园艺学报 ›› 2023, Vol. 50 ›› Issue (3): 583-595.doi: 10.16420/j.issn.0513-353x.2021-1280
尹健1,2, 朱曦鉴1,2, 吴瑶瑶3, 李灿辉1,*(), 张金喆2,*(
)
收稿日期:
2022-09-19
修回日期:
2022-12-05
出版日期:
2023-03-25
发布日期:
2023-04-03
通讯作者:
*(E-mail:zhangjinzhe@caas.cn,ch2010201@163.com)
基金资助:
YIN Jian1,2, ZHU Xijian1,2, WU Yaoyao3, LI Canhui1,*(), ZHANG Jinzhe2,*(
)
Received:
2022-09-19
Revised:
2022-12-05
Online:
2023-03-25
Published:
2023-04-03
Contact:
*(E-mail:zhangjinzhe@caas.cn,ch2010201@163.com)
摘要:
通过生物信息分析发现,马铃薯miR319基因家族(Stu-miR319)共有3个前体基因,可生成5种成熟序列。序列比对发现,miR319成熟体序列在不同物种间具有高度的保守性,保守位点的分布差异较大。通过构建miR319前体基因的系统演化树发现,Stu-miR319的3个前体基因分属不同分支,且不同物种间的演化关系存在差异。组织特异性表达分析结果表明,Stu-miR319的5种成熟体在叶片中均有高表达。通过构建Stu-miR319前体基因过量表达转基因植株以及转录组测序分析发现,Stu-miR319-5p、Stu-miR319-3p、Stu-miR319a-5p和Stu-miR319b各有4个候选靶基因,Stu-miR319a-3p有2个候选靶基因。通过透射电镜分析发现,在Stu-miR319过量表达的植株中,导管细胞的细胞壁均有降解趋势,说明Stu-miR319基因家族对调控导管细胞细胞壁的完整性具有重要作用。
中图分类号:
尹健, 朱曦鉴, 吴瑶瑶, 李灿辉, 张金喆. 马铃薯miR319基因家族靶基因预测及其功能分析[J]. 园艺学报, 2023, 50(3): 583-595.
YIN Jian, ZHU Xijian, WU Yaoyao, LI Canhui, ZHANG Jinzhe. Targets Prediction and Function Analysis of Potato miR319 Gene Family[J]. Acta Horticulturae Sinica, 2023, 50(3): 583-595.
用途 Usage | 引物名称 Primer name | 序列(5′-3′) Primer sequence | 退火温 度/℃ Tm | 产物大 小/bp Product size | |
---|---|---|---|---|---|
qRT-PCR 内参Reference | miR319-5p | F:AGGAAACTGTTTAGTCCAACC | 53 | 80 | |
miR319-3p | F:TTGGACTGAAGGGTTCCC | 55 | 80 | ||
miR319a-5p | F:AGAGCTTTCTTCGGTCCA | 54 | 80 | ||
miR319a-3p | F:CGTTGGACTGAAGGGAGCTC | 58 | 81 | ||
18S rRNA | F:TTAGAGGAAGGAGAAGTCGTAACAA | 56 | 270 | ||
反向引物 Reverse primer | 参照试剂盒According to the kits | ||||
克隆 | miR319 | F:AGGAAACTGTTTAGTCCAACCC | R:GAAGGGAACCCTTCAGTCCA | 56 | 177 |
Cloning | miR319a | F:AGAGCTTTCTTCGGTCCA | R:AGGGAGCTCCCTTCAGTC | 56 | 172 |
miR319b | F:GAGCTCCTTTCAGGCCAA | R:AGGAGCTCCCTTCAGTCCA | 56 | 173 | |
载体构建 Vector | miR319-infusion | F:GGGGACTCTAGAGGATCCCCGGGAG GAAACTGTTTAGTCCAACCC R:GAGCTGGTCACCAATTCACACGTGGAAGGGAACCCTTCAGTCCA | 60 | 224 | |
construction | miR319a-infusion | F:GGGGACTCTAGAGGATCCCCGGGA GAGCTTTCTTCGGTCCA R:GAGCTGGTCACCAATTCACACGTGAGGGAGCTCCCTTCAGTC | 60 | 219 | |
miR319b-infusion | F:GGGGACTCTAGAGGATCCCCGGGAGCTCCTTTCAGGCCAA R:GAGCTGGTCACCAATTCACACGTGAGGAGCTCCCTTCAGTCCA | 60 | 220 | ||
内参Reference | St-Qp-ACT | F:GGGATGGAGAAGTTTGGTGGTGG | R:CTTCGACCAAGGGATGGTGTAGC | 61 | 166 |
qRT-PCR | 07G023850.1 | F:GTCTACAGGGCGGAAAGACC | R:GCTCATCAATGGCGGGTTTC | 58 | 185 |
