园艺学报 ›› 2023, Vol. 50 ›› Issue (6): 1355-1367.doi: 10.16420/j.issn.0513-353x.2022-0296
张乐欢, 邹昌玉, 王兆昊, 杨雯, 邹修平, 何永睿, 陈善春(), 龙琴(
)
收稿日期:
2022-11-10
修回日期:
2023-01-26
出版日期:
2023-06-25
发布日期:
2023-06-27
通讯作者:
* (E-mail:chenshanchun@cric.cn,基金资助:
ZHANG Lehuan, ZOU Changyu, WANG Zhaohao, YANG Wen, ZOU Xiuping, HE Yongrui, CHEN Shanchun(), LONG Qin(
)
Received:
2022-11-10
Revised:
2023-01-26
Published:
2023-06-25
Online:
2023-06-27
摘要:
对柑橘中茉莉酸(Jasmonic acid,JA)生物合成途径中的关键限速酶丙二烯氧化物合酶AOS家族基因进行注释,确定其受溃疡病菌Xanthomonas citri subsp. citri(Xcc)诱导的表达模式。从甜橙数据库中共注释出3个AOS家族成员,其中CsAOS1-2对溃疡病菌响应最强烈;CsAOS1-2在‘晚锦橙’(甜橙,易感溃疡病)和‘金弹’(金柑,抗溃疡病)中均受病原菌诱导,但在‘晚锦橙’中表达量上调幅度远高于金弹;CsAOS1-2全长2 656 bp,开放阅读框1 599 bp,编码532个氨基酸,分子量为59 499.81,为非分泌性蛋白,其349 ~ 510 aa为典型的P450功能域;CsAOS1-2的表达无组织特异性;‘晚锦橙’和‘金弹’的AOS1-2启动子均含有参与植物激素和逆境应答的顺式作用元件,但在数量和类型上存在差异;烟草瞬时转化亚细胞定位分析显示CsAOS1-2定位在叶绿体中。CsAOS1-2强烈响应柑橘溃疡病菌的侵染,推测其与柑橘溃疡病敏感性具有密切的关系。
中图分类号:
张乐欢, 邹昌玉, 王兆昊, 杨雯, 邹修平, 何永睿, 陈善春, 龙琴. 柑橘AOS1-2的克隆及其响应溃疡病菌侵染的表达分析[J]. 园艺学报, 2023, 50(6): 1355-1367.
ZHANG Lehuan, ZOU Changyu, WANG Zhaohao, YANG Wen, ZOU Xiuping, HE Yongrui, CHEN Shanchun, LONG Qin. Cloning and Expression Analysis of CsAOS1-2 in Responding to Citrus Canker Disease[J]. Acta Horticulturae Sinica, 2023, 50(6): 1355-1367.
用途 Use | 引物 Primer | 引物序列 Primer sequence |
---|---|---|
cDNA扩增cDNA amplification | CsAOS1-2 | F:GGACTAGTATGGCATCCACTTCTCTA;R:CGGAATTCTCAAAAGCTTGCTCTCTT |
启动子引物Promoter | CsAOS1-2-P | F:GCAGATCGAACCCGAGGAGT;R:CTGAATGAGAAACGCGACGC |
FjAOS1-2-P | F:ATAGAGTCGTGGAAGGTGTGCG;R:GCGGAATCAAACAAGGGTCC | |
基因表达 | Actin-qRT | F:CATCCCTCAGCACCTTCC;R:CCAACCTTAGCACTTCTCC |
Gene expression | CsAOS1-1-qRT | F:AGCTTTTGGGTCAATTTCGGAT;R:TCACGAAATGTTCCAAATAGAAACT |
CsAOS1-2-qRT | F:TTGGTTCGGTAAGAACCCCG;R:GGTAGGCCCAGGGAGAGTAA | |
CsAOS1-3-qRT | F:CGGCTCTCTCCATCTTTCCC;R:ATCAATTGCGACCAGCGGTA |
表1 本研究中所用引物
Table 1 Primers used in this study
用途 Use | 引物 Primer | 引物序列 Primer sequence |
---|---|---|
cDNA扩增cDNA amplification | CsAOS1-2 | F:GGACTAGTATGGCATCCACTTCTCTA;R:CGGAATTCTCAAAAGCTTGCTCTCTT |
启动子引物Promoter | CsAOS1-2-P | F:GCAGATCGAACCCGAGGAGT;R:CTGAATGAGAAACGCGACGC |
FjAOS1-2-P | F:ATAGAGTCGTGGAAGGTGTGCG;R:GCGGAATCAAACAAGGGTCC | |
基因表达 | Actin-qRT | F:CATCCCTCAGCACCTTCC;R:CCAACCTTAGCACTTCTCC |
Gene expression | CsAOS1-1-qRT | F:AGCTTTTGGGTCAATTTCGGAT;R:TCACGAAATGTTCCAAATAGAAACT |
