |
Hirashima M, Tanaka R, Tanaka A. 2009. Light-independent cell death induced by accumulation of pheophorbide a in Arabidopsis thaliana. Plant and Cell Physiology, 50 (4):719-729.
doi: 10.1093/pcp/pcp035
pmid: 19273468
|
[30] |
Hu Z L, Deng L, Yan B, Pan Y, Luo M, Chen X Q, Hu T Z, Chen G P. 2011. Silencing of the LeSGR1 gene in tomato inhibits chlorophyll degradation and exhibits a stay-green phenotype. Biologia Plantarum, 55 (1):27-34.
doi: 10.1007/s10535-011-0004-z
URL
|
[31] |
Ito Y, Sekiyama Y, Nakayama H, Nishizawa-Yokoi A, Endo M, Shima Y, Nakamura N, Kotake-Nara E, Kawasaki S, Hirose S, Toki S. 2020. Allelic mutations in the ripening-inhibitor locus generate extensive variation in tomato ripening. Plant Physiology, 183 (1):80-95.
doi: 10.1104/pp.20.00020
URL
|
[32] |
Jeong H B, Jang S J, Kang M Y, Kim S, Kwon J K, Kang B C. 2020. Candidate gene analysis reveals that the fruit color locus C 1 corresponds to PRR2 in pepper(Capsicum frutescens). Frontiers in Plant Science, 11:399.
doi: 10.3389/fpls.2020.00399
URL
|
[33] |
Jian W, Cao H H, Yuan S, Liu Y D, Lu J F, Lu W, Li N, Wang J H, Zou J, Tang N, Xu C, Cheng Y L, Gao Y P, Xi W P, Bouzayen M, Li Z G. 2019. SlMYB75,an MYB-type transcription factor,promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Horticulture Research, 6:1-15.
doi: 10.1038/s41438-018-0066-6
|
[34] |
Jiang H W, Li M R, Liang N T, Yan H B, Wei Y B, Xu X L, Liu J L, Xu Z F, Chen F, Wu G J. 2007. Molecular cloning and function analysis of stay green gene in rice. Plant Journal, 52 (2):197-209.
doi: 10.1111/tpj.2007.52.issue-2
URL
|
[35] |
Jiao J, Liu H, Liu J, Cui M, Xu J, Meng H, Li Y, Chen S, Cheng Z. 2017. Identification and functional characterization of APRR2 controlling green immature fruit color in cucumber(Cucumis sativus L.). Plant Growth Regulation, 83 (2):233-243.
doi: 10.1007/s10725-017-0304-1
URL
|
[36] |
Jones B, Frasse P, Olmos E, Zegzouti H, Li Z G, Latche´ A, Pech J C, Bouzayen M. 2002. Down-regulation of DR12,an auxin-response-factor homolog,in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant Journal, 32 (4):603-613.
doi: 10.1046/j.1365-313X.2002.01450.x
URL
|
[37] |
Jones M O, Piron-Prunier F, Marcel F, Piednoir-Barbeau E, Alsadon A A, Wahb-Allah M A, Al-Doss A A, Bowler C, Bramley P M, Fraser P D, Bendahmane A. 2012. Characterisation of alleles of tomato light signalling genes generated by TILLING. Phytochemistry, 79:78-86.
doi: 10.1016/j.phytochem.2012.04.005
pmid: 22595361
|
[38] |
Kobayashi K, Baba S, Obayashi T, Sato M, Toyooka K, Keranen M, Aro E M, Fukaki H, Ohta H, Sugimoto K, Masuda T. 2012. Regulation of root greening by light and auxin/cytokinin signaling in Arabidopsis. Plant Cell, 24 (3):1081-1095.
doi: 10.1105/tpc.111.092254
URL
|
[39] |
Kuai B, Chen J, Hortensteiner S. 2018. The biochemistry and molecular biology of chlorophyll breakdown. Journal of Experimental Botany, 69 (4):751-767.
doi: 10.1093/jxb/erx322
pmid: 28992212
|
[40] |
Lee S B, Kim J E, Kim H T, Lee G M, Kim B S, Lee J M. 2020. Genetic mapping of the C1 locus by GBS-based BSA-seq revealed Pseudo-Response Regulator 2 as a candidate gene controlling pepper fruit color. Theoretical and Applied Genetics, 133 (6):1897-1910.
