园艺学报 ›› 2023, Vol. 50 ›› Issue (6): 1173-1186.doi: 10.16420/j.issn.0513-353x.2022-0221
• 遗传育种·种质资源·分子生物学 • 下一篇
肖翔1,2, 周储江1,2, 金舒婉2, 施丽愉2, 杨震峰2, 曹士锋2, 陈伟2,*()
收稿日期:
2023-01-10
修回日期:
2023-03-15
出版日期:
2023-06-25
发布日期:
2023-06-26
通讯作者:
* (E-mail:vivianchanyee@zwu.edu.cn)基金资助:
XIAO Xiang1,2, ZHOU Chujiang1,2, JIN Shuwan2, SHI Liyu2, YANG Zhenfeng2, CAO Shifeng2, CHEN Wei2,*()
Received:
2023-01-10
Revised:
2023-03-15
Published:
2023-06-25
Online:
2023-06-26
摘要:
为探究黄肉桃果实中MADS-box家族转录因子对类胡萝卜素代谢的调控作用,从黄肉桃果实中克隆得到两个MADS基因,分别命名为PpMADS2(PRUPE_5G208500)和PpMADS3(PRUPE_5G208400)。PpMADS2开放阅读框为768 bp,编码255个氨基酸;PpMADS3开放阅读框为756 bp,编码251个氨基酸。生物信息分析显示二者蛋白的N端均含有MADS-box家族典型的特征结构域。亚细胞定位分析显示PpMADS2和PpMADS3定位于细胞核。荧光定量PCR结果表明PpMADS2、PpMADS3以及类胡萝卜素合成基因PpPSY和PpCHYB在黄肉桃果实成熟过程中表达量呈上升趋势,与果实成熟期间类胡萝卜素的含量增加一致。酵母双杂交试验结果表明PpMADS2和PpMADS3蛋白存在相互作用。双荧光素酶试验结果表明PpMADS2和PpMADS3可以协同激活PpPSY和PpCHYB启动子。因此推测PpMADS2和PpMADS3可通过转录激活PpPSY和PpCHYB促进桃果实类胡萝卜素的积累。
中图分类号:
肖翔, 周储江, 金舒婉, 施丽愉, 杨震峰, 曹士锋, 陈伟. PpMADS2与PpMADS3协同调控黄肉桃果实类胡萝卜素积累机制的研究[J]. 园艺学报, 2023, 50(6): 1173-1186.
XIAO Xiang, ZHOU Chujiang, JIN Shuwan, SHI Liyu, YANG Zhenfeng, CAO Shifeng, CHEN Wei. Mechanism of PpMADS2 and PpMADS3 Synergistically Regulating Carotenoids Accumulation in Peach Fruit[J]. Acta Horticulturae Sinica, 2023, 50(6): 1173-1186.
用途 Function | 名称 Name | 基因ID Gene ID | 引物序列(5′-3′) Primer sequence |
---|---|---|---|
高保真PCR High fidelity PCR | gPpMADS2 | PRUPE_5G208500 | F:ATGGGGAGGGGAAGGGTGCAGCTGAAGAG R:CTATTCATTAAGGTGGCGGAGCATCCATGGG |
gPpMADS3 | PRUPE_5G208400 | F:ATGGGAAGAGGTAGAGTTGAGCTGAAGAGGAT R:TCAAAGCATCCACCCAGGAATGAATCCAT | |
荧光定量PCR qRT-PCR | PpMADS2 | PRUPE_5G208500 | F:TGGCAAAGAAGGTAAAGGAGAAG R:GAAGGGTGGAGGAGCAGTC |
PpMADS3 | PRUPE_5G208400 | F:CCAGAACAAGGAACAAATGC R:AGTGAGGATGATGAGGAAGG | |
PpPSY | PRUPE_3G013200 | F:TATTATGTTGCTGGGACTG R:GTGTTTGTGAGCTGATTCG | |
PpCHYB | PRUPE_2G300800 | F:AGGTTGCTGCTGCTCATC R:CGCTTTGATTCTCCTTTC | |
PpPDS | PRUPE_1G174100 | F:CCGTTGAAGGTCGTGATTG R:CTTTCCGCCCAGAACATC | |
PpLCYB | PRUPE_7G046100 | F:CGTGGCACAGCAAGTCTCAG R:CAGGTAGTGTCCAGGCAATCAAG | |