CsAOS1-2-qRT | F:TTGGTTCGGTAAGAACCCCG;R:GGTAGGCCCAGGGAGAGTAA | |
CsAOS1-3-qRT | F:CGGCTCTCTCCATCTTTCCC;R:ATCAATTGCGACCAGCGGTA |
基因 Gene | CAP序号 CAP ID | 氨基酸数 Number of amino acid | 分子量 Molecular weigh | 等电点 pI | 亚细胞定位 Subcellular localization | 外显子数 | 内含子数 | 开放阅读框/bp |
---|---|---|---|---|---|---|---|---|
Exon number | Intron number | Open reading frame | ||||||
CsAOS1-1 | Cs_ont_2g018770 | 499 | 55 760.06 | 5.99 | 未知 Unknown | 2 | 1 | 1 500 |
CsAOS1-2 | Cs_ont_3g004330.1 | 532 | 59 499.81 | 9.10 | 叶绿体 Chloroplast | 1 | 0 | 1 599 |
CsAOS1-3 | Cs_ont_8g022950.1 | 481 | 54 195.31 | 8.53 | 内质网 Endoplasmic reticulum | 1 | 0 | 1 446 |
表2 柑橘AOS家族基因的序列分析
Table 2 Sequence analysis of AOS gene family in Citrus
基因 Gene | CAP序号 CAP ID | 氨基酸数 Number of amino acid | 分子量 Molecular weigh | 等电点 pI | 亚细胞定位 Subcellular localization | 外显子数 | 内含子数 | 开放阅读框/bp |
---|---|---|---|---|---|---|---|---|
Exon number | Intron number | Open reading frame | ||||||
CsAOS1-1 | Cs_ont_2g018770 | 499 | 55 760.06 | 5.99 | 未知 Unknown | 2 | 1 | 1 500 |
CsAOS1-2 | Cs_ont_3g004330.1 | 532 | 59 499.81 | 9.10 | 叶绿体 Chloroplast | 1 | 0 | 1 599 |
CsAOS1-3 | Cs_ont_8g022950.1 | 481 | 54 195.31 | 8.53 | 内质网 Endoplasmic reticulum | 1 | 0 | 1 446 |
图1 柑橘与其他物种AOS进化树(A)、结构域(B)及功能域(C) 桃:Prunus persica;苹果:Malus × domestica;草莓:Fragaria vesca;葡萄:Vitis vinifera;马铃薯:Solanum buberosum番茄:Solanum lycopersicum;白木香:Aquilaria sinensis;甜橙:Citrus sinensis;雷蒙棉:Gossypium raimondii;大豆:Glycine max;红皮柳:Salix purpurea;毛果杨:Populus trichocarpa;拟南芥:Arabidopsis thaliana;大麦:Hordeum vulgare;水稻:Oryza sativa.
Fig. 1 AOS evolutionary tree(A, structural domain(B)and functional domain(C)of citrus and other species
图2 AOS蛋白的多重序列比对 AGP25595.1:白木香AOS;Prupe.1G386300.1:桃AOS;SapurV1A.0017s0540.1:红皮柳;Gorai.009G274700.1:雷蒙棉;AT5G42650:拟南芥;LOC Os03g55800.1:水稻AOS;KAE8799605.1:大麦AOS。红色方框表示AOS 基因家族特有保守结构域序列I-Helix region、ETLR-motif和Heme-Binding domain;▼表示细胞色素P450结构域。
Fig. 2 Multiple sequence alignment of AOS protein AGP25595.1:Aquilaria sinensis AOS;Prupe.1G386300.1:Prunus persica AOS;SapurV1A.0017s0540.1:Salix purpurea AOS;Gorai.009G274700.1:Gossypium raimondii AOS;AT5G42650:Arabidopsis thaliana AOS;LOC Os03g55800.1:Oryza sativa AOS;KAE8799605.1:Hordeum vulgare AOS. The AOS gene motifs of I-Helix region, ETLR-motif and Heme-Binding domain are red boxed. Represents the cytochrome P450 binding domain by ▼.