03G015060.1 | F:GGAGCCAAGCACCCTTTAGT | R:TGAGCCTCTCTTGGCTTGTG | 59 | 153 | |
03G022350.1 | F:CAAGATTCGAACCGTGTGGC | R:ATGTCCACCCGGTACCTTCA | 59 | 150 | |
07G025630.1 | F:GTCTCATTGATCCAGCGGGT | R:GCTTCAGCGGGGTCAGTAAT | 59 | 154 | |
04G012100 | F:TGCTGATCCCAACGTACGAA | R:ATCAATGTTCGCGCTCCCTT | 59 | 196 | |
02G018740 | F:GGGGATGCTGGATTTATGCCT | R:TGGATCAAGCATTTGCAGCAG | 59 | 171 | |
08G019310 | F:CTTGACAAGGCGGAGTTTGC | R:TCACCACCTCTCTTTGGCAC | 58 | 179 | |
10G001090 | F:CACACAAGGTGTTGTTTGGCA | R:CCTTTCGGCCTTAACCAAGC | 58 | 200 | |
11G005050 | F:TAGCCTCTCATTTGCAAGGGG | R:ACAGCTGAGCTTTCCATGTC | 59 | 190 | |
03G033500 | F:GAGGCCAGAGTCGGAAACAA | R:GGATCTGAACTGCCTTCGGT | 59 | 173 | |
08G015120 | F:AGGTGTCTGGCTCAGGATTC | R:CCATCGTCTTCATCGATGCCT | 60 | 187 | |
01G032600 | F:TGCACTTGCGTATGAAGGCT | R:GTCCACACGCATAGCAGGTA | 60 | 187 | |
06G017770 | F:CCTTCGAAATTCCTCCGGCT | R:CAGCTGCAATCATCGCGAAA | 60 | 186 | |
05G018750 | F:TGGTGGCTCAAAGTGTGTTCT | R:GCACCAAGGGCATTGATTGG | 59 | 172 | |
03G029210 | F:CTCTGCCAAGAGTGGAGCAA | R:GTCTTGCAAGCCCGATACCA | 60 | 165 | |
01G025250 | F:TGCAACGATGATTGCTGTGC | R:CCAACAAGGCCGCACATTAG | 59 | 150 | |
12G005850 | F:ACAGCTGCCTAAGTTGGCTT | R:AGGCATCCAGCTTTCTTGCT | 59 | 194 | |
04G019680 | F:CTATGGTCAATGGAGCGCGA | R:TTCAACAACTGCGCAACCTG | 59 | 181 | |
08G030230 | F:GTGCCAATCTGTGCATCGAC | R:AATGCGAGGGTGCCATAGAC | 59 | 170 | |
08G000520 | F:TGGTGACTGGGACAACACAT | R:TGGTCCAGAGTCCTCGAGTT | 59 | 188 | |
08G015810 | F:TGTCCCGTGGAGAGGTAGAG | R:ATCACCCGAAACACGCTTCA | 59 | 173 | |
03G015040 | F:TTCTATGTGGACGGAACGCC | R:ACTAAAGGGTGCTTGGCTCC | 59 | 168 |
表1 本研究中用到的引物
Table 1 The primers used in this study
用途 Usage | 引物名称 Primer name | 序列(5′-3′) Primer sequence | 退火温 度/℃ Tm | 产物大 小/bp Product size | |
---|---|---|---|---|---|
qRT-PCR 内参Reference | miR319-5p | F:AGGAAACTGTTTAGTCCAACC | 53 | 80 | |
miR319-3p | F:TTGGACTGAAGGGTTCCC | 55 | 80 | ||
miR319a-5p | F:AGAGCTTTCTTCGGTCCA | 54 | 80 | ||
miR319a-3p | F:CGTTGGACTGAAGGGAGCTC | 58 | 81 | ||
18S rRNA | F:TTAGAGGAAGGAGAAGTCGTAACAA | 56 | 270 | ||
反向引物 Reverse primer | 参照试剂盒According to the kits | ||||
克隆 | miR319 | F:AGGAAACTGTTTAGTCCAACCC | R:GAAGGGAACCCTTCAGTCCA | 56 | 177 |
Cloning | miR319a | F:AGAGCTTTCTTCGGTCCA | R:AGGGAGCTCCCTTCAGTC | 56 | 172 |
miR319b | F:GAGCTCCTTTCAGGCCAA | R:AGGAGCTCCCTTCAGTCCA | 56 | 173 | |
