园艺学报 ›› 2023, Vol. 50 ›› Issue (1): 209-224.doi: 10.16420/j.issn.0513-353x.2021-1186
葛诗蓓1, 张学宁2, 韩文炎1, 李青云2, 李鑫1,*()
收稿日期:
2022-09-23
修回日期:
2022-11-05
出版日期:
2023-01-25
发布日期:
2023-01-18
通讯作者:
*(E-mail:基金资助:
GE Shibei1, ZHANG Xuening2, HAN Wenyan1, LI Qingyun2, LI Xin1,*()
Received:
2022-09-23
Revised:
2022-11-05
Online:
2023-01-25
Published:
2023-01-18
Contact:
*(E-mail:摘要:
类黄酮是一类具有“黄烷”骨架的数千种衍生产物的次生代谢物质,其生物合成通路错综复杂,部分通路和相关蛋白酶已被解析和鉴定。类黄酮在植物的生长发育、花和果实的品质形成中起到重要作用。研究表明,植物类黄酮在各类胁迫下响应,有效提高了植物应对胁迫的耐性和抗性。本文综述了类黄酮在植物中的生物合成通路和分子调控机制,类黄酮在植物应对不同胁迫时的响应和作用机制,以及类黄酮未来研究的发展方向,以期为定向培育高抗性、具备深加工和产品开发的园艺作物品种提供理论支撑。
中图分类号:
葛诗蓓, 张学宁, 韩文炎, 李青云, 李鑫. 植物类黄酮的生物合成及其抗逆作用机制研究进展[J]. 园艺学报, 2023, 50(1): 209-224.
GE Shibei, ZHANG Xuening, HAN Wenyan, LI Qingyun, LI Xin. Research Progress on Plant Flavonoids Biosynthesis and Their Anti-stress Mechanism[J]. Acta Horticulturae Sinica, 2023, 50(1): 209-224.
图2 类黄酮与单木醇主要合成通路示意图 通路中的数字为相关蛋白酶,见表1。
Fig. 2 The main biosynthesis pathways of flavonoids and monolignin in plants Numbers in the pathway are proteases and listed in Table 1.
编号 No. | 酶 Enzyme | 缩写 Abbreviation | 产物 Production |
---|---|---|---|
1 | 苯丙氨酸解氨酶 Phenylalanine ammonia lyase | PAL | 肉桂酸 Cinnamic acid |
2 | 肉桂酸4-羟化酶 Cinnamic acid 4-hydroxylase | C4H | p-香豆酸 p-Coumaric acid |
3 | 4-香豆酰辅酶A连接酶 4-Coumarinyl-CoA ligase | 4CL | p-香豆酰辅酶;咖啡酰辅酶A p-Coumarinyl-CoA;Caffeoyl-CoA |
4 | 查尔酮合成酶 Chalcone synthase | CHS | 柚皮素查尔酮 Naringenin chalcone |
5 | 查尔酮异构酶 Chalcone isomerase | CHI | 柚皮素 Naringenin |
6 | 异黄酮合酶 Isoflavone synthase | IFS | 异黄酮 Isoflavones |
7 | 黄酮合酶 Flavone synthase | FS | 黄酮 Flavones |
8 | 黄烷酮3-羟化酶Flavanone 3-hydroxylase | F3H | 二氢山萘酚 Dihydrokaempferol |
9 | 黄酮3′-羟化酶 Flavonoid 3′-hydroxylase | F3'H | 二氢槲皮素 Dihydroquercetin |
10 | 黄酮3′5′-羟化酶 Flavonoid 3′5′-hydroxylase | F3'5'H | 二氢杨梅素 Dihydromyricetin |
11 | 二氢黄酮醇还原酶 Dihydroflavonol reductase | DFR | 无色天竺葵素;无色矢车菊素;无色飞燕草素 Leucopelargonidin;Leucocyanidin;Leucodelphinidin |
12 | 花青素合成酶 Anthocyanin synthase | ANS | 天竺葵素;矢车菊素;飞燕草素 Pelargonidin;Cyanidin;Delphinidin |
13 | 花青素还原酶 Afsnthocyanidin reductase | ANR | 表儿茶素;表没食子酸儿茶素 (-)-Epicatechin;(-)-Epigallocatechin |
14 | 无色花色素还原酶 Leucoanthocyanidin reductase | LAR | 儿茶素;没食子酸儿茶素 (+)-Catechin;(+)-Gallocatechin |
15 | 羟基肉桂酰基转移酶 Hydroxycinnamoyl acyltransferase | HCT | 香豆酸;莽草酸 Coumarinic acid;Shikimate acid |
16 | p-香豆酸3羟化酶 p-Coumaric acid 3 hydroxylase | C3H | 香豆酰莽草酸酯 Coumaroyl shikimate |