|
[41] |
Li G, Chen D, Tang X, Liu Y. 2018a. Heterologous expression of kiwifruit(Actinidia chinensis)GOLDEN2-LIKE homolog elevates chloroplast level and nutritional quality in tomato(Solanum lycopersicum). Planta, 247 (6):1351-1362.
doi: 10.1007/s00425-018-2853-6
|
[42] |
Li H, Li Y, Deng H, Sun X, Wang A, Tang X, Gao Y, Zhang N, Wang L, Yang S, Liu Y, Wang S. 2018b. Tomato UV-B receptor SlUVR8 mediates plant acclimation to UV-B radiation and enhances fruit chloroplast development via regulating SlGLK2. SCIENTIFIC REPORTS, 8 (1):6097.
doi: 10.1038/s41598-018-24309-y
|
[43] |
Li S, Chen K, Grierson D. 2021. Molecular and hormonal mechanisms regulating fleshy fruit ripening. Cells, 10 (5):1136-1169.
doi: 10.3390/cells10051136
URL
|
[44] |
Li Y, Deng H, Miao M, Li H, Huang S, Wang S, Liu Y. 2016a. Tomato MBD5,a methyl CpG binding domain protein,physically interacting with UV-damaged DNA binding protein-1,functions in multiple processes. New Phytologist, 210 (1):208-226.
doi: 10.1111/nph.2016.210.issue-1
URL
|
[45] |
Li Z J, Peng R, Tian Y S, Han H J, Xu J, Yao Q H. 2016b. Genome-wide identification and analysis of the MYB transcription factor superfamily in Solanum lycopersicum. Plant and Cell Physiology, 57 (8):1657-1677.
doi: 10.1093/pcp/pcw091
URL
|
[46] |
Liang Y, Wang J, Zeng F, Wang Q, Zhu L, Li H, Guo N, Chen H. 2021. Photorespiration regulates carbon-nitrogen metabolism by Magnesium Chelatase D Subunit in rice. Journal of Agricultural and Food Chemistry, 69 (1):112-125.
doi: 10.1021/acs.jafc.0c05809
pmid: 33353295
|
[47] |
Lieberman M, Segev O, Gilboa N, Lalazar A, Levin I. 2004. The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1)underlined as the gene that causes the high pigment-1 mutant phenotype. Theoretical and Applied Genetics, 108 (8):1574-1581.
doi: 10.1007/s00122-004-1584-1
pmid: 14968305
|
[48] |
Lin Y P, Charng Y Y. 2021. Chlorophyll dephytylation in chlorophyll metabolism:a simple reaction catalyzed by various enzymes. Plant Science, 302:110682.
doi: 10.1016/j.plantsci.2020.110682
URL
|
[49] |
Lin Y P, Wu M C, Charng Y Y. 2016. Identification of a chlorophyll dephytylase involved in chlorophyll turnover in Arabidopsis. Plant Cell, 28 (12):2974-2990.
doi: 10.1105/tpc.16.00478
URL
|
[50] |
Lira B S, Rosado D, Almeida J, De Souza A P, Buckeridge M S, Purgatto E, Guyer L, Hortensteiner S, Freschi L, Rossi M. 2016. Pheophytinase knockdown impacts carbon metabolism and nutraceutical content under normal growth conditions in tomato. Plant and Cell Physiology, 57 (3):642-653.
doi: 10.1093/pcp/pcw021
pmid: 26880818
|
[51] |
Liu C C, Ahammed G J, Wang G T, Xu C J, Chen K S, Zhou Y H, Yu J Q. 2018. Tomato CRY1a plays a critical role in the regulation of phytohormone homeostasis,plant development,and carotenoid metabolism in fruits. Plant,Cell and Environment, 41 (2):354-366.
doi: 10.1111/pce.v41.2
URL
|
[52] |
Liu G, Li C, Yu H, Tao P, Yuan L, Ye J, Chen W, Wang Y, Ge P, Zhang J, Zhou G, Zheng W, Ye Z, Zhang Y. 2020. GREEN STRIPE,encoding methylated TOMATO AGAMOUS-LIKE 1,regulates chloroplast development and Chl synthesis in fruit. New Phytologist, 228 (1):302-317.
