园艺学报 ›› 2023, Vol. 50 ›› Issue (3): 620-634.doi: 10.16420/j.issn.0513-353x.2021-1189
王泽涵1, 于文涛2,*(), 王鹏杰1, 刘财国1, 樊晓静1, 谷梦雅1, 蔡春平2, 王攀1, 叶乃兴1,*(
)
收稿日期:
2022-10-19
修回日期:
2022-12-03
出版日期:
2023-03-25
发布日期:
2023-04-03
通讯作者:
*(E-mail:ynxtea@126.com,wtyu@foxmail.com)
基金资助:
WANG Zehan1, YU Wentao2,*(), WANG Pengjie1, LIU Caiguo1, FAN Xiaojing1, GU Mengya1, CAI Chunping2, WANG Pan1, YE Naixing1,*(
)
Received:
2022-10-19
Revised:
2022-12-03
Online:
2023-03-25
Published:
2023-04-03
Contact:
*(E-mail:ynxtea@126.com,wtyu@foxmail.com)
摘要:
以福建野生茶群体中的秃房和茸房种质为试验材料,对其花苞期和开放期花器官进行转录组测序分析,以期探明两种不同类型种质花器官在分子层面的差异。结果表明,两者之间的差异表达基因为2 086 ~ 4 733个,这些差异基因主要涉及植物与病原体的相互作用、类黄酮生物合成和谷胱甘肽代谢等途径。通过加权基因共表达网络(Weighted Gene Co-expression Network Analysis,WGCNA)方法鉴定到18个共表达基因模块,筛选出3个与茶树花器性状相关性最高的模块。通过计算模块内基因的连通性,挖掘网络中的核心基因并进行功能注释。研究结果表明秃房和茸房茶树花器官主要在应对胁迫和次生代谢产物的合成方面存在差异;秃房种质没有子房表皮茸毛,易受病原体入侵和逆境胁迫,通过调控GST(谷胱甘肽-S-转移酶)来提高自身应对胁迫的能力;CsLTP(脂质转运蛋白基因)可能是调控茶树子房茸毛发育起始的关键基因。
中图分类号:
王泽涵, 于文涛, 王鹏杰, 刘财国, 樊晓静, 谷梦雅, 蔡春平, 王攀, 叶乃兴. 茶树秃房与茸房种质花器官差异表达基因的WGCNA分析[J]. 园艺学报, 2023, 50(3): 620-634.
WANG Zehan, YU Wentao, WANG Pengjie, LIU Caiguo, FAN Xiaojing, GU Mengya, CAI Chunping, WANG Pan, YE Naixing. WGCNA Analysis of Differentially Expressed Genes in Floral Organs of Tea Germplasms with Ovary-glabrous and Ovary-trichome[J]. Acta Horticulturae Sinica, 2023, 50(3): 620-634.
图1 野生茶树茸房种质云霄1号和秃房种质云霄2号、云霄3号子房微形态扫描电镜图
Fig. 1 Scanning electron microscopy of ovary micromorphology of wild tea ovary-trichome germplasm Yunxiao 1 and wild tea ovary-glabrous germplasms Yunxiao 2 and Yunxiao 3
基因ID Gene ID | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|
CsTGY12G0000254 | ACCAAAGTTGGTGCGTTGAT | TCCACACTTCTTTCCAACAGG |
CsTGY01G0001349 | CACCGTGACAGCATTCATCT | GAAGCCGAGAGAGACACCAC |
CsTGY03G0002199 | TGCAGTGGTCTCAAACAAGC | AAGAGCAGGGCACTGAGAAA |
CsTGY04G0000919 | ACGGCATGTCTGATTGTCTG | CACCAGGAGTTGAGGGAGAA |
CsTGY05G0002437 | ACATCACGGGGAACTCTTTG | TGATGGGTGGAGTCTGAACA |
CsTGY03G0000664 | GCCTCTCCTACGTCACCAAC | CAGAGGGAGCAGAGAGATGG |
表1 6个CsLTP基因的qRT-PCR引物序列
Table 1 Primer sequences of six CsLTP genes
基因ID Gene ID | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|
CsTGY12G0000254 | ACCAAAGTTGGTGCGTTGAT | TCCACACTTCTTTCCAACAGG |
CsTGY01G0001349 | CACCGTGACAGCATTCATCT | GAAGCCGAGAGAGACACCAC |
CsTGY03G0002199 | TGCAGTGGTCTCAAACAAGC | AAGAGCAGGGCACTGAGAAA |
CsTGY04G0000919 | ACGGCATGTCTGATTGTCTG | CACCAGGAGTTGAGGGAGAA |
CsTGY05G0002437 | ACATCACGGGGAACTCTTTG | TGATGGGTGGAGTCTGAACA |
CsTGY03G0000664 | GCCTCTCCTACGTCACCAAC | CAGAGGGAGCAGAGAGATGG |
基因ID Gene ID | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|
CsTGY14G0001328 | ACTGGGTTGCATCCTCAAGA | TCGTTTCTGCGCGATTCAAG |
CsTGY12G0000650 | GCTGGTAAGATGGAGACCGA | TCTGTGGATCAGGGACATCCT |
CsTGY02G0001254 | ACGCACCTTCATTGGATGCT | CCACTGTGATCGGTGTCACT |
CsTGY10G0000491 | GCAGAGTGCTGATCATCGGA | AAGGTGGTTCGACCGGAATC |
CsTGY09G0000731 | GGACTAAGTTCGCCGAGGAG | TCCATCCAAGTGCAAGGTCC |
CsTGY09G0000726 | GGACTAAGTTCGCCGAGGAG | TCCATCCAAGTGCAAGGTCC |
表2 转录组数据qRT-PCR验证引物序列
Table 2 Transcriptome data qRT-PCR validation primer sequences
基因ID Gene ID | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|
CsTGY14G0001328 | ACTGGGTTGCATCCTCAAGA | TCGTTTCTGCGCGATTCAAG |
CsTGY12G0000650 | GCTGGTAAGATGGAGACCGA | TCTGTGGATCAGGGACATCCT |
CsTGY02G0001254 | ACGCACCTTCATTGGATGCT | CCACTGTGATCGGTGTCACT |
CsTGY10G0000491 | GCAGAGTGCTGATCATCGGA | AAGGTGGTTCGACCGGAATC |