PpZEP | PRUPE_7G133100 | F:AGAAGCAGAACAAGAAGTG R:AACCAGTCCTCCAATTCC | |
PpZDS | PRUPE_6G340000 | F:AGAAGCAGAACAAGAAGTG R:AACCAGTCCTCCAATTCC | |
载体构建 Carrier construction | PpMADS2-GFP | PRUPE_5G208500 | F:ACGGGGGACTCTTGACCATGGCCATGGGGAGGGGAAGGGTG R:GCCCTTGCTCACCATACTAGTTTCATTAAGGTGGCGGAGCA |
PpMADS3-GFP | PRUPE_5G208400 | F:ACGGGGGACTCTTGACCATGGCCATGGGAAGAGGTAGAGTTGAGCTG R:GCCCTTGCTCACCATACTAGTAAGCATCCACCCAGGAATGA | |
PpMADS2-AD | PRUPE_5G208500 | F:GCCATGGAGGCCAGTGAATTCATGGGGAGGGGAAGGGTG R:CAGCTCGAGCTCGATGGATCCCTATTCATTAAGGTGGCGGAGC | |
PpMADS3-AD | PRUPE_5G208400 | F:GCCATGGAGGCCAGTGAATTCATGGGAAGAGGTAGAGTTGAGCTG R:CAGCTCGAGCTCGATGGATCCTCAAAGCATCCACCCAGGAA | |
PpMADS2-BD | PRUPE_5G208500 | F:ATGGCCATGGAGGCCGAATTCATGGGGAGGGGAAGGGTG R:CTAGTTATGCGGCCGCTGCAGCTATTCATTAAGGTGGCGGAGC | |
PpMADS3-BD | PRUPE_5G208400 | F:ATGGCCATGGAGGCCGAATTCATGGGAAGAGGTAGAGTTGAGCTG R:CTAGTTATGCGGCCGCTGCAGTCAAAGCATCCACCCAGGAA | |
PpMADS2-62-sk | PRUPE_5G208500 | F:CGCTCTAGAACTAGTGGATCCATGGGGAGGGGAAGGGTG R:GTCGACGGTATCGATAAGCTTCTATTCATTAAGGTGGCGGAGC | |
PpMADS3-62-sk | PRUPE_5G208400 | F:CGCTCTAGAACTAGTGGATCCATGGGAAGAGGTAGAGTTGAGCTG R:GTCGACGGTATCGATAAGCTTTCAAAGCATCCACCCAGGAA | |
载体构建(启动子克隆) Carrier construction | PpPSYpro-LUC | PRUPE_3G013200 | F:ATCCCGGGTTGCTCAGGATCTGCCACGTGTA R:ATCCATGGGTTGTTTGAACTTGAAACCTCAGCC |
(Promoter cloning) | PpCHYBpro-LUC | PRUPE_2G300800 | F:GCGGATCCTCTGGAAGTGAAGGAATTGTCGTAC R:GCCCATGGAAAAGATGCCTGGTTTGTGGAC |
表1 试验中所需引物
Table 1 Primers for experiments
用途 Function | 名称 Name | 基因ID Gene ID | 引物序列(5′-3′) Primer sequence |
---|---|---|---|
高保真PCR High fidelity PCR | gPpMADS2 | PRUPE_5G208500 | F:ATGGGGAGGGGAAGGGTGCAGCTGAAGAG R:CTATTCATTAAGGTGGCGGAGCATCCATGGG |
gPpMADS3 | PRUPE_5G208400 | F:ATGGGAAGAGGTAGAGTTGAGCTGAAGAGGAT R:TCAAAGCATCCACCCAGGAATGAATCCAT | |
荧光定量PCR qRT-PCR | PpMADS2 | PRUPE_5G208500 | F:TGGCAAAGAAGGTAAAGGAGAAG R:GAAGGGTGGAGGAGCAGTC |
PpMADS3 | PRUPE_5G208400 | F:CCAGAACAAGGAACAAATGC R:AGTGAGGATGATGAGGAAGG | |
PpPSY | PRUPE_3G013200 | F:TATTATGTTGCTGGGACTG R:GTGTTTGTGAGCTGATTCG | |