载体构建 Vector | miR319-infusion | F:GGGGACTCTAGAGGATCCCCGGGAG GAAACTGTTTAGTCCAACCC R:GAGCTGGTCACCAATTCACACGTGGAAGGGAACCCTTCAGTCCA | 60 | 224 | |
construction | miR319a-infusion | F:GGGGACTCTAGAGGATCCCCGGGA GAGCTTTCTTCGGTCCA R:GAGCTGGTCACCAATTCACACGTGAGGGAGCTCCCTTCAGTC | 60 | 219 | |
miR319b-infusion | F:GGGGACTCTAGAGGATCCCCGGGAGCTCCTTTCAGGCCAA R:GAGCTGGTCACCAATTCACACGTGAGGAGCTCCCTTCAGTCCA | 60 | 220 | ||
内参Reference | St-Qp-ACT | F:GGGATGGAGAAGTTTGGTGGTGG | R:CTTCGACCAAGGGATGGTGTAGC | 61 | 166 |
qRT-PCR | 07G023850.1 | F:GTCTACAGGGCGGAAAGACC | R:GCTCATCAATGGCGGGTTTC | 58 | 185 |
03G015060.1 | F:GGAGCCAAGCACCCTTTAGT | R:TGAGCCTCTCTTGGCTTGTG | 59 | 153 | |
03G022350.1 | F:CAAGATTCGAACCGTGTGGC | R:ATGTCCACCCGGTACCTTCA | 59 | 150 | |
07G025630.1 | F:GTCTCATTGATCCAGCGGGT | R:GCTTCAGCGGGGTCAGTAAT | 59 | 154 | |
04G012100 | F:TGCTGATCCCAACGTACGAA | R:ATCAATGTTCGCGCTCCCTT | 59 | 196 | |
02G018740 | F:GGGGATGCTGGATTTATGCCT | R:TGGATCAAGCATTTGCAGCAG | 59 | 171 | |
08G019310 | F:CTTGACAAGGCGGAGTTTGC | R:TCACCACCTCTCTTTGGCAC | 58 | 179 | |
10G001090 | F:CACACAAGGTGTTGTTTGGCA | R:CCTTTCGGCCTTAACCAAGC | 58 | 200 | |
11G005050 | F:TAGCCTCTCATTTGCAAGGGG | R:ACAGCTGAGCTTTCCATGTC | 59 | 190 | |
03G033500 | F:GAGGCCAGAGTCGGAAACAA | R:GGATCTGAACTGCCTTCGGT | 59 | 173 | |
08G015120 | F:AGGTGTCTGGCTCAGGATTC | R:CCATCGTCTTCATCGATGCCT | 60 | 187 | |
01G032600 | F:TGCACTTGCGTATGAAGGCT | R:GTCCACACGCATAGCAGGTA | 60 | 187 | |
06G017770 | F:CCTTCGAAATTCCTCCGGCT | R:CAGCTGCAATCATCGCGAAA | 60 | 186 | |
05G018750 | F:TGGTGGCTCAAAGTGTGTTCT | R:GCACCAAGGGCATTGATTGG | 59 | 172 | |
03G029210 | F:CTCTGCCAAGAGTGGAGCAA | R:GTCTTGCAAGCCCGATACCA | 60 | 165 | |
01G025250 | F:TGCAACGATGATTGCTGTGC | R:CCAACAAGGCCGCACATTAG | 59 | 150 | |
12G005850 | F:ACAGCTGCCTAAGTTGGCTT | R:AGGCATCCAGCTTTCTTGCT | 59 | 194 | |
04G019680 | F:CTATGGTCAATGGAGCGCGA | R:TTCAACAACTGCGCAACCTG | 59 | 181 | |
08G030230 | F:GTGCCAATCTGTGCATCGAC | R:AATGCGAGGGTGCCATAGAC | 59 | 170 | |
08G000520 | F:TGGTGACTGGGACAACACAT | R:TGGTCCAGAGTCCTCGAGTT | 59 | 188 | |
08G015810 | F:TGTCCCGTGGAGAGGTAGAG | R:ATCACCCGAAACACGCTTCA | 59 | 173 | |
03G015040 | F:TTCTATGTGGACGGAACGCC | R:ACTAAAGGGTGCTTGGCTCC | 59 | 168 |
图1 miR319成熟序列比对 Tae:小麦;Ghr:陆地棉;Osa:水稻;Sly:番茄;Stu:马铃薯;Ath:拟南芥。
Fig. 1 Alignment of the miR319 mature sequences Tae:Triticum aestivum;Ghr:Gossypium hirsutum;Osa:Oryza sativa;Sly:Solanum lycopersicum;Stu:Solanum tuberosum;Ath:Arabidopsis thaliana.