CsTGY09G0000731 | GGACTAAGTTCGCCGAGGAG | TCCATCCAAGTGCAAGGTCC |
CsTGY09G0000726 | GGACTAAGTTCGCCGAGGAG | TCCATCCAAGTGCAAGGTCC |
种质名称 Germplasm name | 萼片数 Number of sepals | 花瓣数 Number of petals | 花柱长/cm Style length | 花柱开裂数 Style dehiscence | 子房茸毛 Ovarian trichome | 雄蕊数 Number of stamens | 花柄长/cm Pedicel length |
---|---|---|---|---|---|---|---|
云霄1号(茸房) Yunxiao 1(Ovary-trichome) | 4.7 ± 0.5 b | 5.7 ± 0.7 b | 1.21 ± 0.14 a | 3.0 ± 0.0 a | 有Have | 218.9 ± 24.7 a | 0.44 ± 0.14 a |
云霄2号(秃房) Yunxiao 2(Ovary-glabrous) | 5.3 ± 0.7 a | 6.1 ± 0.6 b | 1.17 ± 0.13 a | 3.0 ± 0.0 a | 无Not have | 224.2 ± 6.7 a | 0.48 ± 0.06 a |
云霄3号(秃房) Yunxiao 3(Ovary-glabrous) | 4.9 ± 0.3 ab | 6.8 ± 0.4 a | 1.15 ± 0.11 a | 3.0 ± 0.0 a | 无Not have | 218.9 ± 18.1 a | 0.49 ± 0.09 a |
表3 茶树秃房和茸房种质花器官性状特征
Table 3 Characteristics of floral organs traits of ovary-glabrous and ovary-trichome tea germplasms
种质名称 Germplasm name | 萼片数 Number of sepals | 花瓣数 Number of petals | 花柱长/cm Style length | 花柱开裂数 Style dehiscence | 子房茸毛 Ovarian trichome | 雄蕊数 Number of stamens | 花柄长/cm Pedicel length |
---|---|---|---|---|---|---|---|
云霄1号(茸房) Yunxiao 1(Ovary-trichome) | 4.7 ± 0.5 b | 5.7 ± 0.7 b | 1.21 ± 0.14 a | 3.0 ± 0.0 a | 有Have | 218.9 ± 24.7 a | 0.44 ± 0.14 a |
云霄2号(秃房) Yunxiao 2(Ovary-glabrous) | 5.3 ± 0.7 a | 6.1 ± 0.6 b | 1.17 ± 0.13 a | 3.0 ± 0.0 a | 无Not have | 224.2 ± 6.7 a | 0.48 ± 0.06 a |
云霄3号(秃房) Yunxiao 3(Ovary-glabrous) | 4.9 ± 0.3 ab | 6.8 ± 0.4 a | 1.15 ± 0.11 a | 3.0 ± 0.0 a | 无Not have | 218.9 ± 18.1 a | 0.49 ± 0.09 a |
种质名称 Germplasm name | 样本ID Sample ID | 过滤序列 Clean reads | 过滤碱基 Clean bases | GC/% | 质量值/% Q30 | 比对率/% Rate of mapped |
---|---|---|---|---|---|---|
云霄1号 Yunxiao 1 | YX1a | 22 925 163 | 6 863 327 433 | 44.83 | 92.82 | 81.26 |
YX1b | 21 032 668 | 6 301 007 194 | 45.11 | 94.24 | 87.78 | |
云霄2号 Yunxiao 2 | YX2a | 22 121 647 | 6 615 662 648 | 45.12 | 93.49 | 77.57 |
YX2b | 21 364 673 | 6 395 708 936 | 44.96 | 93.04 | 88.16 | |
云霄3号 Yunxiao 3 | YX3a | 22 463 254 | 6 721 197 850 | 44.74 | 93.12 | 88.11 |
YX3b | 21 843 812 | 6 536 443 013 | 45.00 | 93.32 | 87.58 |
表4 测序数据统计
Table 4 The statistics of sequencing data
种质名称 Germplasm name | 样本ID Sample ID | 过滤序列 Clean reads | 过滤碱基 Clean bases | GC/% | 质量值/% Q30 | 比对率/% Rate of mapped |
---|---|---|---|---|---|---|
云霄1号 Yunxiao 1 | YX1a | 22 925 163 | 6 863 327 433 | 44.83 | 92.82 | 81.26 |
YX1b | 21 032 668 | 6 301 007 194 | 45.11 | 94.24 | 87.78 | |
云霄2号 Yunxiao 2 | YX2a | 22 121 647 | 6 615 662 648 | 45.12 | 93.49 | 77.57 |
YX2b | 21 364 673 | 6 395 708 936 | 44.96 | 93.04 | 88.16 | |
云霄3号 Yunxiao 3 | YX3a | 22 463 254 | 6 721 197 850 | 44.74 | 93.12 | 88.11 |
YX3b | 21 843 812 | 6 536 443 013 | 45.00 | 93.32 | 87.58 |
秃房种质 Ovary-glabrous tea germplasms | 花期 Florescence | 差异表达基因数 Number of differentially expressed genes | ||
---|---|---|---|---|
总数Total | 上调Up | 下调Down | ||
云霄2号Yunxiao 2 | 花苞期Bud period | 2 540 | 1 359 | 1 181 |
开放期Open period | 2 086 | 1 128 | 958 | |
云霄3号Yunxiao 3 | 花苞期Bud period | 4 483 | 2 453 | 2 030 |
开放期Open period | 4 733 | 323 | 1 502 |
表5 与茸房茶树种质云霄1号比对的秃房种质的差异表达基因数
Table 5 Number of differentially expressed genes in the germplasm of ovary-trichome compared with that of ovary-glabrous germplasm Yunxiao 1
秃房种质 Ovary-glabrous tea germplasms | 花期 Florescence | 差异表达基因数 Number of differentially expressed genes | ||
---|---|---|---|---|