PpCHYB | PRUPE_2G300800 | F:AGGTTGCTGCTGCTCATC R:CGCTTTGATTCTCCTTTC | |
PpPDS | PRUPE_1G174100 | F:CCGTTGAAGGTCGTGATTG R:CTTTCCGCCCAGAACATC | |
PpLCYB | PRUPE_7G046100 | F:CGTGGCACAGCAAGTCTCAG R:CAGGTAGTGTCCAGGCAATCAAG | |
PpZEP | PRUPE_7G133100 | F:AGAAGCAGAACAAGAAGTG R:AACCAGTCCTCCAATTCC | |
PpZDS | PRUPE_6G340000 | F:AGAAGCAGAACAAGAAGTG R:AACCAGTCCTCCAATTCC | |
载体构建 Carrier construction | PpMADS2-GFP | PRUPE_5G208500 | F:ACGGGGGACTCTTGACCATGGCCATGGGGAGGGGAAGGGTG R:GCCCTTGCTCACCATACTAGTTTCATTAAGGTGGCGGAGCA |
PpMADS3-GFP | PRUPE_5G208400 | F:ACGGGGGACTCTTGACCATGGCCATGGGAAGAGGTAGAGTTGAGCTG R:GCCCTTGCTCACCATACTAGTAAGCATCCACCCAGGAATGA | |
PpMADS2-AD | PRUPE_5G208500 | F:GCCATGGAGGCCAGTGAATTCATGGGGAGGGGAAGGGTG R:CAGCTCGAGCTCGATGGATCCCTATTCATTAAGGTGGCGGAGC | |
PpMADS3-AD | PRUPE_5G208400 | F:GCCATGGAGGCCAGTGAATTCATGGGAAGAGGTAGAGTTGAGCTG R:CAGCTCGAGCTCGATGGATCCTCAAAGCATCCACCCAGGAA | |
PpMADS2-BD | PRUPE_5G208500 | F:ATGGCCATGGAGGCCGAATTCATGGGGAGGGGAAGGGTG R:CTAGTTATGCGGCCGCTGCAGCTATTCATTAAGGTGGCGGAGC | |
PpMADS3-BD | PRUPE_5G208400 | F:ATGGCCATGGAGGCCGAATTCATGGGAAGAGGTAGAGTTGAGCTG R:CTAGTTATGCGGCCGCTGCAGTCAAAGCATCCACCCAGGAA | |
PpMADS2-62-sk | PRUPE_5G208500 | F:CGCTCTAGAACTAGTGGATCCATGGGGAGGGGAAGGGTG R:GTCGACGGTATCGATAAGCTTCTATTCATTAAGGTGGCGGAGC | |
PpMADS3-62-sk | PRUPE_5G208400 | F:CGCTCTAGAACTAGTGGATCCATGGGAAGAGGTAGAGTTGAGCTG R:GTCGACGGTATCGATAAGCTTTCAAAGCATCCACCCAGGAA | |
载体构建(启动子克隆) Carrier construction | PpPSYpro-LUC | PRUPE_3G013200 | F:ATCCCGGGTTGCTCAGGATCTGCCACGTGTA R:ATCCATGGGTTGTTTGAACTTGAAACCTCAGCC |
(Promoter cloning) | PpCHYBpro-LUC | PRUPE_2G300800 | F:GCGGATCCTCTGGAAGTGAAGGAATTGTCGTAC R:GCCCATGGAAAAGATGCCTGGTTTGTGGAC |
图2 黄肉桃‘锦绣’果实成熟期间总类胡萝卜素含量变化 S1:第1次膨大软核期;S2:硬核期;S3:第2次膨大期;S4:硬熟期;S5:完熟期。不同小写字母表示在0.05水平上差异显著(P < 0.05)。下同。
Fig. 2 Changes of total carotenoid content different maturity in yellow fleshed peach‘Jinxiu’ S1:The first soft-nucleus stage of enlargement;S2:Hardcore stage;S3:Second stage of enlargement;S4:Hard ripening stage;S5:Ripening stage. Different lowercase letters indicate significant differences at the 0.05 level. The same below.