17 | 咖啡酰莽草酸酯酶 Caffeoyl shikimate esterase | CSE | 咖啡酸 Caffeic acid |
18 | 咖啡酰辅酶A-O-甲基转移酶 Caffeoyl-CoA-O-methyltransferase | CCoAOMT | 阿魏酰辅酶A Feruloyl-CoA |
19 | 香豆酰辅酶A还原酶 Coumarin-CoA reductase | CCR | 对香豆醛;松柏醛 p-Coumaraldehyde;Coniferyl aldehyde |
20 | 肉桂醇脱氢酶Cinnamyl alcohol dehydrogenase | CAD | 对香豆醇;松柏醇 p-Coumaryl alcohol;Coniferyl alcohol |
21 | 阿魏酸5-羟化酶 Ferulic acid 5-hydroxylase | F5H | 5-羟基松香醇 5-Hydroxyconigeryl alcohol |
22 | 咖啡酸O-甲基转移酶 Caffeic acid O-methyltransferase | COMT | 芥子醇 Sinapyl alcohol |
23 | 黄酮醇合成酶 Flavonol synthetase | FLS | 黄酮醇 Flavonols |
表1 植物中参与类黄酮生物合成通路的酶
Table 1 Enzymes that involved in flavonoid biosynthesis pathway in plant
编号 No. | 酶 Enzyme | 缩写 Abbreviation | 产物 Production |
---|---|---|---|
1 | 苯丙氨酸解氨酶 Phenylalanine ammonia lyase | PAL | 肉桂酸 Cinnamic acid |
2 | 肉桂酸4-羟化酶 Cinnamic acid 4-hydroxylase | C4H | p-香豆酸 p-Coumaric acid |
3 | 4-香豆酰辅酶A连接酶 4-Coumarinyl-CoA ligase | 4CL | p-香豆酰辅酶;咖啡酰辅酶A p-Coumarinyl-CoA;Caffeoyl-CoA |
4 | 查尔酮合成酶 Chalcone synthase | CHS | 柚皮素查尔酮 Naringenin chalcone |
5 | 查尔酮异构酶 Chalcone isomerase | CHI | 柚皮素 Naringenin |
6 | 异黄酮合酶 Isoflavone synthase | IFS | 异黄酮 Isoflavones |
7 | 黄酮合酶 Flavone synthase | FS | 黄酮 Flavones |
8 | 黄烷酮3-羟化酶Flavanone 3-hydroxylase | F3H | 二氢山萘酚 Dihydrokaempferol |
9 | 黄酮3′-羟化酶 Flavonoid 3′-hydroxylase | F3'H | 二氢槲皮素 Dihydroquercetin |
10 | 黄酮3′5′-羟化酶 Flavonoid 3′5′-hydroxylase | F3'5'H | 二氢杨梅素 Dihydromyricetin |
11 | 二氢黄酮醇还原酶 Dihydroflavonol reductase | DFR | 无色天竺葵素;无色矢车菊素;无色飞燕草素 Leucopelargonidin;Leucocyanidin;Leucodelphinidin |
12 | 花青素合成酶 Anthocyanin synthase | ANS | 天竺葵素;矢车菊素;飞燕草素 Pelargonidin;Cyanidin;Delphinidin |
13 | 花青素还原酶 Afsnthocyanidin reductase | ANR | 表儿茶素;表没食子酸儿茶素 (-)-Epicatechin;(-)-Epigallocatechin |
14 | 无色花色素还原酶 Leucoanthocyanidin reductase | LAR | 儿茶素;没食子酸儿茶素 (+)-Catechin;(+)-Gallocatechin |
15 | 羟基肉桂酰基转移酶 Hydroxycinnamoyl acyltransferase | HCT | 香豆酸;莽草酸 Coumarinic acid;Shikimate acid |
16 | p-香豆酸3羟化酶 p-Coumaric acid 3 hydroxylase | C3H | 香豆酰莽草酸酯 Coumaroyl shikimate |
17 | 咖啡酰莽草酸酯酶 Caffeoyl shikimate esterase | CSE | 咖啡酸 Caffeic acid |
18 | 咖啡酰辅酶A-O-甲基转移酶 Caffeoyl-CoA-O-methyltransferase | CCoAOMT | 阿魏酰辅酶A Feruloyl-CoA |
19 | 香豆酰辅酶A还原酶 Coumarin-CoA reductase | CCR | 对香豆醛;松柏醛 p-Coumaraldehyde;Coniferyl aldehyde |
20 | 肉桂醇脱氢酶Cinnamyl alcohol dehydrogenase | CAD | 对香豆醇;松柏醇 p-Coumaryl alcohol;Coniferyl alcohol |