doi: 10.1111/nph.v228.1
URL
|
[53] |
Liu G, Yu H, Yuan L, Li C, Ye J, Chen W, Wang Y, Ge P, Zhang J, Ye Z, Zhang Y. 2021. SlRCM1,which encodes tomato Lutescent1,is required for chlorophyll synthesis and chloroplast development in fruits. Horticulture Research, 8:128.
doi: 10.1038/s41438-021-00563-6
|
[54] |
Liu L, Jia C, Zhang M, Chen D, Chen S, Guo R, Guo D, Wang Q. 2014. Ectopic expression of a BZR1-1 D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnology Journal, 12 (1):105-115.
|
[55] |
Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J. 2004. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences of the United States of America, 101 (26):9897-9902.
|
[56] |
Luo Z, Zhang J, Li J, Yang C, Wang T, Ouyang B, Li H, Giovannoni J, Ye Z. 2013. A STAY-GREEN protein SlSGR1 regulates lycopene and beta-carotene accumulation by interacting directly with SlPSY 1 during ripening processes in tomato. New Phytologist, 198 (2):442-452.
doi: 10.1111/nph.2013.198.issue-2
URL
|
[57] |
Masuda T, Takamiya K. 2004. Novel insights into the enzymology,regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms. Photosynthesis Research, 81 (1):1-29.
doi: 10.1023/B:PRES.0000028392.80354.7c
URL
|
[58] |
McMahon R W, Stewart C R, Gladon R J. 1990. Relationship of porphobilinogen deaminase activity to chlorophyll content and development of ‘Heinz 1350’tomato fruit. Journal of the American Society for Horticultural Science, 115 (2):298-301.
doi: 10.21273/JASHS.115.2.298
URL
|
[59] |
Meng L, Fan Z, Zhang Q, Wang C, Gao Y, Deng Y, Zhu B, Zhu H, Chen J, Shan W, Yin X, Zhong S, Grierson D, Jiang C Z, Luo Y, Fu D Q. 2018. BEL1-LIKE HOMEODOMAIN 11 regulates chloroplast development and chlorophyll synthesis in tomato fruit. Plant Journal, 94 (6):1126-1140.
doi: 10.1111/tpj.2018.94.issue-6
URL
|
[60] |
Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. 2009. Defect in non-yellow coloring 3,an α/β hydrolase-fold family protein,causes a stay-green phenotype during leaf senescence in rice. Plant Journal, 59 (6):940-952.
doi: 10.1111/tpj.2009.59.issue-6
URL
|
[61] |
Mou W, Li D, Luo Z, Mao L, Ying T. 2015. Transcriptomic analysis reveals possible influences of ABA on secondary metabolism of pigments,flavonoids and antioxidants in tomato fruit during ripening. PLoS ONE, 10 (6).
|
[62] |
Mumtaz M A, Munir S, Liu G, Chen W F, Wang Y, Yu H Y, Mahmood S, Ahiakpa J K, Tamim S A, Zhang Y Y. 2020. Altered brassinolide sensitivity1 transcriptionally inhibits chlorophyll synthesis and photosynthesis capacity in tomato. Plant Growth Regulation, 92:417-426.
doi: 10.1007/s10725-020-00650-z
|
[63] |
Nadakuduti S S, Holdsworth W L, Klein C L, Barry C S. 2014. KNOX genes influence a gradient of fruit chloroplast development through regulation of GOLDEN2-LIKE expression in tomato. Plant Journal, 78 (6):1022-1033.
doi: 10.1111/tpj.2014.78.issue-6
URL
|
[64] |
Nguyen C V, Vrebalov J T, Gapper N E, Zheng Y, Zhong S, Fei Z, Giovannoni J J. 2014. Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening. Plant Cell, 26 (2):585-601.
doi: 10.1105/tpc.113.118794
URL
|
[65] |
Niu X L, Li H L, Li R, Liu G S, Peng Z Z, Jia W, Ji X, Zhu H L, Zhu B Z, Grierson D, Giuliano G, Luo Y B, Fu D Q. 2022. Transcription factor SlBEL 2 interferes with GOLDEN2-LIKE and influences green shoulder formation in tomato fruits. Plant Journal, 112 (4):982-997.