名称 Name | 基因ID Gene ID | FPKM | |
---|---|---|---|
第2次膨大期 Second stage of enlargement(S3) | 完熟期 Ripening stage(S5) | ||
PpMADS2 | PRUPE_5G208500 | 38.45 ± 1.14 b | 63.50 ± 2.05 a |
PpMADS3 | PRUPE_5G208400 | 51.14 ± 1.33 b | 127.24 ± 2.17 a |
表2 转录组测序结果
Table 2 Transcriptome sequencing results
名称 Name | 基因ID Gene ID | FPKM | |
---|---|---|---|
第2次膨大期 Second stage of enlargement(S3) | 完熟期 Ripening stage(S5) | ||
PpMADS2 | PRUPE_5G208500 | 38.45 ± 1.14 b | 63.50 ± 2.05 a |
PpMADS3 | PRUPE_5G208400 | 51.14 ± 1.33 b | 127.24 ± 2.17 a |
图4 桃果实PpMADS2(A)和PpMADS3(B)的氨基酸同源序列分析 Pp:桃;Pd:扁桃;Pm:日本杏;Pa:甜樱桃;Ppvc:梨;Md:苹果;Lc:荔枝;Nt:烟草;Rc:月季;Cc:克莱门柚。
Fig. 4 The alignment of PpMADS2(A)and PpMADS3(B)amino acid sequences Pp:Prunus persica;Pd:Prunus dulcis;Pm:Prunus mume;Pa:Prunus avium;Ppvc:Pyrus pyrifolia;Md:Malus domestica;Lc:Litchi chinensis;Nt:Nicotiana tabacum;Rc:Ricinus communis;Cc:Citrus clementina.
图10 PpMADS2和PpMADS3的自主激活活性分析 pGBKT7-P53与pGADT7-T-antigen为阳性对照组,pGBKT7为阴性对照。
Fig. 10 Transcriptional activation of PpMADS2 and PpMADS3 was analyzed by yeast two-hybrid system pGBKT7-P53 and pGADT7-T-antigen were used as positive control group, pGBKT7 was negative control group.
图11 酵母双杂系统分析PpMADS2和PpMADS3的互作 pGBKT7-P53与pGADT7-T-antigen为阳性对照组,pGBKT7-Lamin与pGADT7-T-antigen为阴性对照组。
Fig. 11 Interaction between PpMADS2 and PpMADS3 was analyzed by yeast two-hybrid system pGBKT7-P53 and pGADT7-T-antigen were used as positive control group, pGBKT7-Lamin and pGADT7-T-antigen were negative control group.
图12 PpMADS2和PpMADS3转录因子对PpPSY、PpCHYB和PpCCD4基因启动子的转录调控 荧光强度LUC/REN可反映报告基因的表达量,与转录因子的作用强度呈正比。
Fig. 12 Transcriptional regulation of PpMADS2 and PpMADS3 transcription factors on promoters of PpPSY,PpCHYB and PpCCD4 genes The fluorescence intensity of LUC/REN can reflect the expression of reporter genes, and is directly proportional to the intensity of transcription factors to reporter genes.
[1] |
Bahonar A. 2017. Carotenoids as potential antioxidant agents in stroke prevention:a systematic review. International Journal of Preventive Medicine, 8:70.
doi: 10.4103/ijpvm.IJPVM_112_17 pmid: 28983399 |
[2] | Dong T, Chen G, Tian S, Xie Q, Yin W, Zhang Y, Hu Z, Blazquez M. 2014. A non-climacteric fruit gene regulates fruit ripening and ethylene biosynthesis in climacteric fruit. PLoS ONE, 9 (4):95559. |
[3] |
Gao Weilin, Zhang Liman, Xue Chaoling, Zhang Yao, Liu Mengjun, Zhao Jin. 2022. Expression of E-type MADS-box genes in flower and fruits and protein interaction analysis in chinese jujube. Acta Horticulturae Sinica, 49 (4):739-748. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0179 |
高玮林, 张力曼, 薛超玲, 张垚, 刘孟军, 赵锦. 2022. 枣E类MADS基因在花和果中的表达及其蛋白互作研究. 园艺学报, 49 (4):739-748.
doi: 10.16420/j.issn.0513-353x.2021-0179 |
|
[4] |
Huang C. 2014. Involvement of multiple phytoene synthase genes in tissue- and cultivar-specific accumulation of carotenoids in loquat. Journal of Experimental Botany, 65 (65):4679.