图3 柑橘感病品种‘晚锦橙’和抗病品种‘金弹’中CsAOS受溃疡病菌诱导的表达量 双尾t检验(* P < 0.05;** P < 0.01),与各自的水处理对照相比较。
Fig. 3 The expression of CsAOS induced by canker pathogen in citrus susceptible variety‘Wanjincheng’and resistant variety‘Jindan’ Two-tailed student’s t-test(* P < 0.05;** P < 0.01),compared with mock control.
图4 CsAOS1-2在柑橘‘晚锦橙’和‘金弹’不同组织的表达量 不同字母分别表示‘晚锦橙’和‘金弹’不同组织间在P < 0.05水平下差异显著(Duncan’s test)。
Fig. 4 Expression of CsAOS1-2 in different tissues of‘Wangjincheng’and‘Jindan’ Different letters indicate‘Wanjincheng’and‘Jindan’significant different at P < 0.05 in different tissues of the same varieties(Duncan’s test).
顺式元件 cis-Element | 特性 Characteristic | 序列 Sequence | 起始位/bp Strat position | 方向Strand | ||
---|---|---|---|---|---|---|
晚锦橙 Wanjincheng | 金弹 Jindan | 晚锦橙 Wanjincheng | 金弹 Jindan | |||
ABRE | 脱落酸响应 Abscisic acid responsiveness | CACGTG ACGTG ACGTG ACGTG ACGTG CACGTG CACGTG | 311 913 694 1 093 312 1 092 912 | + + + + + - - | ||
AE-box | 光响应元件的一部分 Part of a light responsive element | AGAAACTT | 622 | 788 | + | + |
ARE | 厌氧诱导 Anaerobic induction | AAACCA AAACCA | 663 | 830 1 137 | + | + + |
Box4 | 光响应元件的一部分 Part of a light responsive element | ATTAAT ATTAAT | 1 416 | 451 1 420 | - | + - |
CGTCA-motif | 茉莉酸甲酯响应 Methyl jasmonate responsiveness | CGTCA CGTCA CGTCA | 105 798 | 222 958 255 | - + | - + - |
G-box | 光响应元件 Light-responsiveness element | CACGTG CACGAC CACGTG CACGAC CACGTG | 311 1 208 912 1 092 | 1 198 1 290 | + + - - | + - |
GA-motif | 光响应元件的一部分 Part of a light responsive element | ATAGATAA | 872 1 052 | 1 032 | + + | + |
MBS | 干旱响应Drought response | CAACTG | 1 534 | + | ||
MRE | 光响应元件 Light-responsiveness element | AACCTAA AACCTAA | 1 223 | 98 1 213 | - | - - |
P-box | 赤霉素响应 Gibberellin-responsive | CCTTTTG | 496 | + | ||
TATC-box | 赤霉素响应元件 Gibberellin-responsive element | TATCCCA | 841 | - | ||
TCA-element | 水杨酸响应 Salicylic acid responsiveness | CCATCTTTTT | 1 515 | + | ||
TCT-motif | 光响应元件的一部分 Part of a light responsive element | TCTTAC | 127 | 277 | + | + |
TGACG-motif | 茉莉酸甲酯响应元件 Methyl jasmonate-responsive element | TGACG TGACG TGACG | 105 798 | 222 958 255 | + - | + - + |
circadian | 昼夜规律元件 Involved in circadian control | CAAAGATATC | 73 | + | ||
W-box | WRKY转录因子结合位点 WRKY transcription factor binding site | TTGACC | 112 | + |
表3 PlantCARE预测AOS1-2启动子区顺式作用元件
Table 3 cis-Acting regulatory elements in promoter of AOS1-2 predicted by PlantCARE
顺式元件 cis-Element | 特性 Characteristic | 序列 Sequence | 起始位/bp Strat position | 方向Strand | ||
---|---|---|---|---|---|---|
晚锦橙 Wanjincheng | 金弹 Jindan | 晚锦橙 Wanjincheng | 金弹 Jindan | |||
ABRE | 脱落酸响应 Abscisic acid responsiveness | CACGTG ACGTG ACGTG ACGTG ACGTG CACGTG CACGTG | 311 913 694 1 093 312 1 092 912 | + + + + + - - | ||
AE-box | 光响应元件的一部分 Part of a light responsive element | AGAAACTT | 622 | 788 | + | + |
ARE | 厌氧诱导 Anaerobic induction | AAACCA AAACCA | 663 | 830 1 137 | + | + + |
Box4 | 光响应元件的一部分 Part of a light responsive element | ATTAAT ATTAAT | 1 416 | 451 1 420 | - | + - |
CGTCA-motif | 茉莉酸甲酯响应 Methyl jasmonate responsiveness | CGTCA CGTCA CGTCA | 105 798 | 222 958 255 | - + | - + - |