21 | 阿魏酸5-羟化酶 Ferulic acid 5-hydroxylase | F5H | 5-羟基松香醇 5-Hydroxyconigeryl alcohol |
22 | 咖啡酸O-甲基转移酶 Caffeic acid O-methyltransferase | COMT | 芥子醇 Sinapyl alcohol |
23 | 黄酮醇合成酶 Flavonol synthetase | FLS | 黄酮醇 Flavonols |
胁迫 Stress | 物种 Species | 类黄酮代谢途径的响应 Reseponse of flavonoid pathway | 参考文献 Reference |
---|---|---|---|
干旱 Drought | 普通小麦 Triticum aestivum | 总酚、黄酮和花青素增加;CHS、CHI、F3H、FNS、FLS、DFR、ANS上调表达The contents of total phenols,flavonoids and anthocyanins,as well as the gene expression of CHS,CHI,F3H,FNS,FLS,DFR and ANS increased | Ma et al., Salehe & Barat-Ali, |
拟南芥 Arabidopsis | 类黄酮合成通路转录因子异源表达显著增强抗旱能力 Heterologous expressing of transcription factors related to flavonoid synthesis pathway significantly enhanced drought resistance of plants | Muhammad et al., | |
大白菜Brassica rapa | 总酚和黄酮含量增加The contents of total phenols and flavonoids increased | Rayhan & Baek, | |
草莓 Fragaria × ananassa | PAL、C4H、4CL、DFR、ANS、FLS和UFGT基因转录水平升高 The expression of PAL,C4H,4CL,DFR,ANS,FLS and UFGT increased | Perin et al., | |
胁迫 Stress | 物种 Species | 类黄酮代谢途径的响应 Reseponse of flavonoid pathway | 参考文献 Reference |
黄瓜 Cucumis sativus | 总酚、香草酸、4-羟基肉桂酸含量增加 Total phenols,vanillic acid and 4-hydroxycinnamic acid increased | Li et al., | |
百里香 Thymus vulgaris | 总黄酮和多酚类物质含量增加 The contents of total flavonoids and polyphenols increased | Khalil et al., | |
葡萄 Vitis vinifera | 儿茶素、表儿茶素、苹果酸、表儿茶素没食子酸酯、山奈酚苷、矢车菊苷、槲皮素苷含量增加;UFGT、CHS和F3H基因上调 The contents of catechin,epicatechin,malic acid,epicatechin gallate,kaempferol glycoside,cyanidin and quercetin glycoside,and the expression of UFGT, CHS and F3H increased | Castellarin et al., Griesser et al., | |
盐Salt | 藜麦 Chenopodium quinoa | 总酚和类黄酮含量增加 The contents of total flavonoids and polyphenols increased | Aloisi et al., |
烟草 Nicotiana langsdorffii | CHS基因过表达植株显著提高对盐的耐受性 Over-expression of CHS significantly improved salt tolerance of plants | Chen et al., | |
油橄榄 Olea europaea | 总酚、甘露醇、槲皮素含量增加;PAL、C4H、4Cl、CHS和CHI转录水平升高 The contents of total polyphenols,mannitol and quercetinflavonoids,and the expression of PAL,C4H,4CL,CHS and CHI increased | Rossi et al., | |
高温Heat | 扁豆 Lens culinaris | 没食子酸、水杨酸、绿原酸、阿魏酸和柚皮素含量增加 The contents of gallic acids,salicylic acid,chlorogenic acid,ferulic acid and naringenin increased | Swieca, |
烟草 Nicotiana langsdorffii | 香豆酸、绿原酸、阿魏酸含量增加 The contents of coumaric acid,chlorogenic acid and ferulic acid increased | Ancillotti et al., | |