doi: 10.1093/jxb/eru257 URL |
[5] | Li An-zhou. 2020. Functional studies of tomato MADS-box genes SlMBP9 and SlMADS83, in regulating root system development[Ph. D. Dissertation]. Chongqing: Chongqing Agricultural University. (in Chinese) |
李安洲. 2020. 番茄MADS-box基因SlMBP9和SlMADS83在根系统发育中的功能研究[博士论文]. 重庆: 重庆大学. | |
[6] | Liang Min-hua. 2015. Molecular cloning and expression of carotenogenic genes which responses to blue light in peach fruit[M. D. Dissertation]. Shanghai: Shanghai Ocean University. (in Chinese) |
梁敏华. 2015. 桃果实中类胡萝卜素合成基因的克隆及其对蓝光的响应机制研究[硕士论文]. 上海: 上海海洋大学. | |
[7] | Liu Ju-hua, Xu Bi-yu, Zhang Jing, Jin Zhi-qiang. 2010. The interaction of MADS-box transcription factors and manipulating fruit development and ripening. Hereditas,(9):893-902. (in Chinese) |
刘菊华, 徐碧玉, 张静, 金志强. 2010. MADS-box转录因子的相互作用及对果实发育和成熟的调控. 遗传,(9):893-902. | |
[8] |
Lu Chenfei, Gao Yuexia, Huang He, Dai Silan. 2022. Carotenoid metabolism and regulation in plants. Acta Horticulturae Sinica, 49 (12):2559-2578. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0531 URL |
陆晨飞, 高月霞, 黄河, 戴思兰. 2022. 植物类胡萝卜素代谢及调控研究进展. 园艺学报, 49 (12):2559-2578.
doi: 10.16420/j.issn.0513-353x.2021-0531 URL |
|
[9] | Lu S, Ye J, Zhu K, Zhang Y, Deng X. 2021. A fruit ripening-associated transcription factor CsMADS 5 positively regulates carotenoid biosynthesis in citrus. Journal of Experimental Botany, 72 (8):3413. |
[10] |
Lu S, Zhang Y, Zhu K, Yang W, Ye J, Chai L, Xu Q, Deng X. 2018. The citrus transcription factor CsMADS 6 modulates carotenoid metabolism by directly regulating carotenogenic genes. Plant Physiology, 176 (4):2657-2676.
doi: 10.1104/pp.17.01830 URL |
[11] |
Ma J, Li J, Zhao J, Hui Z, Han Y. 2014. Inactivation of a gene encoding Carotenoid Cleavage Dioxygenase(CCD4)leads to carotenoid-based yellow coloration of fruit flesh and leaf midvein in peach. Plant Molecular Biology Reporter, 32 (1):246-257.
doi: 10.1007/s11105-013-0650-8 URL |
[12] | Qin Juan, Yu Fan, Liu Lu, Zhu Ting-ting, Chen Wei, Cao Shi-feng, Yang Zhen-feng, Shi Li-yu. 2021. Cloning of peach PpNAC19 and its regulation on PpCCD4 promoter activity. Journal of Nuclear Agricultural Sciences, 35 (6):1273-1280. (in Chinese) |
秦娟, 余凡, 刘璐, 朱婷婷, 陈伟, 曹士锋, 杨震峰, 施丽愉. 2021. 桃PpNAC19的克隆及其对PpCCD4启动子活性的调节分析. 核农学报, 35 (6):1273-1280.
doi: 10.11869/j.issn.100-8551.2021.06.1273 |
|
[13] | Ren Jian-min. 2021. Carotenoid structure,function and physiological activity in plants and animals. Journal of Chongqing Technology and Business University, 38 (2):102-107. (in Chinese) |
任建敏. 2021. 类胡萝卜素结构及在动植物中的功能与生理活性. 重庆工商大学学报, 38 (2):102-107. | |
[14] |
Shewmaker C K, Sheehy J A, Daley M, Colburn S, Ke D Y. 2010. Seed-specific overexpression of phytoene synthase:increase in carotenoids and other metabolic effects. Plant Journal, 20 (4):401-412.