G-box | 光响应元件 Light-responsiveness element | CACGTG CACGAC CACGTG CACGAC CACGTG | 311 1 208 912 1 092 | 1 198 1 290 | + + - - | + - |
GA-motif | 光响应元件的一部分 Part of a light responsive element | ATAGATAA | 872 1 052 | 1 032 | + + | + |
MBS | 干旱响应Drought response | CAACTG | 1 534 | + | ||
MRE | 光响应元件 Light-responsiveness element | AACCTAA AACCTAA | 1 223 | 98 1 213 | - | - - |
P-box | 赤霉素响应 Gibberellin-responsive | CCTTTTG | 496 | + | ||
TATC-box | 赤霉素响应元件 Gibberellin-responsive element | TATCCCA | 841 | - | ||
TCA-element | 水杨酸响应 Salicylic acid responsiveness | CCATCTTTTT | 1 515 | + | ||
TCT-motif | 光响应元件的一部分 Part of a light responsive element | TCTTAC | 127 | 277 | + | + |
TGACG-motif | 茉莉酸甲酯响应元件 Methyl jasmonate-responsive element | TGACG TGACG TGACG | 105 798 | 222 958 255 | + - | + - + |
circadian | 昼夜规律元件 Involved in circadian control | CAAAGATATC | 73 | + | ||
W-box | WRKY转录因子结合位点 WRKY transcription factor binding site | TTGACC | 112 | + |
[1] |
Agrawal G K, Rakwal R, Jwa N S, Han K S, Agrawal V P. 2002. Molecular cloning and mRNA expression analysis of the first rice jasmonate biosynthetic pathway gene allene oxide synthase. Plant Physiology and Biochemistry, 40 (9):771-782.
doi: 10.1016/S0981-9428(02)01429-8 URL |
[2] |
Brunings A M, Gabriel D W. 2003. Xanthomonas citri:breaking the surface. Molecular Plant Pathology, 4 (3):141-157.
doi: 10.1046/j.1364-3703.2003.00163.x pmid: 20569374 |
[3] | Cao Yan-bin, Bai Su-hua, Dang Hong-yi. 2014. Cloning and expression analysis of an allene oxide synthase gene MdAOS from Malus domestica. Genomics and Applied Biology, 33 (2):273-281. (in Chinese) |
曹晏彬, 柏素花, 戴洪义. 2014. 苹果丙二烯氧化物合酶MdAOS的克隆和表达分析. 基因组学与应用生物学, 33 (2):273-281. | |
[4] |
Cui H, Qiu J, Zhou Y, Bhandari D D, Zhao C, Bautor J, Parker J E. 2018. Antagonism of transcription factor MYC 2 by EDS1/PAD4 complexes bolsters salicylic acid defense in Arabidopsis effector-triggered immunity. Molecular Plant, 11 (8):1053-1066.
doi: 10.1016/j.molp.2018.05.007 URL |
[5] | Deng Xiu-xin. 2005. Advances in world wide citrus breeding. Acta Horticulturae Sinica, 32 (6):1140-1146. (in Chinese) |
邓秀新. 2005. 世界柑橘品种改良的进展. 园艺学报, 32 (6):1140-1146. | |
[6] |
Deng Xiuxin. 2022. A review and perspective for citrus breeding in China during the last six decades. Acta Horticulturae Sinica, 49 (10):2063-2074. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0701 URL |
邓秀新. 2022. 中国柑橘育种60年回顾与展望. 园艺学报, 49 (10):2063-2074.
doi: 10.16420/j.issn.0513-353x.2021-0701 URL |
|
[7] |
Distefano G, La Malfa S, Vitale A, Lorito M, Deng Z, Gentile A. 2008. Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgenic Research, 17 (5):873-879.
doi: 10.1007/s11248-008-9172-9 pmid: 18306055 |
[8] |
Fan J, Hill L, Crooks C, Doerner P, Lamb C. 2009. Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiology, 150 (4):1750-1761.
doi: 10.1104/pp.109.137943 pmid: 19571312 |
[9] |
Farmaki T, Sanmartin M, Jimenez P, Paneque M, Sanz C, Vancanneyt G, Leon J, Sanchez-Serrano J J. 2007. Differential distribution of the lipoxygenase pathway enzymes within potato chloroplasts. Journal of Experimental Botany, 58 (3):555-568.