图3 Stu-miR319基因家族在不同组织的表达模式 各组织与根相比,**P ≤ 0.01;***P ≤ 0.001;ns:无差异。下同。
Fig. 3 Tissue-specific expression patterns for Stu-miR319 gene family The tissue is compared to the root,**P ≤ 0.01;***P ≤ 0.001;ns:No significance. The same below.
图4 Stu-miR319过量表达株系成熟体的相对表达量(A ~ C)及其细胞倍性检测(D ~ E) 与野生型相比,*P ≤ 0.05;**P ≤ 0.01;***P ≤ 0.001。下同。
Fig. 4 Relative expression level of Stu-miR319 mature sequences(A-C)and cell ploidy analysis(D-E)for Stu-miR319 overexpression lines Compared to the wild type,*P ≤ 0.05;**P ≤ 0.01;***P ≤ 0.001. The same below.
miRNA名称 miRNA name | 靶基因 Target gene | 功能注释 Function annotation |
---|---|---|
miR319-5p | Soltu.DM.04G019680 | 铵转运体1;2 Ammonium transporter 1;2 |
Soltu.DM.08G030230 | UDP-糖基转移酶家族蛋白 UDP-Glycosyltransferase superfamily protein | |
Soltu.DM.08G000520 | 硝酸盐转运体1.1 Nitrate transporter 1.1 | |
Soltu.DM.08G015810 | 双BRCT结构域蛋白 Twin BRCT domain containing protein | |
miR319-3p | Soltu.DM.05G018750 | 葡萄糖-6-磷酸盐/磷酸盐转运体 Glucose-6-phosphate/phosphate translocator |
Soltu.DM.03G029210 | RPA70-kDa亚单位B RPA70-kDa subunit B | |
Soltu.DM.01G025250 | HCO3转运体家族 HCO3-transporter family | |
Soltu.DM.12G005850 | UDP-葡糖基转移酶73B2 UDP-glucosyltransferase 73B2 | |
miR319a-5p | Soltu.DM.08G019310 | 含有DUF_B2219结构域蛋白 Protein of unknown function(DUF_B2219)domain containing protein |
Soltu.DM.10G001090 | Nudix水解酶同源物 Nudix hydrolase homolog | |
Soltu.DM.11G005050 | 磷酸化酶家族蛋白 Phosphorylase superfamily protein | |
Soltu.DM.03G033500 | 保守的假定蛋白 Conserved hypothetical protein | |
miR319a-3p | Soltu.DM.04G012100 | 含BTB/POZ结构域蛋白 BTB/POZ domain-containing protein |
Soltu.DM.02G018740 | ARM重复家族蛋白 ARM repeat superfamily protein | |
miR319b | Soltu.DM.08G015120 | 类胡萝卜素裂解双加氧酶 Carotenoid cleavage dioxygenase |
Soltu.DM.01G032600 | 含SPX(SYG1/Pho81/XPR1)结构域家族蛋白 Major Facilitator Superfamily with SPX(SYG1/Pho81/XPR1)domain-containing protein | |
Soltu.DM.04G012100 | 含BTB/POZ结构域蛋白 BTB/POZ domain-containing protein | |
Soltu.DM.06G017770 | 硝酸盐转运体1.1 Nitrate transporter 1.1 |
表2 Stu-miR319基因家族候选靶基因及其功能注释
Table 2 Prediction of the candidate targets of Stu-miR319 gene family and their function annotations
miRNA名称 miRNA name | 靶基因 Target gene | 功能注释 Function annotation |
---|---|---|
miR319-5p | Soltu.DM.04G019680 | 铵转运体1;2 Ammonium transporter 1;2 |
Soltu.DM.08G030230 | UDP-糖基转移酶家族蛋白 UDP-Glycosyltransferase superfamily protein | |
Soltu.DM.08G000520 | 硝酸盐转运体1.1 Nitrate transporter 1.1 | |
Soltu.DM.08G015810 | 双BRCT结构域蛋白 Twin BRCT domain containing protein | |
miR319-3p | Soltu.DM.05G018750 | 葡萄糖-6-磷酸盐/磷酸盐转运体 Glucose-6-phosphate/phosphate translocator |
Soltu.DM.03G029210 | RPA70-kDa亚单位B RPA70-kDa subunit B | |