doi: 10.1046/j.1365-313x.1999.00611.x URL |
[15] | Wang Dan, Zhang Jian, Wang Xiao-rui, Zhang Lian-fu, Wei Zhe-wen, Xiong Su-yu. 2021. Correlation analysis between tomato color with carotenoid constitutes and content. Jiangsu Journal of Agricultural Sciences, 37 (6):1554-1564. (in Chinese) |
王丹, 张建, 王晓蕊, 张连富, 魏哲文, 熊素玉. 2021. 番茄果实类胡萝卜素组成含量与色泽相关性分析. 江苏农业学报, 37 (6):1554-1564. | |
[16] | Wang Man-man, Xue Shu-dan, Wu Ting-quan, Luo Shao-bo, Xie Da-sen, Zhong Yu-juan. 2020. Effects of illumination and temperature regulation on synthesis of carote-nogenesis in tomato fruit. Molecular Plant Breeding, 18 (18):6158-6164. (in Chinese) |
王曼曼, 薛舒丹, 吴廷全, 罗少波, 谢大森, 钟玉娟. 2020. 光照和温度调控对番茄果实中类胡萝卜素合成的影响. 分子植物育种, 18 (18):6158-6164. | |
[17] |
Widomska J, Sangiovanni J P, Subczynski W K. 2020. Why is zeaxanthin the most concentrated xanthophyll in the central fovea? Nutrients, 12 (5):1333.
doi: 10.3390/nu12051333 URL |
[18] | Xie Chao, Ji Jing, Wang Gang, Shi Li-ping, Zhang Lie, Yin Ri-hui, Guan Chun-feng, Jin Chao, Chen Yu-chun. 2016. Genetic transformation and offspring traits anaiysis of maize with the chyb gene. Molecular Plant Breeding, 14 (7):1718-1723. (in Chinese) |
谢超, 季静, 王罡, 史利平, 张烈, 尹日晖, 关春峰, 金超, 陈玉春. 2016. chyb基因的玉米遗传转化及后代性状分析. 分子植物育种, 14 (7):1718-1723. | |
[19] | Xie Q, Hu Z, Zhu Z, Dong T, Zhao Z, Cui B, Chen G. 2014. Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato. Rep, 4:4367. |
[20] | Yan Shao-bin, Jin Guang, Zhang Yu-yan, Ma Rui-juan, Yu Ming-liang. 2019. Effect of bagging on carotenoids in peels of peaches at maturing stages. Fujian Journal of Agricultural Sciences, 34 (7):790-795. (in Chinese) |
颜少宾, 金光, 张妤艳, 马瑞娟, 俞明亮. 2019. 套袋对桃果实发育后期果皮类胡萝卜素的影响. 福建农业学报, 34 (7):790-795. | |
[21] | Yao Qi-yuan, Li Fen-fen, Zhang Lin-cheng, Zhou Sheng-en. 2018. Research progress in MADS-box transcription factors involved in regulation of abiotic stress of plants. Acta Agriculturae Jiangxi, 30 (5):73-79. (in Chinese) |
姚琦园, 李纷芬, 张林成, 周升恩. 2018. 植物MADS-box转录因子参与调控非生物胁迫的研究进展. 江西农业学报, 30 (5):73-79. | |
[22] | Yin W, Hu Z, Cui B, Guo X, Hu J, Zhu Z, Chen G. 2017. Suppression of the MADS-box gene SlMBP8 accelerates fruit ripening of tomato(Solanum lycopersicum). Plant Physiology & Biochemistry, 118:235-244. |
[23] |
Yin W, Yu X, Chen G, Tang B, Wang Y, Liao C, Zhang Y, Hu Z. 2018. Suppression of SlMBP 15 inhibits plant vegetative growth and delays fruit ripening in tomato. Frontiers in Plant Science, 9:938.
doi: 10.3389/fpls.2018.00938 URL |
[24] |
Yungyuen W, Ma G, Zhang L, Futamura M, Kato M. 2018. Regulation of carotenoid metabolism in response to different temperatures in citrus juice sacs in vitro. Scientia Horticulturae, 238:384-390.
doi: 10.1016/j.scienta.2018.04.025 URL |
[25] |
Zhang J, Hu Z, Yao Q, Guo X, Chen G. 2018. A tomato MADS-box protein, SlCMB1,regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening. Scientific Reports, 8 (1):3413.