红豆 Vigna angularis | 花青素和黄酮含量增加The contents of anthocyanins and flavones increased | Zlotek et al., | |
番茄 Solanum lycopersicon | 黄酮醇含量增加 The flavonols content increased. | Martinez et al., | |
茶树 Camellia sinensis | 儿茶素含量增加;C4H、F3H、DFR和ANR表达上调 The catechin content and the expression of C4H,F3H,DFR and ANR increased | Li et al., | |
低温Cold | 烟草 Nicotiana langsdorffii | 木质素含量增加;PAL、HCT和CAD基因上调表达 The lignins content and the expression of PAL,HCT and CAD increased | Zhou et al., |
桃树 Prunus persica | 儿茶素、槲皮素苷、山奈酚等多酚类含量增加;PAL、C4H、4Cl、CHI等酶活性升高 The contents of polyphenols such as catechin,quercetin and kaempferol,and the enzyme activity of PAL,C4H,4Cl and CHI increased | Wang et al., | |
紫外辐射 UV-B | 绿豆 Vigna radiata | 总黄酮含量增加;PAL、CHI酶活增加 The total flavones content and the enzyme activity of PAL and CHI increased. | Goyal et al., |
杨梅 Arbutus unedo | 茶黄素、阿魏酸苷、胡桃苷含量增加 The contents of theaflavins,ferulide and juglandin increased | Nenadis et al., | |
莴苣 Lactuca sativa | 类黄酮,酚酸类物质含量增加;PAL酶活提高 The contents of flavonoids and phenolic acids and the enzyme activity of PAL increased | Lee et al., Sytar et al., | |
葡萄 Vitis vinifera | 黄烷醇、槲皮素、山奈酚、杨梅素、没食子酸等含量增加 The contents of flavanols,quercetin,kaempfero,myricetin and gallic acid increased | Berli et al., Alonso et al., | |
草莓 Fragaria × ananassa | 山奈酚、矢车菊苷、天竺葵苷、槲皮素含量增加;CHS、CHI、FHT、DFR、FLS和UFGT基因上调表达 The contents of kaempferol,cyanidin,geranin and quercetin,and the expression of CHS,CHI,FHT,DFR,FLS and UFGT increased | Xu et al., | |
砷As | 茶树 Camellia sinensis | 花青素含量增加;PAL、CHS酶活增加;PAL、CHS、CHI、F3H、DFR、ANS基因上调表达 The anthocyanins content,the enzyme activity of PAL and CHS,as well as the expression of PAL,CHS,CHI,F3H,DFR and ANS increased | Li et al., |
铜,铅,镉,锌, 镍Cu,Pb,Cd, Zn,Ni | 玉米 Zea mays | 绿原酸、香草酸等多酚类物质和黄酮的含量增加 The contents of flavones and polyphenols such as chlorogenic acid and vanillic acid increased | Kisa et al., AbdElgawad et al., |
铝Al | 荞麦 Fagopyrum esculentum | 总酚、黄酮和花青素含量增加;PAL酶活性提高 The contents of total polyphenols,flavones and anthocyanins,and the enzyme activity of PAL increased | Smirnov et al., |
铜,铬,镉,铅 Cu,Cr,Cd,Pb | 芥菜 Brassica juncea | 花青素、类黄酮、多酚含量增加;PAL、CHS基因上调 The contents of anthocyanins,flavonoids and polyphenols,and the expression of PAL and CHS increased | Poonam et al., Kaur et al., Handa et al., Kohli et al., |