Soltu.DM.01G025250 | HCO3转运体家族 HCO3-transporter family | |
Soltu.DM.12G005850 | UDP-葡糖基转移酶73B2 UDP-glucosyltransferase 73B2 | |
miR319a-5p | Soltu.DM.08G019310 | 含有DUF_B2219结构域蛋白 Protein of unknown function(DUF_B2219)domain containing protein |
Soltu.DM.10G001090 | Nudix水解酶同源物 Nudix hydrolase homolog | |
Soltu.DM.11G005050 | 磷酸化酶家族蛋白 Phosphorylase superfamily protein | |
Soltu.DM.03G033500 | 保守的假定蛋白 Conserved hypothetical protein | |
miR319a-3p | Soltu.DM.04G012100 | 含BTB/POZ结构域蛋白 BTB/POZ domain-containing protein |
Soltu.DM.02G018740 | ARM重复家族蛋白 ARM repeat superfamily protein | |
miR319b | Soltu.DM.08G015120 | 类胡萝卜素裂解双加氧酶 Carotenoid cleavage dioxygenase |
Soltu.DM.01G032600 | 含SPX(SYG1/Pho81/XPR1)结构域家族蛋白 Major Facilitator Superfamily with SPX(SYG1/Pho81/XPR1)domain-containing protein | |
Soltu.DM.04G012100 | 含BTB/POZ结构域蛋白 BTB/POZ domain-containing protein | |
Soltu.DM.06G017770 | 硝酸盐转运体1.1 Nitrate transporter 1.1 |
图9 透射电镜观察结果 A、C、E、G为整个细胞,B、D、F、H为A、C、E、G图箭头部位细胞壁的局部放大。
Fig. 9 Transmission electron microscope analysis for Stu-miR319 overexpression lines A,C,E,G show the whole cells,B,D,F,H show the close-up views of the cell wall.
[1] |
Achkar N P, Cambiagno D A, Manavella P A. 2016. miRNA biogenesis:a dynamic pathway. Trends in Plant Science, 21 (12):1034-1044.
doi: 10.1016/j.tplants.2016.09.003 URL |
[2] |
Bao S, Owens R A, Sun Q, Song H, Liu Y, Eamens A L, Feng H, Tian H, Wang M B, Zhang R. 2019. Silencing of transcription factor encoding gene StTCP 23 by small RNAs derived from the virulence modulating region of potato spindle tuber viroid is associated with symptom development in potato. PLoS Pathogens, 15 (12):e1008110.
doi: 10.1371/journal.ppat.1008110 URL |
[3] |
Bartel D P. 2004. MicroRNAs:genomics,biogenesis,mechanism,and function. Cell, 116 (2):281-297.
doi: 10.1016/s0092-8674(04)00045-5 pmid: 14744438 |
[4] |
Bologna N G, Iselin R, Abriata L A, Sarazin A, Pumplin N, Jay F, Grentzinger T, Peraro M, Voinnet O. 2018. Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway. Molecular Cell, 69 (4):709-719.
doi: 10.1016/j.molcel.2018.01.007 URL |
[5] |
Cao J F, Zhao B, Huang C C, Chen Z W, Zhao T, Liu H R, Hu G J, Shangguan X X, Shan C M, Wang L J. 2020. The miR319-targeted GhTCP4 promotes the transition from cell elongation to wall thickening in cotton fiber. Molecular Plant, 13 (7):1063-1077.
doi: 10.1016/j.molp.2020.05.006 URL |
[6] |
Catala C, Rose J K C, York W S, Albersheim P, Darvill A G, Bennett A B. 2001. Characterization of a Tomato Xyloglucan Endotransglycosylase gene that is down-regulated by auxin in etiolated hypocotyls. Plant Physiology, 127 (3):1180-1192.