doi: 10.1038/s41598-018-21672-8 |
[26] | Zhu Kai-jie. 2020. Color variation of navel orange flavedo and regulatory analysis of lycopene β-cyclase[Ph. D. Dissertation]. Wuhan: Huazhong Agricultural University. (in Chinese) |
朱凯杰. 2020. 脐橙果皮色泽变异及番茄红素β-环化酶的调控研究[博士论文]. 武汉: 华中农业大学. |
[1] | 时 梦, 刘凤之, 王海波, 王莹莹, 史祥宾, 王志强, 李 鹏, 刘万春, 王孝娣. 中熟抗寒桃新品种‘中寒翠霞’[J]. 园艺学报, 2023, 50(S1): 15-16. |
[2] | 杨兴旺, 王莹莹, 王海波, 王小龙, 王志强, 史祥宾, 冀晓昊, 刘万春, 王孝娣. 中熟抗寒桃新品种‘中寒红琼’ [J]. 园艺学报, 2023, 50(S1): 17-18. |
[3] | 王富荣, 艾小艳, 王会良, 刘 勇, 朱 炜, 张 杨, 顾 霞, 刘模发, 诸小敏, 甘志猛, 何华平 , 龚林忠. 特早熟红肉油桃新品种‘楚红 1 号’[J]. 园艺学报, 2023, 50(S1): 19-20. |
[4] | 王富荣, 艾小艳, 王会良, 刘 勇, 朱 炜, 张 杨, 顾 霞, 刘模发, 诸小敏, 甘志猛, 何华平 , 龚林忠. 早熟离核高甜油桃新品种‘楚甜 1 号’[J]. 园艺学报, 2023, 50(S1): 21-22. |
[5] | 段文宜, 牛 良, 崔国朝, 曾文芳, 潘 磊, 孙世航, 王志强. 晚熟黄桃新品种‘中桃黄金蜜 5 号’[J]. 园艺学报, 2023, 50(S1): 23-24. |
[6] | 罗 轩, 陈庆红 , 张 蕾, 高 磊, 白福玺, 汪 志, 叶丽霞, 彭 珏. 红肉软枣猕猴桃新品种‘金香红’[J]. 园艺学报, 2023, 50(S1): 27-28. |
[7] | 齐永杰 , 高正辉 , 马 娜 , 高 霞 , 柯凡君 , 徐义流 , . 优质抗旱猕猴桃新品种‘金山 1 号’[J]. 园艺学报, 2023, 50(S1): 29-30. |
[8] | 马小民 , 陈媛媛 , 张 荣 , 黄 铖 , 黄东晨 , 任晓亮 , 叶新忠 , 傅松玲 , . 樱花新品种‘漫天红’ [J]. 园艺学报, 2023, 50(S1): 169-170. |
[9] | 阮若昕, 骆慧枫, 张琛, 黄康康, 郗笃隽, 裴嘉博, 邢梦云, 刘辉. 杭州地区不同需冷量甜樱桃品种休眠阶段花芽转录组分析[J]. 园艺学报, 2023, 50(6): 1187-1202. |
[10] | 杜艳霞, 王艺光, 肖政, 董彬, 方遒, 钟诗蔚, 杨丽媛, 赵宏波. 桂花OfNCED3调控转基因烟草叶片类胡萝卜素和叶绿素的合成[J]. 园艺学报, 2023, 50(6): 1284-1294. |
[11] | 周成, 方怡, 周锦杨, 黄企浩, 盘永坚, 史千千, 倪慧娴, 杨震峰, 宋春波. 低温诱导的桃果实采后膜脂代谢变化与冷害的关系[J]. 园艺学报, 2023, 50(6): 1305-1317. |
[12] | 刘南祥, 张慧琴, 谢鸣, 徐象华, 范芳娟. 猕猴桃新品种‘金丽’[J]. 园艺学报, 2023, 50(6): 1377-1378. |
[13] | 周平, 郭瑞, 颜少宾, 金光. 外源山梨醇影响桃叶片和果实糖代谢的分子机制研究[J]. 园艺学报, 2023, 50(5): 959-971. |
[14] | 严娟, 赵滨涛, 孙朦, 宋宏峰, 蔡志翔, 李垍峣, 宿子文, 张明昊, 沈志军, 许建兰, 马瑞娟, 俞明亮. 基于桃需冷量探讨气温变化对其适应性的挑战[J]. 园艺学报, 2023, 50(4): 724-736. |
[15] | 郑锦荣, 聂俊, 李艳红, 谭德龙, 谢玉明, 张长远. 樱桃番茄新品种‘粤科达101’[J]. 园艺学报, 2023, 50(4): 909-910. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司