总数Total | 上调Up | 下调Down | ||
云霄2号Yunxiao 2 | 花苞期Bud period | 2 540 | 1 359 | 1 181 |
开放期Open period | 2 086 | 1 128 | 958 | |
云霄3号Yunxiao 3 | 花苞期Bud period | 4 483 | 2 453 | 2 030 |
开放期Open period | 4 733 | 323 | 1 502 |
图2 茶树秃房与茸房种质花器官中植物与病原体相互作用途径差异表达基因 YX1:云霄1号(茸房);YX2:云霄2号(秃房);YX3:云霄3号(秃房)。a:花苞期;b:开放期。下同。
Fig. 2 Differentially expressed genes of plant-pathogen interaction pathway in floral organs of ovary-glabrous tea germplasms and ovary-trichome tea germplasm YX1:Yunxiao 1(Ovary-trichome);YX2:Yunxiao 2(Ovary-glabrous);YX3:Yunxiao 3(Ovary-glabrous). a:Bud period;b:Open period. The same below.
图3 茶树秃房与茸房种质花器官中类黄酮生物合成和谷胱甘肽代谢通路及其相关的差异表达基因
Fig. 3 Flavonoids biosynthesis and glutathione metabolism pathways and the expression levels of related differentially expressed gene in floral organs of ovary-glabrous tea germplasms and ovary-trichome tea germplasm
图4 茶树秃房与茸房种质花器官差异表达基因WGCNA分析的系统聚类树和基因模块 不同颜色代表不同的模块。
Fig. 4 Cluster dendrogram and gene modules after WGCNA analysis of ovary-glabrous tea germplasms and ovary-trichome tea germplasm Different colors represent different modules.
模块 Module | 核心基因 Hub gene | 基因功能描述 Gene description |
---|---|---|
灰色60 | CsTGY15G0001792 | 蛋白酶抑制剂(KPI1)Kunitz protease inhibitor(KPI1) |
Grey60 | CsTGY05G0001055 | 糖转运蛋1Sugar transport protein 1-like |
CsTGY02G0002915 | 预测:茶树(-)-germacrened合成酶样 PREDICTED:Camellia sinensis (-)-germacrene D synthase-like | |
CsTGY09G0000488 | 属于LTP基因家族Belongs to the plant LTP family | |
CsTGY03G0000316 | 茶树枯草杆菌蛋白酶SBT1.7 Camellia sinensis subtilisin-like protease SBT1.7 | |
CsTGY10G0000634 | 预测:茶树功能未知基因LOC114317116 PREDICTED:Camellia sinensis uncharacterized LOC114317116 | |
CsTGY11G0002206 | 属于扩展蛋白家族Belongs to the expansin family | |
CsTGY06G0003180 | 预测:山茶生长素反应蛋白SAUR21 PREDICTED:Camellia sinensis auxin-responsive protein SAUR21-like | |
CsTGY14G0001328 | BAG家族分子伴侣调节因子1-样异构体X2 BAG family molecular chaperone regulator 1-like isoform X2 | |
CsTGY02G0002875 | F-box蛋白F-box protein | |
宝石绿 | CsTGY11G0001375 | 功能未知蛋LOC114283154 Uncharacterized protein LOC114283154 |
Paleturquoise | CsTGY04G0002762 | 茶树果糖二磷酸醛缩酶6 Camellia sinensis fructose-bisphosphate aldolase 6 |
CsTGY06G0001205 | 假设蛋白TEA_029793 Hypothetical protein TEA_029793 | |
CsTGY04G0001352 | 预测:可能是茶树硫酸盐转运体3.5 PREDICTED:Camellia sinensis probable sulfate transporter 3.5 | |
CsTGY12G0000569 | 茶树可能的过氧化酶5 Camellia sinensis probable peroxygenase 5 | |
CsTGY10G0001614 | 含有 WD 重复序列的蛋白质WD repeat-containing protein | |
CsTGY03G0002931 | 谷胱甘肽S-转移酶Glutathione S-transferase F4-like | |
CsTGY05G0002487 | 预测:茶树2-羟基异黄酮类脱水酶 PREDICTED:Camellia sinensis 2-hydroxyisoflavanone dehydratase-like | |
CsTGY10G0001615 | 预测:茶树WD重复蛋白44 PREDICTED:Camellia sinensis WD repeat-containing protein 44-like | |
CsTGY12G0000650 | MLP蛋白28亚型X2MLP-like protein 28 isoform X2 | |
仿古白4 | CsTGY15G0001697 | 茶树MYB基因Camellia sinensis MYB mRNA |
Antiquewhite 4 | CsTGY03G0000487 | 属于CRISP家族Belongs to the CRISP family |
CsTGY13G0001142 | 茶树蛋白酶抑制剂2 Camellia sinensis kunitz trypsin inhibitor 2-like | |
CsTGY12G0001632 | 属于扩展蛋白家族Belongs to the expansin family | |
CsTGY08G0002347 | 预测:可能为茶树WRKY转录因子14 PREDICTED:Camellia sinensis probable WRKY transcription factor 14 | |
CsTGY04G0001579 | 茶树未知功能蛋白DDB Camellia sinensis putative uncharacterized protein DDB | |
CsTGY11G0000895 | 预测:茶树锌指蛋白ZAT-12 PREDICTED:Camellia sinensis zinc finger protein ZAT12-like | |