doi: 10.1104/pp.010481 URL |
[7] |
Chen X. 2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303 (5666):2022-2025.
doi: 10.1126/science.1088060 URL |
[8] |
Chuck G, Candela H, Hake S. 2009. Big impacts by small RNAs in plant development. Current Opinion in Plant Biology, 12 (1):81-86.
doi: 10.1016/j.pbi.2008.09.008 pmid: 18980858 |
[9] |
Chuck G, O’Connor D. 2010. Small RNAs going the distance during plant development. Current Opinion in Plant Biology, 13 (1):40-45.
doi: 10.1016/j.pbi.2009.08.006 pmid: 19796985 |
[10] | Cosgrove D J. 2005. Growth of the plant cell wall. Nat Rev Mol Cell Biol, 6 (11):850-861. |
[11] |
Gandikota M, Birkenbihl R P, Höhmann S, Cardon G H, Saedler H, Huijser P. 2007. The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. The Plant Journal, 49 (4):683-693.
doi: 10.1111/j.1365-313X.2006.02983.x URL |
[12] | Feng Shuangshuang, Luo Jiayi, Zhu Xijian, Jiang Jibin, Huang Sanwen, Zhang Jinzhe. 2020. Homozygous mutant construction and function analysis of TCP transcription factor StBRC1a in diploid potato. Acta Horticulturae Sinica, 47 (1):63-72. (in Chinese) |
冯爽爽, 罗嘉翼, 朱曦鉴, 蒋继滨, 黄三文, 张金喆. 2020. 二倍体马铃薯StBRC1a功能缺失突变体的获得及其功能分析. 园艺学报, 47 (1):63-72.
doi: 10.16420/j.issn.0513-353x.2019-0275 |
|
[13] |
Jones-Rhoades M W, Bartel D P, Bartel B. 2006. MicroRNAs and their regulatory roles in plants. Annual Review of Plant Biology, 57 (1):19-53.
doi: 10.1146/arplant.2006.57.issue-1 URL |
[14] |
Kim V N. 2005. MicroRNA biogenesis:coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 6 (5):376-385.
doi: 10.1038/nrm1644 |
[15] |
Koyama T, Sato F, Ohme-Takagi M. 2017. Roles of miR319 and TCP transcription factors in leaf development. Plant Physiology, 175 (2):874-885.
doi: 10.1104/pp.17.00732 URL |
[16] |
Lee R C, Feinbaum R L, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75 (5):843-854.
doi: 10.1016/0092-8674(93)90529-y pmid: 8252621 |
[17] |
Li Ying, Meng Xianwei, Ma Zhihang, Liu Mengjun, Zhao Jin. 2022. Identification and expression analysis of microRNA families associated with phase transition in Chinesejujube. Acta Horticulturae Sinica, 49 (1):23-40. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0969 |
李莹, 孟宪巍, 马志航, 刘孟军, 赵锦. 2022. 枣树阶段转变相关microRNA家族的鉴定及其表达分析. 园艺学报, 49 (1):23-40.
doi: 10.16420/j.issn.0513-353x.2020-0969 URL |
|
[18] |
Luo Hongyu, Yang Jiangwei, Feng Ya, Zhang Huanhuan, Liu Shengyan, Zhang Ning, Si Huaijun. 2021. The effect of Stu-miR156 silencing by STTM technology on potato lateral root development. Acta Horticulturae Sinica, 48 (3):531-538. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0230 URL |
罗红玉, 杨江伟, 冯亚, 张欢欢, 刘升燕, 张宁, 司怀军. 2021. STTM 技术沉默马铃薯Stu-miR156对其侧根发育的影响. 园艺学报, 48 (3):531-538.
doi: 10.16420/j.issn.0513-353x.2020-0230 |
|
[19] |
Mao Y, Wu F, Yu X, Bai J, Zhong W, He Y. 2014. MicroRNA319a-targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape in Chinesecabbage by differential cell division arrest in leaf regions. Plant Physiology, 164 (2):710-720.
doi: 10.1104/pp.113.228007 URL |
[20] |
Marmisolle F E, Arizmendi A, Ribo Ne A, Rivarola M, García M, Reyes C A. 2020. Up-regulation of microRNA targets correlates with symptom severity in Citrus sinensis plants infected with two different isolates of citrus psorosis virus. Planta, 251 (1):1-11.