doi: 10.1093/jxb/erl230 pmid: 17210991 |
[10] | Feng Ying-ying, Zhang Zhong-xiu, Dong Xian-juan, Liu Xiao, Yan Ya-ru, Wang Jin-ling, Wang Xiao-hui, Shi She-po. 2017. Expression analysis of allene oxide synthase gene from Aquilaria sinensis. Acta Pharmaceutica Sinica, 52 (12):1962-1969. (in Chinese) |
冯莹莹, 张钟秀, 董先娟, 刘晓, 闫雅如, 王金铃, 王晓晖, 史社坡. 2017. 白木香丙二烯氧化物合酶基因的表达分析. 药学学报, 52 (12):1962-1969. | |
[11] | Han Tong-kai, Zhou Jin-jun, Xue Yan-jiu, Chen Cui-xia, Xie Xian-zhi. 2013. Expression analysis of allene oxide synthase gene,OsAOS1,in rice. Shangdong Agricultural Sciences, 45 (5):1-5. (in Chinese) |
韩同凯, 周晋军, 薛彦久, 陈翠霞, 谢先芝. 2013. 水稻丙二烯氧化物合成酶基因OsAOS1的表达研究. 山东农业科学, 45 (5):1-5. | |
[12] |
Hickman R, Van Verk M C, Van Dijken A J H, Mendes M P, Vroegop-Vos I A, Caarls L, Steenbergen M, van der Nagel I, Wesselink G J, Jironkin A, Talbot A, Rhodes J, de Vries M, Schuurink R C, Denby K, Pieterse C M J, van Wees SCM. 2017. Architecture and dynamics of the jasmonic acid gene regulatory network. Plant Cell, 29 (9):2086-2105.
doi: 10.1105/tpc.16.00958 URL |
[13] |
Hou Y X, Wang Y F, Tang L Q, Tong X H, Wang L, Liu L M, Huang S W, Zhang J. 2019. SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance. iScience, 16:499-510.
doi: S2589-0042(19)30191-9 pmid: 31229897 |
[14] | Jiang Ke-ji. 2007. Cloning and studies of jasmonate biosynthetc pathway key genes from medicinal plants[Ph. D. Dissertation]. Shanghai: Fudan University:63-88. (in Chinese) |
蒋科技. 2007. 植物茉莉酸合成途径关键酶基因的克隆与研究[博士学位论文]. 上海: 复旦大学:63-88. | |
[15] | Jiang Ke-ji, Pi Yan, Hou Rong, Tang Ke-xuan. 2010. Biosynthetic pathway of endogenous jasmonates in plants and its biological significance. Bulletin of Botany, 45 (2):137-148. (in Chinese) |
蒋科技, 皮妍, 侯嵘, 唐克轩. 2010. 植物内源茉莉酸类物质的生物合成途径及其生物学意义. 植物学报, 45 (2):137-148. | |
[16] |
Jiang Y J, Yu D Q. 2016. The WRKY 57 transcription factor affects the expression of jasmonate ZIM-domain genes transcriptionally to compromise Botrytis cinerea resistance. Plant Physiology, 171 (4):2771-2782.
doi: 10.1104/pp.16.00747 URL |
[17] |
Laudert D, Pfannschmidt U, Lottspeich F, Hollander-Czytko H, Weiler E W. 1996. Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase(CYP 74),the first enzyme of the octadecanoid pathway to jasmonates. Plant Molecular Biology, 31 (2):323-335.
pmid: 8756596 |
[18] |
Laudert D, Schaller F, Weiler E W. 2000. Transgenic nicotiana tabacum and Arabidopsis thaliana plants overexpressing allene oxide synthase. Planta, 211 (1):163-165.
pmid: 10923718 |
[19] |
Laudert D, Weiler E W. 1998. Allene oxide synthase:a major control point in Arabidopsis thaliana octadecanoid signaling. Plant Journal, 15 (5): 675-684.
doi: 10.1046/j.1365-313x.1998.00245.x pmid: 9778849 |
[20] |
Li Qiang, Qi Jingjing, Dou Wanfu, Qin Xiujuan, He Yongrui, Chen Shanchun. 2020. Overexpression of CsNBS-LRR in citrus confers bacterial canker resistance by regulating SA signaling pathway. Acta Horticulturae Sinica, 47 (5):817-826. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2019-0625 |
李强, 祁静静, 窦万福, 秦秀娟, 何永睿, 陈善春. 2020. 超量表达CsNBS-LRR通过调节SA信号途径增强柑橘对溃疡病抗性. 园艺学报, 47 (5):817-826.