doi: 10.1111/tpj.v112.4
URL
|
[66] |
Oren E, Tzuri G, Vexler L, Dafna A, Meir A, Faigenboim A, Kenigswald M, Portnoy V, Schaffer A A, Levi A, Buckler E S, Katzir N, Burger J, Tadmor Y, Gur A. 2019. The multi-allelic APRR2 gene is associated with fruit pigment accumulation in melon and watermelon. Journal of Experimental Botany, 70 (15):3781-3794.
doi: 10.1093/jxb/erz182
URL
|
[67] |
Pan Y, Bradley G, Pyke K, Ball G, Lu C, Fray R, Marshall A, Jayasuta S, Baxter C, van Wijk R, Boyden L, Cade R, Chapman N H, Fraser P D, Hodgman C, Seymour G B. 2013. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiology, 161 (3):1476-1485.
doi: 10.1104/pp.112.212654
pmid: 23292788
|
[68] |
Panek H, O'brian M R. 2002. A whole genome view of prokaryotic haem biosynthesis. Microbiology-Sgm, 148:2273-2282.
doi: 10.1099/00221287-148-8-2273
URL
|
[69] |
Powell A L T, Nguyen C V, Hill T, Cheng K, Figueroa-Balderas R, Aktas H, Ashrafi H, Pons C, Fernandez-Munoz R. 2012. Uniform ripening encodes a golden 2-like transcription factor regulating tomato fruit chloroplast development. Science, 336 (6089):1711-1715.
doi: 10.1126/science.1222218
pmid: 22745430
|
[70] |
Rossini L, Cribb L, Martin D J, Langdale J A. 2001. The maize Golden 2 gene defines a novel class of transcriptional regulators in plants. Plant Cell, 13 (5):1231-1244.
doi: 10.1105/tpc.13.5.1231
pmid: 11340194
|
[71] |
Sagar M, Chervin C, Mila I, Hao Y, Roustan J P, Benichou M, Gibon Y, Biais B, Maury P, Latche A, Pech J C, Bouzayen M, Zouine M. 2013. SlARF4,an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiology, 161 (3):1362-1374.
doi: 10.1104/pp.113.213843
pmid: 23341361
|
[72] |
Sakuraba Y, Kim D, Kim Y S, Hoertensteiner S, Paek N C. 2014. Arabidopsis STAYGREEN-LIKE(SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth. FEBS Letters, 588 (21):3830-3837.
doi: 10.1016/j.febslet.2014.09.018
URL
|
[73] |
Sakuraba Y, Schelbert S, Park S Y, Han S H, Lee B D, Andres C B, Kessler F, Hoertensteiner S, Paek N C. 2012. STAY-green and chlorophyll catabolic enzymes interact at light-harvesting complex Ⅱ for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell, 24 (2):507-518.
doi: 10.1105/tpc.111.089474
URL
|
[74] |
Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, Kaneko T, Nakamura Y, Shibata D, Aoki K, Egholm M, Knight J, Bogden R, Li C, Shuang Y, Xu X, Pan S, Cheng S, Liu X, Ren Y, Wang J, Albiero A, Dal Pero F, Todesco S, van Eck J, Buels R M, Bombarely A, Gosselin J R, Huang M, Leto J A, Menda N, Strickler S, Mao L, Gao S, Tecle I Y, York T, Zheng Y, Vrebalov J T, Lee J, Zhong S, Mueller L A, Stiekema W J, Ribeca P, Alioto T, Yang W, Huang S, Du Y, Zhang Z, Gao J, Guo Y, Wang X, Li Y, He J, Li C, Cheng Z, Zuo J, Ren J, Zhao J, Yan L, Jiang H, Wang B, Li H, Li Z, Fu F, Chen B, Han B, Feng Q, Fan D, Wang Y, Ling H, Xue Y, Ware D, Mccombie W R, Lippman Z B, Chia J M, Jiang K, Pasternak S, Gelley L, Kramer M, Anderson L K, Chang S B, Royer S