doi: 10.1007/s00425-019-03297-x |
[21] |
Martín-Trillo M, Cubas P. 2010. TCP genes:a family snapshot ten years later. Trends in Plant Science, 15:31-39.
doi: 10.1016/j.tplants.2009.11.003 pmid: 19963426 |
[22] | Nag A, King S, Jack T. 2009. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proceedings of the National Academy of Sciences, 106 (52):22534-22539. |
[23] |
Ori N, Cohen A R, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I. 2007. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nature Genetics, 39 (6):787-791.
doi: 10.1038/ng2036 |
[24] |
Palatnik J F, Allen E, Wu X, Schommer C, Weigel D. 2003. Control of leaf morphogenesis by miRNAs. Nature, 425 (6955):257-263.
doi: 10.1038/nature01958 |
[25] | Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y. 2012. Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Functional & Integrative Genomics, 12 (2):327-339. |
[26] |
Schommer C, Debernardi J M, Bresso E G, Rodriguez R E, Palatnik J F. 2014. Repression of cell proliferation by miR319-regulated TCP4. Molecular Plant, 7 (10):1533-1544.
doi: 10.1093/mp/ssu084 pmid: 25053833 |
[27] |
Song X, Li Y, Cao X, Qi Y. 2019. MicroRNAs and their regulatory roles in plant-rnvironment interactions. Annual Review of Plant Biology, 70:489-525.
doi: 10.1146/arplant.2019.70.issue-1 URL |
[28] |
Su Liyao, Wang Peiyu, Jiang Mengqi, Huang Shuqi, Xue Xiaodong, Liu Mengyu, Xiao Xuechen, Lai Chunwang, Zhang Zihao, Chen Yukun, Lai Zhongxiong, Lin Yuling. 2021. The activity verification of pri-miR319a encode regulatory peptide in Dimocarpus longan. Acta Horticulturae Sinica, 48 (5):908-920. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0579 |
苏立遥, 王培育, 蒋梦琦, 黄倏祺, 薛晓东, 刘梦雨, 肖学宸, 赖春旺, 张梓浩, 陈裕坤, 赖钟雄, 林玉玲. 2021. 龙眼pri-miR319a编码短肽活性的研究. 园艺学报, 48 (5):908-920.
doi: 10.16420/j.issn.0513-353x.2020-0579 URL |
|
[29] |
Sunkar R, Kapoor A, Zhu J K. 2006. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. The Plant Cell, 18 (8):2051-2065.
doi: 10.1105/tpc.106.041673 URL |
[30] |
Tsai H L, Li Y H, Hsieh W P, Lin M C, Ahn J H, Wu S H. 2014. HUA ENHANCER1 is involved in posttranscriptional regulation of positive and negative regulators in Arabidopsis photomorphogenesis. The Plant Cell, 26 (7):2858-2872.
doi: 10.1105/tpc.114.126722 URL |
[31] |
Unver T, Bakar M, Shearman R C, Budak H. 2010. Genome-wide profiling and analysis of Festuca arundinacea miRNAs and transcriptomes in response to foliar glyphosate application. Molecular Genetics and Genomics, 283 (4):397-413.
doi: 10.1007/s00438-010-0526-7 URL |
[32] |
Wang H, Mao Y, Yang J, He Y. 2015. TCP24 modulates secondary cell wall thickening and anther endothecium development. Frontiers in Plant Science, 6:436.
doi: 10.3389/fpls.2015.00436 pmid: 26157444 |
[33] |
Xie Z, Allen E, Fahlgren N, Calamar A, Givan S A, Carrington J C. 2005. Expression of Arabidopsis miRNA genes. Plant Physiology, 138 (4):2145-2154.
doi: 10.1104/pp.105.062943 URL |
[34] |
Yang L, Conway S R, Poethig R S. 2011. Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development, 138 (2):245-249.
doi: 10.1242/dev.058578 pmid: 21148189 |
[35] |
Ye M, Peng Z, Tang D, Yang Z, Li D, Xu Y, Zhang C, Huang S. 2018. Generation of self-compatible diploid potato by knockout of S-RNase. Nature Plants, 4 (9):651-654.
doi: 10.1038/s41477-018-0218-6 |
[36] |
Zhang Qianwen, Yang Xihang, Li Feng, Deng Yingtian. 2022. Advances in miRNA-mediated growth and development regulation in horticultural crops. Acta Horticulturae Sinica, 49 (5):1145-1161. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0380 URL |
张倩雯, 杨希航, 李峰, 邓颖天. 2022. miRNA调控园艺作物生长发育研究进展. 园艺学报, 49 (5):1145-1161.