doi: 10.16420/j.issn.0513-353x.2019-0625 |
|
[21] |
Liu Chun-hao, Liang Nan-song, Yu lei, Zhao Xing-tang, Cao Yang, Zhan Ya-guang. 2018. Sequence and expression pattern analysis of allene oxide synthase gene from Fraxinus mandschurica. Plant Physiology Journal, 54 (5):855-862. (in Chinese)
doi: 10.1104/pp.54.6.855 URL |
刘春浩, 梁楠松, 于磊, 赵兴堂, 曹羊, 詹亚光. 2018. 水曲柳丙二烯氧化物合成酶基因FmAOS序列与表达模式分析. 植物生理学报, 54 (5):855-862. | |
[22] |
Long Q, Du M X, Long J H, Xie Y, Zhang J Y, Xu L Z, He Y R, Li Q, Chen S C, Zou X P. 2021. Transcription factor WRKY 22 regulates canker susceptibility in sweet orange(Citrus sinensis Osbeck)by enhancing cell enlargement and CsLOB1 expression. Horticulture Research, 8 (1):50.
doi: 10.1038/s41438-021-00486-2 pmid: 33642585 |
[23] |
Long Q, Xie Y, He Y R, Li Q, Zou X P, Chen S C. 2019. Abscisic acid promotes jasmonic acid accumulation and plays a key role in citrus canker development. Frontiers in Plant Science, 10:1634.
doi: 10.3389/fpls.2019.01634 pmid: 31921273 |
[24] |
Long Q, Yue F, Liu R, Song S, Li X, Ding B, Yan X, Pei Y. 2018. The phosphatidylinositol synthase gene(GhPIS)contributes to longer, stronger,and finer fibers in cotton. Molecular Genetics and Genomics, 293 (5):1139-1149.
doi: 10.1007/s00438-018-1445-2 pmid: 29752547 |
[25] | Long Qin, Du Mei-xia, Long Jun-hong, He Yong-rui, Zou Xiu-ping, Chen Shan-chun. 2020a. Effect of transcription factor CsWRKY 61 on citrus bacterial canker resistance. Scientia Agricultura Sinica, 53 (8):62-77. (in Chinese) |
龙琴, 杜美霞, 龙俊宏, 何永睿, 邹修平, 陈善春. 2020a. 转录因子CsWRKY61对柑橘溃疡病抗性的影响. 中国农业科学, 53 (8):62-77. | |
[26] | Long Qin, Xie Yu,Xu Lan-zhen, He Yong-rui, Zou Xiu-ping, Chen Shan-chun. 2020b. Characteristics and mechanism of programmed cell death in response to citrus canker pathogen in the early stage of infection. Acta Horticulture Sinica, 47 (6):1047-1058. (in Chinese) |
龙琴, 谢宇, 许兰珍, 何永睿, 邹修平, 陈善春. 2020b. 溃疡病菌侵染早期柑橘细胞程序性死亡的响应特征及机制. 园艺学报, 47 (6):1047-1058. | |
[27] |
Maucher H, Hause B, Feussner I, Ziegler J, Wasternack C. 2000. Allene oxide synthases of barley(Hordeum vulgare cv. Salome):tissue specific regulation in seedling development. Plant Journal, 21 (2):199-213.
doi: 10.1046/j.1365-313x.2000.00669.x pmid: 10743660 |
[28] |
Mei C S, Qi M, Sheng G Y, Yang Y N. 2006. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level,PR gene expression,and host resistance to fungal infection. Molecular Plant-microbe Interactions, 19 (10):1127-1137.
doi: 10.1094/MPMI-19-1127 URL |
[29] |
Meng F, Yang C, Cao J D, Chen H, Pang J H, Zhao Q Q, Wang Z Y, Zheng Q F, Liu J. 2020. A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice. Journal of Integrative Plant Biology, 62 (10):1552-1573.
doi: 10.1111/jipb.v62.10 URL |
[30] | Ohkawa H, Imaishi H, Shiota N, Yamada T, Inui H, Ohkawa Y. 1998. Molecular mecha-nisms of herbicide resistance with special emphasis on cytochrome P450 monooxygenases. Plant Biotechnology, 15 (4):168-173. |
[31] |
Pajerowska-Mukhtar K M, Mukhtar M S, Guex N, Halim V A, Rosahl S, Somssich I E, Gebhardt C. 2008. Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis. Planta, 228 (2):293-306.