M, Shearer L A, Stack S M, Rose J K C, Xu Y, Eannetta N, Matas A J, Mcquinn R, Tanksley S D, Camara F, Guigo R, Rombauts S, Fawcett J, van de Peer Y, Zamir D, Liang C, Spannagl M, Gundlach H, Bruggmann R, Mayer K, Jia Z, Zhang J, Ye Z, Bishop G J, Butcher S, Lopez-Cobollo R, Buchan D, Filippis I, Abbott J, Dixit R, Singh M, Singh A, Pal J K, Pandit A, Singh P K, Mahato A K, Dogra V, Gaikwad K, Sharma T R, Mohapatra T, Singh N K, Causse M, Rothan C, Schiex T, Noirot C, Bellec A, Klopp C, Delalande C, Berges H, Mariette J, Frasse P, Vautrin S, Zouine M, Latche A, Rousseau C, Regad F, Pech J C, Philippot M, Bouzayen M, Pericard P, Osorio S, Fernandez Del Carmen A, Monforte A, Granell A, Fernandez-Munoz R, Conte M, Lichtenstein G, Carrari F, de Bellis G, Fuligni F, Peano C, Grandillo S, Termolino P, Pietrella M, Fantini E, Falcone G, Fiore A, Giuliano G, Lopez L, Facella P, Perrotta G, Daddiego L, Bryan G, Orozco M, Pastor X, Torrents D, van Schriek K N V M G M, Feron R M C, van Oeveren J, de Heer P, Daponte L, Jacobs-Oomen S, Cariaso M, Prins M, van Eijk M J T, Janssen A, van Haaren M J J, Jo S H, Kim J, Kwon S Y, Kim S, Koo D H, Lee S, Hur C G, Clouser C, Rico A, Hallab A, Gebhardt C, Klee K, Joecker A, Warfsmann J, Goebel U, Kawamura S, Yano K, Sherman J D, Fukuoka H, Negoro S, Bhutty S, Chowdhury P, Chattopadhyay D, Datema E, Smit S, Schijlen E W M, van de Belt J, van Haarst J C, Peters S A, van Staveren M J, Henkens M H C, Mooyman P J W, Hesselink T, van Ham R C H J, Jiang G, Droege M, Choi D, Kang B C, Kim B D, Park M, Kim S, Yeom S I, Lee Y H, Choi Y D, Li G, Gao J, Liu Y, Huang S, Fernandez-Pedrosa V, Collado C, Zuniga S, Wang G, Cade R, Dietrich R A, Rogers J, Knapp S, Fei Z, White R A, Thannhauser T W, Giovannoni J J, Angel Botella M, Gilbert L, Gonzalez R, Goicoechea J L, Yu Y, Kudrna D, Collura K, Wissotski M, Wing R, Schoof H, Meyers B C, Gurazada A B, Green P J, Mathur S, Vyas S, Solanke A U, Kumar R, Gupta V, Sharma A K, Khurana P, Khurana J P, Tyagi A K, Dalmay T, Mohorianu I, Walts B, Chamala S, Barbazuk W B, Li J, Guo H, Lee T H, Wang Y, Zhang D, Paterson A H, Wang X, Tang H, Barone A, Chiusano M L, Ercolano M R, D'agostino N, Di Filippo M, Traini A, Sanseverino W, Frusciante L, Seymour G B, Elharam M, Fu Y, Hua A, Kenton S, Lewis J, Lin S, Najar F, Lai H, Qin B, Qu C, Shi R, White D, White J, Xing Y, ang K, Yi J, Yao Z, Zhou L, Roe B A, Vezzi A, D'angelo M, Zimbello R, Schiavon R, Caniato E, Rigobello C, Campagna D, Vitulo N, Valle G, Nelson D R, de Paoli E, Szinay D, de Jong H H, Bai Y, Visser R G F, Lankhorst R M K, Beasley H, Mclaren K, Nicholson C, Riddle C, Gianese G, Tomato Genome C. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485 (7400):635-641.
doi: 10.1038/nature11119
|
[75] |
Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hortensteiner S. 2009. Pheophytin pheophorbide hydrolase(pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell, 21 (3):767-785.