CsTGY08G0000509 | 预测:茶树富含半胱氨酸受体样蛋白激酶10 PREDICTED:Camellia sinensis cysteine-rich receptor-like protein kinase 10 | |
CsTGY06G0000838 | 茶树未知功能基因LOC114309800 Camellia sinensis uncharacterized LOC114309800 | |
CsTGY01G0003170 | 未知功能基因LOC114290224 Uncharacterized protein LOC114290224 |
表6 关键模块中核心基因的功能注释
Table 6 Functional annotation of hub genes in three key modules
模块 Module | 核心基因 Hub gene | 基因功能描述 Gene description |
---|---|---|
灰色60 | CsTGY15G0001792 | 蛋白酶抑制剂(KPI1)Kunitz protease inhibitor(KPI1) |
Grey60 | CsTGY05G0001055 | 糖转运蛋1Sugar transport protein 1-like |
CsTGY02G0002915 | 预测:茶树(-)-germacrened合成酶样 PREDICTED:Camellia sinensis (-)-germacrene D synthase-like | |
CsTGY09G0000488 | 属于LTP基因家族Belongs to the plant LTP family | |
CsTGY03G0000316 | 茶树枯草杆菌蛋白酶SBT1.7 Camellia sinensis subtilisin-like protease SBT1.7 | |
CsTGY10G0000634 | 预测:茶树功能未知基因LOC114317116 PREDICTED:Camellia sinensis uncharacterized LOC114317116 | |
CsTGY11G0002206 | 属于扩展蛋白家族Belongs to the expansin family | |
CsTGY06G0003180 | 预测:山茶生长素反应蛋白SAUR21 PREDICTED:Camellia sinensis auxin-responsive protein SAUR21-like | |
CsTGY14G0001328 | BAG家族分子伴侣调节因子1-样异构体X2 BAG family molecular chaperone regulator 1-like isoform X2 | |
CsTGY02G0002875 | F-box蛋白F-box protein | |
宝石绿 | CsTGY11G0001375 | 功能未知蛋LOC114283154 Uncharacterized protein LOC114283154 |
Paleturquoise | CsTGY04G0002762 | 茶树果糖二磷酸醛缩酶6 Camellia sinensis fructose-bisphosphate aldolase 6 |
CsTGY06G0001205 | 假设蛋白TEA_029793 Hypothetical protein TEA_029793 | |
CsTGY04G0001352 | 预测:可能是茶树硫酸盐转运体3.5 PREDICTED:Camellia sinensis probable sulfate transporter 3.5 | |
CsTGY12G0000569 | 茶树可能的过氧化酶5 Camellia sinensis probable peroxygenase 5 | |
CsTGY10G0001614 | 含有 WD 重复序列的蛋白质WD repeat-containing protein | |
CsTGY03G0002931 | 谷胱甘肽S-转移酶Glutathione S-transferase F4-like | |
CsTGY05G0002487 | 预测:茶树2-羟基异黄酮类脱水酶 PREDICTED:Camellia sinensis 2-hydroxyisoflavanone dehydratase-like | |
CsTGY10G0001615 | 预测:茶树WD重复蛋白44 PREDICTED:Camellia sinensis WD repeat-containing protein 44-like | |
CsTGY12G0000650 | MLP蛋白28亚型X2MLP-like protein 28 isoform X2 | |
仿古白4 | CsTGY15G0001697 | 茶树MYB基因Camellia sinensis MYB mRNA |
Antiquewhite 4 | CsTGY03G0000487 | 属于CRISP家族Belongs to the CRISP family |
CsTGY13G0001142 | 茶树蛋白酶抑制剂2 Camellia sinensis kunitz trypsin inhibitor 2-like | |
CsTGY12G0001632 | 属于扩展蛋白家族Belongs to the expansin family | |
CsTGY08G0002347 | 预测:可能为茶树WRKY转录因子14 PREDICTED:Camellia sinensis probable WRKY transcription factor 14 | |
CsTGY04G0001579 | 茶树未知功能蛋白DDB Camellia sinensis putative uncharacterized protein DDB | |
CsTGY11G0000895 | 预测:茶树锌指蛋白ZAT-12 PREDICTED:Camellia sinensis zinc finger protein ZAT12-like | |
CsTGY08G0000509 | 预测:茶树富含半胱氨酸受体样蛋白激酶10 PREDICTED:Camellia sinensis cysteine-rich receptor-like protein kinase 10 | |
CsTGY06G0000838 | 茶树未知功能基因LOC114309800 Camellia sinensis uncharacterized LOC114309800 | |
CsTGY01G0003170 | 未知功能基因LOC114290224 Uncharacterized protein LOC114290224 |
图7 茶树秃房与茸房种质花器官差异表达基因CsLTP的表达水平热图
Fig. 7 Heatmap of CsLTP expression level in floral organ differential expression genes of wild ovary-glabrous tea germplasms
图8 6个CsLTP在不同茶树种质中的表达 不同小写字母表示同一基因在不同茶树种质中的表达差异显著(P < 0.05)。HD:黄棪;RG:肉桂。
Fig. 8 Expression analysis of six CsLTP genes in different tea germplasms Different normal letters indicate significant differences among different tea germplasms at 0.05 level. HD:Huangyan;RG:Rougui.