doi: 10.16420/j.issn.0513-353x.2021-0380 URL |
|
[37] |
Zhao W, Li Z, Fan J, Hu C, Yang R, Qi X, Chen H, Zhao F, Wang S. 2015. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. Journal of Experimental Botany, 66 (15):4653-4667.
doi: 10.1093/jxb/erv238 URL |
[1] | 王 宽, 祁利潘, 吴桂丽, 冯 琰, 王 磊, 尹 江, 罗亚婷, 王 燕, 刘 畅, 龚学臣, 王海军. 中早熟马铃薯新品种‘北方002’[J]. 园艺学报, 2022, 49(S2): 141-142. |
[2] | 祁利潘, 冯 琰, 王 磊, 尹 江, 王 宽, 罗亚婷, 龚学臣, 刘 畅, 王 燕. 马铃薯新品种‘北方004’[J]. 园艺学报, 2022, 49(S2): 143-144. |
[3] | 李燕山, 隋启君, 蒋 伟, 杨琼芬, 白建明. 鲜食、淀粉兼用型马铃薯新品种‘云薯113’[J]. 园艺学报, 2022, 49(S2): 145-146. |
[4] | 邹 雪, 丁 凡, 刘丽芳, 余韩开宗, 陈年伟, 饶莉萍. 紫色马铃薯新品种‘绵紫芋1号’[J]. 园艺学报, 2022, 49(S1): 93-94. |
[5] | 刘朝阳, 廖志婵, 路鑫鑫, 何业华. 菠萝类纤维素合成酶CslD家族基因鉴定及AcoCslD2a功能分析[J]. 园艺学报, 2022, 49(8): 1650-1662. |
[6] | 闫文渊, 秦军红, 段绍光, 徐建飞, 简银巧, 金黎平, 李广存. 水氮耦合对马铃薯光合特性、块茎形成和品质的影响[J]. 园艺学报, 2022, 49(7): 1491-1504. |
[7] | 祁利潘, 李越, 王磊, 冯琰, 王宽, 尹江, 郭华春. 马铃薯与枸杞嫁接愈合过程的解剖学观察[J]. 园艺学报, 2022, 49(4): 868-874. |
[8] | 黄译瑾, 何佳丽, 姜李娜, 曹艳红, 秦嗣军, 吕德国. 果实脆性变化的生理生化研究进展[J]. 园艺学报, 2022, 49(12): 2641-2658. |
[9] | 叶广继, 郑贞贞, 纳添仓, 王舰. 马铃薯资源糖苷生物碱含量评价及合成相关基因表达分析[J]. 园艺学报, 2022, 49(11): 2357-2366. |
[10] | 李莹, 孟宪巍, 马志航, 刘孟军, 赵锦. 枣树阶段转变相关microRNA家族的鉴定及其表达分析[J]. 园艺学报, 2022, 49(1): 23-40. |
[11] | 张晓艺, 洪雨慧, 张媛媛, 栾雨时. Sly-miR166b及其靶基因在番茄抗晚疫病中的作用初探[J]. 园艺学报, 2021, 48(8): 1595-1604. |
[12] | 罗红玉, 杨江伟, 冯亚, 张欢欢, 刘升燕, 张宁, 司怀军. STTM技术沉默马铃薯Stu-miR156对其侧根发育的影响[J]. 园艺学报, 2021, 48(3): 531-538. |
[13] | 宋玉浩, 史伟玲, 张娇, 丁振宇, 彭洪娴, 蒋春燕, 马秋芹, 李芝静, 赵勇, 唐道彬, 张凯, 王季春, 刘勋. 马铃薯块茎淀粉组分高效检测体系的建立及应用[J]. 园艺学报, 2021, 48(3): 600-608. |
[14] | 谢国芳, 刘娜, 宋易, 管春花, 张明生. 菜豆豆荚发育过程中内源激素与细胞壁代谢的关系[J]. 园艺学报, 2021, 48(2): 289-299. |
[15] | 刘程, 王世尧, 史伟玲, 宋玉浩, 蒋锐, 赵勇, 莫世春, 吕典秋, 王季春, 刘勋. 马铃薯抗晚疫病基因R8、RB和抗病毒病基因Rx1、Ryadg的多重PCR检测[J]. 园艺学报, 2021, 48(2): 389-396. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司