doi: 10.1105/tpc.108.064089
pmid: 19304936
|
[76] |
Shemer T Z, Harpaz-Saad S, Belausov E, Lovat N, Krokhin O, Spicer V, Standing K G, Goldschmidt E E, Eyal Y. 2008. Citrus chlorophyllase dynamics at ethylane-induced fruit color-break:a study of chlorophyllase expression,posttranslational processing kinetics,and in situ intracellular localozation. Plant Physiology, 148 (1):108-118.
doi: 10.1104/pp.108.124933
URL
|
[77] |
Shi Y, Pang X, Liu W, Wang R, Su D, Gao Y, Wu M, Deng W, Liu Y, Li Z. 2021. SlZHD 17 is involved in the control of chlorophyll and carotenoid metabolism in tomato fruit. Horticulture Research, 8:259.
doi: 10.1038/s41438-021-00696-8
|
[78] |
Shimoda Y, Ito H, Tanaka A. 2012. Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. Plant Journal, 72 (3):501-511.
doi: 10.1111/tpj.2012.72.issue-3
URL
|
[79] |
Simkin A J, Faralli M, Ramamoorthy S, Lawson T. 2020. Photosynthesis in non-foliar tissues:implications for yield. Plant Journal, 101 (4):1001-1015.
doi: 10.1111/tpj.v101.4
URL
|
[80] |
Stenbaek A, Jensen P E. 2010. Redox regulation of chlorophyll biosynthesis. Phytochemistry, 71(8-9):853-859.
doi: 10.1016/j.phytochem.2010.03.022
pmid: 20417532
|
[81] |
Suessenbacher I, Kreutz C R, Christ B, Hoertensteiner S, Kraeutler B. 2015. Hydroxymethylated dioxobilins in senescent Arabidopsis thaliana leaves:Sign of a puzzling biosynthetic intermezzo of chlorophyll breakdown. Chemistry-a European Journal, 21 (33):11664-11670.
doi: 10.1002/chem.v21.33
URL
|
[82] |
Szymanski J, Levin Y, Savidor A, Breitel D, Chappell-Maor L, Heinig U, Topfer N, Aharoni A. 2017. Label-free deep shotgun proteomics reveals protein dynamics during tomato fruit tissues development. Plant Journal, 90 (2):396-417.
doi: 10.1111/tpj.2017.90.issue-2
URL
|
[83] |
Tanaka R, Kobayashi K, Masuda T. 2011. Tetrapyrrole Metabolism in Arabidopsis thaliana. Arabidopsis Book, 9:e0145.
|
[84] |
Tang X, Miao M, Niu X, Zhang D, Cao X, Jin X, Zhu Y, Fan Y, Wang H, Liu Y, Sui Y, Wang W, Wang A, Xiao F, Giovannoni J, Liu Y. 2016. Ubiquitin-conjugated degradation of Golden 2-like transcription factor is mediated by CUL4-DDB1-based E 3 ligase complex in tomato. New Phytologist, 209 (3):1028-1039.
doi: 10.1111/nph.2016.209.issue-3
URL
|
[85] |
Taylor L, Nunes-Nesi A, Parsley K, Leiss A, Leach G, Coates S, Wingler A, Fernie A R, Hibberd J M. 2010. Cytosolic pyruvate,orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. Plant Journal, 62 (4):641-652.
doi: 10.1111/tpj.2010.62.issue-4
URL
|
[86] |
Terry M J, Smith A G. 2013. A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis. Frontiers in Plant Science, 4:1-14.
|
[87] |
Tian Y N, Zhong R H, Wei J B, Luo H H, Eyal Y, Jin H L, Wu L J, Liang K Y, Li Y M, Chen S Z, Zhang Z Q, Pang X Q. 2021. Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem II repair. Molecular Plant, 14 (7):1149-1167.
|
[88] |
Triantaphylides C, Havaux M. 2009. Singlet oxygen in plants:production,detoxification and signaling. Trends in Plant Science, 14 (4):219-228.
doi: 10.1016/j.tplants.2009.01.008
URL
|
[89] |
vom Dorp K, Hoelzl G, Plohmann C, Eisenhut M, Abraham M, Weber A P M, Hanson A D, Doermann P. 2015. Remobilization of phytol from chlorophyll degradation is essential for tocopherol synthesis and growth of Arabidopsis. Plant Cell, 27 (10):2846-2859.