[1] | Bai Kunyuan. 2001. Chronicles of Chinese tea varieties. Shanghai: Shanghai Science and Technology Press. (in Chinese) |
白堃元. 2001. 中国茶树品种志. 上海: 上海科学技术出版社. | |
[2] |
Bertea C M, Voster A, Verstappen F, Maffei M, Beekwilder J, Bouwmeester H. 2006. Isoprenoid biosynthesis in artemisia annua:cloning and heterologous expression of a germacrene a synthase from a glandular trichome cDNA library. Archives of Biochemistry and Biophysics, 448 (1):3-12.
doi: 10.1016/j.abb.2006.02.026 URL |
[3] | Boutrot F, Chantret N, Gautier M F. 2008. Genome-wide analysis of the rice and arabidopsis non-specific lipid transfer protein(nsLtp)gene families and identification of wheat nsLtp genes by EST data mining. BioMed Central, 9 (1):86. |
[4] |
Chen C J, Chen H, Zhang Y, Thomas H, Frank M, He Y, Xia R. 2020. TBtools:An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13 (8):1194-1202.
doi: 10.1016/j.molp.2020.06.009 URL |
[5] |
Chen F, Hu Y, Vannozzi A, Wu K C, Cai H Y, Qin Y, Mullis A, Lin Z G, Zhang L S. 2017. The WRKY transcription factor family in model plants and crops. Critical Reviews in Plant Sciences, 36 (5-6):311-335.
doi: 10.1080/07352689.2018.1441103 URL |
[6] | Chen Xiao-ming, Wang Peng-jie, Wang Shu-yan, Yang Ru-xing, Sun Jun, Guo Yong-chun, Chen Xue-jing, Zhao Feng, Ye Nai-xing. 2020. Excavation of genes involved in theacrine biosynthesis of Jiaochengkucha based on transcriptome. Chinese Journal of Applied and Environmental Biology, 27 (5):1382-1389. (in Chinese) |
陈潇敏, 王鹏杰, 王淑燕, 杨如兴, 孙君, 郭永春, 陈雪津, 赵峰, 叶乃兴. 2020. 基于转录组的蕉城苦茶苦茶碱合成相关基因的挖掘. 应用与环境生物学报, 27 (5):1382-1389. | |
[7] |
Chin C H, Chen S H, Wu H H, Ho C W, Ko M T, Lin C Y. 2014. CytoHubba:identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8 (4):11.
doi: 10.1186/1752-0509-8-11 URL |
[8] | Duo Jie-cuo, Li Yuan, Xiong Hui-yan, Si Jian-ping, Zhang Chao, Duan Rui-jun. 2019. Cloning and expression analysis of HtLTP1 gene in tibetan hulless barley. Molecular Plant Breeding, 17 (22):7286-7294. (in Chinese) |
多杰措, 李媛, 熊辉岩, 司建萍, 张超, 段瑞君. 2019. 青稞HtLTP1基因的克隆与表达分析. 分子植物育种, 17 (22):7286-7294. | |
[9] |
Ge X C, Chen J C, Sun C R, Cao M K. 2003. Preliminary study on the structural basis of the antifungal activity of a rice lipid transfer protein. Protein Engineering, 16 (6):387-390.
doi: 10.1093/protein/gzg055 pmid: 12874370 |
[10] | Guo Yong-chun, Wang Peng-jie, Chen Di, Zheng Yu-cheng, Chen Xue-jing, Ye Nai-xing. 2019. Genome-wide identification and expression analysis of SRO gene family in Camellia sinensis. Journal of Tea Science, 39 (4):392-402. (in Chinese) |
郭永春, 王鹏杰, 陈笛, 郑玉成, 陈雪津, 叶乃兴. 2019. 茶树SRO基因家族的鉴定及表达分析. 茶叶科学, 39 (4):392-402. | |
[11] | Han Hui-chao. 2013. Cloning and function analysis of cossypium hirsutum lipid transfer protein gene family[M. D. Dissertation]. Shanghai: Shanghai Jiao Tong University. (in Chinese) |
韩慧超. 2013. 陆地棉LTP家族基因的克隆与功能的初步研究[硕士论文]. 上海: 上海交通大学. | |
[12] |
Hong Yan, Wu Yuwei, Song Xiang, Li Mengling, Dai Silan. 2021. Molecular mechanism of light-induced anthocyanin biosynthesis in horticultural crops. Acta Horticulturae Sinica, 48 (10):1983-2000. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0497 URL |
洪艳, 武宇薇, 宋想, 李梦灵, 戴思兰. 2021. 光照调控园艺作物花青素苷生物合成的分子机制. 园艺学报, 48 (10):1983-2000.
doi: 10.16420/j.issn.0513-353x.2021-0497 URL |
|
[13] | Jian Hong-ju, Zhang Mei-hua, Shang Li-na, Wang Ji-chun, Hu Bo-geng, Khassanov V, Lü Dian Qiu. 2022. Screening candidate genes involved in potato tuber development using WGCNA. Journal of Tea Science, 48 (7):1658-1668. (in Chinese) |
荐红举, 张梅花, 尚丽娜, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 2022. 利用WGCNA筛选马铃薯块茎发育候选基因. 作物学报, 48 (7):1658-1668.