doi: 10.1007/s00425-008-0737-x pmid: 18431595 |
[32] | Peng Ai-hong, He Yong-rui, Xu Lan-zhen, Zou Xiu-ping, Liu Xiao-feng, Yao Li-xiao, Lei Tian-gang, Chen Shan-chun. 2011. Progress of transgenic research in citrus. Journal of Tropical Crops, 32 (7):1381-1387. (in Chinese) |
彭爱红, 何永睿, 许兰珍, 邹修平, 刘小丰, 姚利晓, 雷天刚, 陈善春. 2011. 柑桔转基因研究进展. 热带作物学报, 32 (7):1381-1387. | |
[33] |
Raza A, Charagh S, Zahid Z, Mubarik M S, Javed R, Siddiqui M H, Hasanuzzaman M. 2021. Jasmonic acid:a key frontier in conferring abiotic stress tolerance in plants. Plant Cell Reports, 40 (8):1513-1541.
doi: 10.1007/s00299-020-02614-z pmid: 33034676 |
[34] |
Ren H R, Bai M J, Sun J J, Liu J Y, Ren M, Dong Y W, Wang N, Ning G G, Wang C Q. 2020. RcMYB84 and RcMYB 123 mediate jasmonate-induced defense responses against Botrytis cinerea in rose(Rosa chinensis). Plant Journal, 103 (5):1839-1849.
doi: 10.1111/tpj.v103.5 URL |
[35] |
Sembdner G, Parthier B. 1993. The biochemistry and the physiological and molecular actions of jasmonates. Annual Review of Plant Physiology and Plant Molecular Biology, 44 (1):569-589.
doi: 10.1146/arplant.1993.44.issue-1 URL |
[36] |
Song W C, Brash A R. 1991. Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P-450. Science, 253 (5021):781-784.
pmid: 1876834 |
[37] | Song W C, Funk C D, Brash A R. 1993. Molecular cloning of an allene oxide synthase:a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proceedings of the National Academy of Sciences of the United States of America, 90 (18):8519-8523. |
[38] |
Wu De-wei, Wang Jiao-jiao, Xie Dao-xin. 2018. Jasmonate action and biotic stress response in plants. Biotechnology Bulletin, 34 (7):14-23. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0442 |
吴德伟, 汪姣姣, 谢道昕. 2018. 茉莉素与植物生物胁迫反应. 生物技术通报, 34 (7):14-23.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0442 |
|
[39] | Wu Juan-juan. 2008. Clonging and functional analysis of soybean GmAOS gene[Ph. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese) |
吴娟娟. 2008. 大豆丙二烯氧化物合酶基因(GmAOS)的克隆和功能研究[博士论文]. 南京: 南京农业大学. | |
[40] | Xie Yu, Zhang Qingwen, Qi Jingjing, Zou Xiuping, He Yongrui, Xu Lanzhen, Lei Tiangang, Peng Aihong, Li Qiang, Yao Lixiao, Chen Shanchun, Long Qin. 2020. Cloning and expression analysis of CsNCED3-2 in responding to citrus canker disease. Acta Horticulturae Sinica, 47 (12):2405-2414. (in Chinese) |
谢宇, 张庆雯, 祁静静, 邹修平, 何永睿, 许兰珍, 雷天刚, 彭爱红, 李强, 姚利晓, 陈善春, 龙琴. 2020. 柑橘CsNCED3-2的克隆及其响应溃疡病菌侵染的表达分析. 园艺学报, 47 (12):2405-2414. | |
[41] | Xiong J, Liu L, Xiao C M, Ma X C, Li F F, Tang C L, Li Z H, Lu B W, Zhou T, Lian X F, Chang Y Y, Tang M J, Xie S X, Lu X P. 2020. Characterization of PtAOS 1 promoter and three novel interacting proteins responding to drought in Poncirus trifoliate. Molecular Plant Sciences, 21 (3):4705. |