|
[90] |
Uluisik S, Kıyak A, Kurt F, Filiz E. 2022. STAY-GREEN(SGR)genes in tomato(Solanum lycopersicum):genome-wide identification,and expression analyses reveal their involvements in ripening and salinity stress responses. Horticulture,Environment,and Biotechnology, 63:557-569.
doi: 10.1007/s13580-022-00419-5
|
[91] |
Wang S L, Chu Z H,Jia,R, Dan F, Shen X L, Li Y, Ding X H. 2018. SlMYB 12 regulates flavonol synthesis in three different cherry tomato varieties. SCIENTIFIC REPORTS, 8 (1582):1-12.
|
[92] |
Wang S, Liu J, Feng Y, Niu X, Giovannoni J, Liu Y. 2008. Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4. Plant Journal, 55 (1):89-103.
doi: 10.1111/tpj.2008.55.issue-1
URL
|
[93] |
Wang W, Wang P, Li X, Wang Y, Tian S, Qin G. 2021. The transcription factor SlHY 5 regulates the ripening of tomato fruit at both the transcriptional and translational levels. Horticulture Research, 8:83.
doi: 10.1038/s41438-021-00523-0
|
[94] |
Waters M T, Wang P, Korkaric M, Capper R G, Saunders N J, Langdale J A. 2009. GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell, 21 (4):1109-1128.
doi: 10.1105/tpc.108.065250
pmid: 19376934
|
[95] |
Wei W, Yang Y Y, Lakshmanan P, Kuang J F, Lu W J, Pang X Q, Chen J Y, Shan W. 2023. Proteasomal degradation of MaMYB 60 mediated by the E3 ligase MaBAH1 causes high temperature-induced repression of chlorophyll catabolism and green ripening in banana. Plant Cell, 35 (5):1408-1428.
doi: 10.1093/plcell/koad030
URL
|
[96] |
Wei Y, Jin J, Xu Y, Liu W, Yang G, Bu H, Li T, Wang A. 2021. Ethylene-activated MdPUB 24 mediates ubiquitination of MdBEL7 to promote chlorophyll degradation in apple fruit. Plant Journal, 108 (1):169-182.
doi: 10.1111/tpj.v108.1
URL
|
[97] |
Wu M, Xu X, Hu X, Liu Y, Cao H, Chan H, Gong Z, Yuan Y, Luo Y, Feng B, Li Z, Deng W. 2020. SlMYB 72 regulates the metabolism of chlorophylls,carotenoids,and flavonoids in tomato fruit. Plant Physiology, 183 (3):854-868.
doi: 10.1104/pp.20.00156
URL
|
[98] |
Wu S, Li Z, Yang L, Xie Z, Chen J, Zhang W, Liu T, Gao S, Gao J, Zhu Y, Xin J, Ren G, Kuai B. 2016. NON-YELLOWING2(NYE2),a close paralog of NYE1,plays a positive role in chlorophyll degradation in Arabidopsis. Molecular Plant, 9 (4):624-627.
doi: 10.1016/j.molp.2015.12.016
URL
|
[99] |
Xiong C, Luo D, Lin A, Zhang C, Shan L, He P, Li B, Zhang Q, Hua B, Yuan Z, Li H, Zhang J, Yang C, Lu Y, Ye Z, Wang T. 2019. A tomato B-box protein SlBBX20 modulates carotenoid biosynthesis by directly activating PHYTOENE SYNTHASE 1,and is targeted for 26S proteasome-mediated degradation. New Phytologist, 221 (1):279-294.
doi: 10.1111/nph.2019.221.issue-1
URL
|
[100] |
Yan F, Gao Y, Pang X, Xu X, Zhu N, Chan H, Hu G, Wu M, Yuan Y, Li H, Zhong S, Hada W, Deng W, Li Z. 2020. BEL1-LIKE HOMEODOMAIN4 regulates chlorophyll accumulation,chloroplast development,and cell wall metabolism in tomato fruit. Journal of Experimental Botany, 71 (18):5549-5561.
doi: 10.1093/jxb/eraa272
URL
|
[101] |
Yan H X, Fu D Q, Zhu B Z, Liu H P, Shen X Y, Luo Y B. 2012. Sprout vacuum-infiltration:a simple and efficient agroinoculation method for virus-induced gene silencing in diverse Solanaceous species. Plant Cell Reports, 31 (9):1713-1722.