doi: 10.3724/SP.J.1006.2022.14115 |
|
[14] | Jiang Hui-bing, Sun Yun-nan, Li Mei, Dai Wei-dong, Song Wei-xi, Tian Yi-ping, Xia Li-fei, Chen Lin-bo. 2018. Anthocyanin accumulation and expression of synthesis-related genes in leaves of different developmental stages in Camellia sinensis cv. Zijuan. Journal of Tea Science, 38 (2):174-182. (in Chinese) |
蒋会兵, 孙云南, 李梅, 戴伟东, 宋维系, 田易萍, 夏丽飞, 陈林波. 2018. 紫娟茶树叶片不同发育期花青素积累及合成相关基因的表达. 茶叶科学, 38 (2):174-182. | |
[15] |
Jiang Q H, Ye J L, Zhu K J, Wu F F, Chai L J, Xu Q, Deng X X. 2022. Transcriptome and co-expression network analyses provide insights into fruit shading that enhances carotenoid accumulation in pomelo(Citrus grandis). Horticultural Plant Journal, 8 (4):423-434.
doi: 10.1016/j.hpj.2022.01.007 URL |
[16] |
Langfelder P, Horvath S. 2008. WGCNA:an R package for weighted correlation network analysis. BMC Bioinformatics, 9 (2):1-32.
doi: 10.1186/1471-2105-9-1 |
[17] |
Li A-li, Feng Ya-nan, Li Ping, Zhang Dong-sheng, Zong Yu-zheng, Lin Wen, Hao Xing-yu. 2022. Transcriptome analysis of leaves responses to elevated CO2 concentration,drought and interaction conditions in soybean[Glycine max(Linn.)Merr.]. Acta Agronomica Sinica, 48 (5):1103-1118. (in Chinese)
doi: 10.3724/SP.J.1006.2022.14055 |
李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 2022. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析. 作物学报, 48 (5):1103-1118.
doi: 10.3724/SP.J.1006.2022.14055 |
|
[18] | Li Mei, Chen Lin-bo, Tian Yi-ping, Xia Li-fei, Song Wei-xi, Liang Ming-zhi, Jiang Chang-jun. 2017. Digital gene expression analysis of tea flowers without pistil at three development stages. Journal of Tea Science, 37 (1):97-107. (in Chinese) |
李梅, 陈林波, 田易萍, 夏丽飞, 宋维系, 粱名志, 江昌俊. 2017. 雌蕊缺失茶树花3个发育期的数字基因表达谱分析. 茶叶科学, 37 (1):97-107. | |
[19] | Li Jie, Zhang Ming-fang, Yu Jian-li, Zhang Xiu-mei, Du Yun-peng, Wang Qing-jiang. 2020. Advances in regulation of plant trichome development. Northern Horticulture,(23):133-139. (in Chinese) |
李洁, 张铭芳, 于见丽, 张秀梅, 杜云鹏, 王庆江. 2020. 植物表皮毛发育调控的研究进展. 北方园艺,(23):133-139. | |
[20] | Lin Xin-ying, Wang Peng-jie, Chen Xue-jing, Guo Yong-chun, Gu Meng-ya, Zheng Yu-cheng, Ye Nai-xing. 2021. Identification of lox gene famiy in Camelliasinensis and expressionanalysis in the process of white tea withering. Journal of Tea Science, 41 (4):482-496. (in Chinese) |
林馨颖, 王鹏杰, 陈雪津, 郭永春, 谷梦雅, 郑玉成, 叶乃兴. 2021. 茶树LOX基因家族的鉴定及其在白茶萎凋过程的表达分析. 茶叶科学, 41 (4):482-496. | |
[21] |
Liu F, Wang Y, Ding Z T, Zhao L, Xiao J, Wang L J, Ding S B. 2017. Transcriptomic analysis of flower development in tea (Camellia sinensis). Gene, 631:39-51.
doi: 10.1016/j.gene.2017.08.013 URL |
[22] |
Liu R J, Wang Y Y, Tang S, Cai J R, Liu S Q, Zheng P, Sun B M. 2021. Genome-wide identification of the tea plant bHLH transcription factor family and discovery of candidate regulators of trichome formation. Scientific reports, 11 (1):10764-10764.
doi: 10.1038/s41598-021-90205-7 |
[23] |
Liu Xiaomeng, Tang Ning, Chen Zexiong, Luo Chengrong, Zhang Weiwei, Xu Feng. 2021. Progress in plant trichome development research. Acta Horticulturae Sinica, 48 (4):705-718. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0407 URL |
刘晓梦, 唐宁, 陈泽雄, 罗成荣, 张威威, 许锋. 2021. 植物表皮毛发育研究进展. 园艺学报, 48 (4):705-718.
doi: 10.16420/j.issn.0513-353x.2020-0407 URL |
|
[24] | Liu Yong. 2017. Isolation and functional identification of ZmLTPL63gene of maize[M. D. Dissertation]. Taian: Shandong Agricultural University. (in Chinese) |
刘勇. 2017. 玉米ZmLTPL63基因的分离及功能鉴定[硕士论文]. 泰安: 山东农业大学. | |
[25] |
Liu Yue, Li Yueqing, Meng Xiangyu, Huang Jing, Tang Hao, Li Yuanheng, Gao Xiang, Zhao Chunli. 2021. Cloning and functional characterization of chalcone synthase genes(CmCHS)from Clivia miniata. Acta Horticulturae Sinica, 48 (10):1847-1858. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0090 URL |
刘玥, 李月庆, 孟祥宇, 黄靖, 汤昊, 李源恒, 高翔, 赵春莉. 2021. 大花君子兰查尔酮合酶基因CmCHS的克隆及其功能验证. 园艺学报, 48 (10):1847-1858.