[42] | Zhao X L, Lu X P, Nie Q, Huang C N, Xiao Y M, Xie S X. 2013. Effect of water stress on physiological characteristics JA biosynthesis and correlative genes expression in citrus. Acta Agriculturae Universitatis Jiangxiensis, 35 (3):530-535. |
[43] | Zhang Tong-fang. 2013. Role of allene oxide synthases,OsAOS1 and OsAOS2,in regulating the production of herbivore-induced jasmonic acid and herbivore resistance in rice[Ph. D. Dissertation]. Hangzhou: Zhejiang University. (in Chinese) |
张同芳. 2013. 水稻丙二烯氧化合酶基因OsAOS1和OsAOS2在调控虫害诱导茉莉酸合成及抗虫性中的作用[博士论文]. 杭州: 浙江大学. | |
[44] | Zheng X, Spivey N W, Zeng W, Liu P P, Fu Z Q, Klessig D F, He S Y, Dong X N. 2012. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host & Microbe, 11 (6):587-596. |
[45] | Zhu Chen-zeng. 2018. Functional study of BoMSl and BoAOS genes controlling male sterility in cabbage[M. D. Dissertation]. Chongqing: Southwest University. (in Chinese) |
朱陈曾. 2018. BoMS1和BoAOS基因控制甘蓝雄性不育的功能研究[硕士论文]. 重庆: 西南大学. |
[1] | 阮若昕, 骆慧枫, 张琛, 黄康康, 郗笃隽, 裴嘉博, 邢梦云, 刘辉. 杭州地区不同需冷量甜樱桃品种休眠阶段花芽转录组分析[J]. 园艺学报, 2023, 50(6): 1187-1202. |
[2] | 高鹏飞, 高冰, 冯郑红, 吴建慧. 绢毛委陵菜PsWRKY40的克隆与耐镉功能分析[J]. 园艺学报, 2023, 50(6): 1269-1283. |
[3] | 郭静, 廖满余, 金燕, 马小川, 张芬, 卢晓鹏, 邓子牛, 盛玲. 柑橘转录因子CsbHLH3调控柠檬酸代谢的功能解析[J]. 园艺学报, 2023, 50(5): 947-958. |
[4] | 刘嘉琦, 公菲菲, 张颢, 景维坤, 瞿素萍, 马男, 高俊平, 孙小明. 月季茉莉酸羧基甲基转移酶基因RhJMT对花瓣衰老的调控[J]. 园艺学报, 2023, 50(5): 1025-1036. |
[5] | 吕若亚, 李云, 郑永钦, 邓晓玲, 郑正. 黄龙病菌在柑橘果实橘络中的分布[J]. 园艺学报, 2023, 50(5): 1110-1117. |
[6] | 王萍, 盛玲, 杨锦鹏, 周凌磊, 金燕, 罗旭钊, 马先锋, 邓子牛. 红心柚和美国枸橼杂种后代对柑橘溃疡病的抗性评价[J]. 园艺学报, 2023, 50(4): 765-777. |
[7] | 王同欢, 吴雨馨, 武艺圆, 李鑫鑫, 刘梦阳, 杨莲莲, 李佳鹏, 张忠山, 曹访, 仲雪婷, 王占旗. 菊花脑GRAS家族鉴定及其低温胁迫响应表达分析[J]. 园艺学报, 2023, 50(4): 815-830. |
[8] | 邹运乾, 罗曲娟, 张金, 许让伟, 程运江. 虫胶松香涂膜对柑橘货架期品质的影响[J]. 园艺学报, 2023, 50(4): 853-863. |
[9] | 赖恒鑫, 李文广, 彭良志, 何义仲, 朱攀攀, 杨万云, 凌丽俐, 付行政, 淳长品, 曹立. 沃柑果实春夏季留树保鲜品质变化研究[J]. 园艺学报, 2023, 50(3): 485-494. |
[10] | 刘语诺, 曹亚, 王帅, 杜美霞, 郑林, 陈善春, 邹修平. 柑橘CsMYB41和CsMYB63响应溃疡病菌侵染的表达[J]. 园艺学报, 2023, 50(3): 495-507. |
[11] | 毛可欣, 安淼, 王海荣, 王世金, 吕巍, 郭盈添, 李健, 李国田. 猕猴桃MYB家族成员鉴定及其低温表达分析[J]. 园艺学报, 2023, 50(3): 534-548. |
[12] | 刘玉菡, 陶宁, 王庆国, 李清清. 番茄中ABC转运蛋白SlABCG23调控茉莉酸信号途径[J]. 园艺学报, 2023, 50(3): 559-568. |
[13] | 王泉城, 武军, 李磊, 石延霞, 谢学文, 李宝聚, 柴阿丽. 多主棒孢菌CcTLS1对黄瓜的致病机理分析[J]. 园艺学报, 2023, 50(3): 569-582. |
[14] | 王泽涵, 于文涛, 王鹏杰, 刘财国, 樊晓静, 谷梦雅, 蔡春平, 王攀, 叶乃兴. 茶树秃房与茸房种质花器官差异表达基因的WGCNA分析[J]. 园艺学报, 2023, 50(3): 620-634. |
[15] | 王晓晨, 聂子页, 刘先菊, 段伟, 范培格, 梁振昌. 脱落酸对‘京香玉’葡萄果实单萜物质合成的影响[J]. 园艺学报, 2023, 50(2): 237-249. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司