doi: 10.1007/s00299-012-1285-1
URL
|
[102] |
Yang M, Zhu S, Jiao B, Duan M, Meng Q, Ma N, Lv W. 2020. SlSGRL,a tomato SGR-like protein,promotes chlorophyll degradation downstream of the ABA signaling pathway. Plant Physiology and Biochemistry, 157:316-327.
doi: 10.1016/j.plaphy.2020.10.028
URL
|
[103] |
Yin X R, Xie X L, Xia X J, Yu J Q, Ferguson I B, Giovannoni J J, Chen K S. 2016. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening. Plant Journal, 86 (5):403-412.
doi: 10.1111/tpj.2016.86.issue-5
URL
|
[104] |
Yuan Y J, Mei L H, Wu M B, Wei W, Shan W, Gong Z H, Zhang Q, Yang F Q, Yan F, Zhang Q, Luo Y Q, Xu X, Zhang W F, Miao M J, Lu W J, Li Z G, Deng W. 2018. SlARF10,an auxin response factor,is involved in chlorophyll and sugar accumulation during tomato fruit development. Journal of Experimental Botany, 69 (22):5507-5518.
|
[105] |
Yuan Y J, Xu X, Gong Z H, Tang Y W, Bowu M, Fangyan, Zhang X L, Zhang Q, Yang F Q, Hu X W, Chenyang Q, Luo Y Q, Mei L H, Zhang W F, Jiang C Z, Lu W J, Li Z G, Deng W. 2019. Auxin response factor 6A regulates photosynthesis,sugar accumulation,and fruit development in tomato. Horticulture Research, 6:85.
doi: 10.1038/s41438-019-0167-x
|
[106] |
Zhao C, Liu L, Safdar L B, Xie M, Cheng X, Liu Y, Xiang Y, Tong C, Tu J, Huang J, Liu S. 2020. Characterization and fine mapping of a yellow-virescent gene regulating chlorophyll biosynthesis and early stage chloroplast development in Brassica napus. G3-Genes Genomes Genetics, 10 (9):3201-3211.
|
[107] |
Zhao G, Lian Q, Zhang Z, Fu Q, He Y, Ma S, Ruggieri V, Monforte A J, Wang P, Julca I, Wang H, Liu J, Xu Y, Wang R, Ji J, Xu Z, Kong W, Zhong Y, Shang J, Pereira L, Argyris J, Zhang J, Mayobre C, Pujol M, Oren E, Ou D, Wang J, Sun D, Zhao S, Zhu Y, Li N, Katzir N, Gur A, Dogimont C, Schaefer H, Fan W, Bendahmane A, Fei Z, Pitrat M, Gabaldon T, Lin T, Garcia-Mas J, Xu Y, Huang S. 2019. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nature Genetics, 51 (11):1607-1615.
doi: 10.1038/s41588-019-0522-8
pmid: 31676864
|
[108] |
Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z. 2014. A new tomato NAC(NAM/ATAF1/2/CUC2)transcription factor,SlNAC4,functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant and Cell Physiology, 55 (1):119-135.
doi: 10.1093/pcp/pct162
URL
|
[109] |
Zhu Shuai, Zhang Ding-yu, Wu Sheng-dong, Zhu Zi-wei, Li Ning, Zhang Qi-yuan, Ren Guo-dong, Kuai Ben-ke. 2020. A significant effect of mutation of chlorophyll Mg-dechelatase gene SlNYE1on the material metabolism of ripening fruits in tomato. Plant Physiology Journal, 56 (10):2084-2094. (in Chinese)
|
|
朱帅, 张鼎宇, 吴声栋, 朱子薇, 李宁, 张其园, 任国栋, 蒯本科. 2020. 番茄叶绿素镁脱螯合酶基因SlNYE1突变对果实成熟物质代谢的影响. 植物生理学报, 56 (10):2084-2094.
|
[110] |
Zhu Z, Chen G, Guo X, Yin W, Yu X, Hu J, Hu Z. 2017. Overexpression of SlPRE2,an atypical bHLH transcription factor,affects plant morphology and fruit pigment accumulation in tomato. Cells, 7 (1):5786.
|