doi: 10.16420/j.issn.0513-353x.2021-0090 URL |
|
[26] | Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15 (12):31-46. |
[27] | Lü Ning, Zhou Yu-fan, Feng Ting-quan. 2013. Distribution of existing wild tea tree group in Fujian. Tea in Fujian, 35 (3):21-26. (in Chinese) |
吕宁, 周玉璠, 冯廷佺. 2013. 福建现存野生茶树群落分布. 福建茶叶, 35 (3):21-26. | |
[28] | Meng Fan-hua, Li Zhen, Wang Qing-guo, Liu Wei. 2021. Cloning and expression analysis of lipid transfer protein gene SiLTP1 of Foxtail millet. Shandong Agricultural Sciences, 53 (10):1-7. (in Chinese) |
孟凡花, 李臻, 王庆国, 刘炜. 2021. 谷子脂质转移蛋白基因SiLTP1的克隆及表达分析. 山东农业科学, 53 (10):1-7. | |
[29] | Sun B M, Zhu Z S, Liu R J, Wang L M, Dai F L, Cao F R, Liu S Q. 2020. TRANSPARENT TESTA GLABRA1(TTG1)regulates leaf trichome density in tea Camellia sinensis. Nordic Journal of Botany, 38 (1):e02592. |
[30] | Wang Hui-yu. 2018. Transcriptomics and proteomics analysises of jujube's responses to infection by and reovery from Candidatus Phytoplasma ziziphi[M. D. Dissertation]. Zhengzhou: Henan Agricultural University. (in Chinese) |
王会鱼. 2018. 枣响应植原体侵染及恢复的转录组和蛋白组分析[硕士论文]. 郑州: 河南农业大学. | |
[31] | Wang Li-yuan, Wei Kang, Zhang Cheng-cai, Cheng Hao. 2014. Characterization of micorsatellites in tea(Camellia sinensis)floral transcriptome. Acta Agronomica Sinica, 40 (1):80-85. (in Chinese) |
王丽鸳, 韦康, 张成才, 成浩. 2014. 茶树花转录组微卫星分布特征. 作物学报, 40 (1):80-85. | |
[32] | Wang P J, Yue C, Chen D, Zheng Y C, Zhang Q, Yang J F, Ye N X. 2019. Genome-wide identification of WRKY family genes and their response to abiotic stresses in tea plant(Camellia sinensis). Genes & Genomics, 41 (1):17-33. |
[33] | Wang Pei-jie, Zheng Yu-cheng, Lin Yi, Zhou Zhen, Yang Jiang-fang, Ye Nai-xing. 2019. Genome-wide identification and expression analysis of GRF gene family in Camellia sinensis. Acta Botanica Boreali-Occidentalia Sinica, 39 (3):413-421. (in Chinese) |
王鹏杰, 郑玉成, 林浥, 周珍, 杨江帆, 叶乃兴. 2019. 茶树GRF基因家族的全基因组鉴定及表达分析. 西北植物学报, 39 (3):413-421. | |
[34] | Wang W D, Xin H H, Wang M L, Ma Q P, Wang L, Kaleri N, Wang Y H, Li X H. 2016. Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality. Frontiers in Plant Science, 367:385. |
[35] | Wang Ze-han, Yu Wen-tao, Fan Xiao-jing, Fang De-Yin, Cai Jie-ying, Wang Yuan-xun, Ye Nai-xing. 2020. Micro-morphology of wild ovary-glabrous tea germplasms in Fujian. Fujian Journal of Agricultural Sciences, 35 (8):830-836. (in Chinese) |
王泽涵, 于文涛, 樊晓静, 方德音, 蔡捷英, 王元勋, 叶乃兴. 2020. 福建秃房野生茶种质资源新纪录及其子房微形态观察. 福建农业学报, 35 (8):830-836. | |
[36] | Wang Ze-han, Yu Wen-tao, Wang Peng-jie, Fan Xiao-jing, Liu Cai-guo, Cai Chun-ping, Ye Nai-Xing. 2021. Transcriptome analysis at different developmental stages of tea plant(Camellia sinensis). Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 50 (6):692-699. (in Chinese) |
王泽涵, 于文涛, 王鹏杰, 樊晓静, 刘财国, 蔡春平, 叶乃兴. 2021. 茶树花不同发育时期的转录组分析. 福建农林大学学报(自然科学版), 50 (6):692-699. | |
[37] |
Wang Zhi-bin, Shen Wan-xia, Zhu Shi-pin, Xue Yang, Zhao Xiao-chun. 2015. Polymorphism and expression of chalcone synthase gene in citrus related to the flavonoids content. Acta Horticulturae Sinica, 42 (3):435-444. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2014-1036 URL |
王志彬, 申晚霞, 朱世平, 薛洋, 赵晓春. 2015. 柑橘CHS基因序列多态性及表达水平对类黄酮生物合成的影响. 园艺学报, 42 (3):435-444. | |
[38] | Yang Y, Shah J, Klessing D F. 1997. Signal perception and transduction in plant defense responses. Cold Spring Harbor Laboratory Press, 11 (13):1621-1639. |
[39] | Ye Nai-xing. 2021. Commentary on the classics of tea. 2 ed. Beijing: China Agriculture Press. (in Chinese) |
叶乃兴. 2021. 茶学概论. 2版. 北京: 中国农业出版社. | |
[40] | Ye Nai-xing, Yang Jiang-fang, Wu Ling-sheng, Wang Zhen-Kang. 2005. Diversity analysis of the main morphological traits of tea plant flower and its biochemical components. Subtropical Plant Science, 1 (4):32-35. (in Chinese) |
叶乃兴, 杨江帆, 邬龄盛, 王振康. 2005. 茶树花主要形态性状和生化成分的多样性分析. 亚热带农业研究, 1 (4):32-35. | |
[41] | Zhang Hong-da. 1981. Thea-A section of beveragial tea-trees of the genus Camellia. Acta Scientiarum Naturalium Universitatis Suny atseni, 1 (1):89-101. (in Chinese) |
张宏达. 1981. 茶树的系统分类. 中山大学学报(自然科学版), 1 (1):89-101. | |
[42] |
Zhang X T, Chen S, Shi L Q, Gong D P, Zhang S C, Zhao Q, Zhan D L, Vasseur L, Wang Y B, Yu J X, Liao Z Y, Xu X D, Qi R, Wang W L, Ma Y R, Wang P J, Ye N X, Ma D N, Shi Y, Wang H F, Ma X K, Kong X R, Lin J, Wei L F, Ma Y Y, Li R Y, Hu G P, He H F, Zhang L, Ming R, Wang G, Tang H B, You M S. 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics, 53 (8):1250-1259.
doi: 10.1038/s41588-021-00895-y |
[43] | Zhang Ya-zhen, Wei Kang, Wang Li-yuan, Cheng Hao. 2016. Analysis of Glutathione S-transferase genes in tea plant(Camellia sinensis)based on transcriptome analysist. Journal of Tea Science, 36 (5):513-522. (in Chinese) |
张亚真, 韦康, 王丽鸳, 成浩. 2016. 基于转录组测序对茶树GST基因表达的研究. 茶叶科学, 36 (5):513-522. | |
[44] |
Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. 2010. Weighted gene coexpression network analysis:state of the art. Journal of Biopharmaceutical Statistics, 20 (2):281-300.
doi: 10.1080/10543400903572753 pmid: 20309759 |
[1] | 程庆华, 张志鹏, 吴艳萍, 万宇鹤, 陈应娟. 苦参碱对茶树炭疽菌的抑菌作用研究[J]. 园艺学报, 2023, 50(2): 432-440. |
[2] | 蔺海娇, 梁雨晨, 李玲, 马军, 张璐, 兰振颖, 苑泽宁. 薰衣草CBF途径相关耐寒基因挖掘与调控网络分析[J]. 园艺学报, 2023, 50(1): 131-144. |
[3] | 岳翠男, 王治会, 杨普香, 李文金, 彭 华, 陈罗军, 周汉中. 茶树新品种‘宁州早1号’[J]. 园艺学报, 2022, 49(S2): 281-282. |
[4] | 李兰英, 胥亚琼, 刘东娜, 尧 渝, 龚雪蛟, 罗 晟, 罗 凡, . 茶树新品种‘金凤2号’[J]. 园艺学报, 2022, 49(S2): 283-284. |
[5] | 李兰英, 王 强, 龚雪蛟, 刘东娜, 尧 渝, 王迎春, 胥亚琼, 罗 凡, . 茶树新品种‘甘露1号’[J]. 园艺学报, 2022, 49(S2): 285-286. |
[6] | 任志红, 吴焕焕, 肖文敏, 张 虹, 杨圣祥, 孙海伟, 王 健, 高文星. 抗寒茶树新品种‘岱鼎御丰’[J]. 园艺学报, 2022, 49(S2): 287-288. |
[7] | 王治会, 杨普香, 彭 华, 李文金, 王胜利, 鲍润元, 江新凤. 茶树新品种‘浮梁槠叶1号’[J]. 园艺学报, 2022, 49(S1): 191-192. |
[8] | 彭 华, 李文金, 杨普香, 王治会, 岳翠男, 李延升, 谢小群, 李 琛. 早生持嫩性强茶树新品种‘婺绿1号’[J]. 园艺学报, 2022, 49(S1): 193-194. |
[9] | 王治会, 彭 华, 岳翠男, 李文金, 杨普香, 陈年生, 李延升, 蔡海兰, 江新凤. 茶树新品种‘赣茶4号’[J]. 园艺学报, 2022, 49(S1): 195-196. |
[10] | 马伟伟, 王 云, 李春华, 刘 晓, 唐晓波, 张 厅, 甘 勇, 王小萍, . 茶树新品种‘彝黄1号’[J]. 园艺学报, 2022, 49(S1): 197-198. |
[11] | 马伟伟, 王 云, 李春华, 熊元元, 刘 晓, 王小萍, 李 鑫. 茶树新品种‘天府5号’[J]. 园艺学报, 2022, 49(S1): 199-200. |
[12] | 郭丽娜, 王璐, 郝心愿, 祁蒙, 李晓嫚, 王新超, 曾建明. 茶树根系吸收硒的生理特性研究[J]. 园艺学报, 2022, 49(9): 1967-1976. |
[13] | 贡长怡, 刘姣姣, 邓强, 张立新. 茶树炭疽病病原菌鉴定及其致病性分析[J]. 园艺学报, 2022, 49(5): 1092-1101. |
[14] | 张瑞, 张夏燚, 赵婷, 王双成, 张仲兴, 刘博, 张德, 王延秀. 基于转录组分析垂丝海棠响应盐碱胁迫的分子机制[J]. 园艺学报, 2022, 49(2): 237-251. |
[15] | 邓娇, 苏梦月, 刘雪莲, 欧克芳, 户正荣, 杨平仿. 基于转录组分析揭示双色花莲‘大洒锦’花色形成机理[J]. 园艺学报, 2022, 49(2): 365-377. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司