铜Cu | 葡萄 Vitis vinifera | PAL、C4H、CHS、F3H、DFR转录水平升高,UFGT和ANR转录水平降低 The transcripts of PAL,C4H,CHS,F3H and DFR increased,while UFGT and ANR decreased | Leng et al., |
表2 植物类黄酮代谢途径对非生物胁迫的响应
Table 2 Response of plant flavonoid pathway to abiotic stress
胁迫 Stress | 物种 Species | 类黄酮代谢途径的响应 Reseponse of flavonoid pathway | 参考文献 Reference |
---|---|---|---|
干旱 Drought | 普通小麦 Triticum aestivum | 总酚、黄酮和花青素增加;CHS、CHI、F3H、FNS、FLS、DFR、ANS上调表达The contents of total phenols,flavonoids and anthocyanins,as well as the gene expression of CHS,CHI,F3H,FNS,FLS,DFR and ANS increased | Ma et al., Salehe & Barat-Ali, |
拟南芥 Arabidopsis | 类黄酮合成通路转录因子异源表达显著增强抗旱能力 Heterologous expressing of transcription factors related to flavonoid synthesis pathway significantly enhanced drought resistance of plants | Muhammad et al., | |
大白菜Brassica rapa | 总酚和黄酮含量增加The contents of total phenols and flavonoids increased | Rayhan & Baek, | |
草莓 Fragaria × ananassa | PAL、C4H、4CL、DFR、ANS、FLS和UFGT基因转录水平升高 The expression of PAL,C4H,4CL,DFR,ANS,FLS and UFGT increased | Perin et al., | |
胁迫 Stress | 物种 Species | 类黄酮代谢途径的响应 Reseponse of flavonoid pathway | 参考文献 Reference |
黄瓜 Cucumis sativus | 总酚、香草酸、4-羟基肉桂酸含量增加 Total phenols,vanillic acid and 4-hydroxycinnamic acid increased | Li et al., | |
百里香 Thymus vulgaris | 总黄酮和多酚类物质含量增加 The contents of total flavonoids and polyphenols increased | Khalil et al., | |
葡萄 Vitis vinifera | 儿茶素、表儿茶素、苹果酸、表儿茶素没食子酸酯、山奈酚苷、矢车菊苷、槲皮素苷含量增加;UFGT、CHS和F3H基因上调 The contents of catechin,epicatechin,malic acid,epicatechin gallate,kaempferol glycoside,cyanidin and quercetin glycoside,and the expression of UFGT, CHS and F3H increased | Castellarin et al., Griesser et al., | |
盐Salt | 藜麦 Chenopodium quinoa | 总酚和类黄酮含量增加 The contents of total flavonoids and polyphenols increased | Aloisi et al., |
烟草 Nicotiana langsdorffii | CHS基因过表达植株显著提高对盐的耐受性 Over-expression of CHS significantly improved salt tolerance of plants | Chen et al., | |
油橄榄 Olea europaea | 总酚、甘露醇、槲皮素含量增加;PAL、C4H、4Cl、CHS和CHI转录水平升高 The contents of total polyphenols,mannitol and quercetinflavonoids,and the expression of PAL,C4H,4CL,CHS and CHI increased | Rossi et al., | |
高温Heat | 扁豆 Lens culinaris | 没食子酸、水杨酸、绿原酸、阿魏酸和柚皮素含量增加 The contents of gallic acids,salicylic acid,chlorogenic acid,ferulic acid and naringenin increased | Swieca, |
烟草 Nicotiana langsdorffii | 香豆酸、绿原酸、阿魏酸含量增加 The contents of coumaric acid,chlorogenic acid and ferulic acid increased | Ancillotti et al., | |
红豆 Vigna angularis | 花青素和黄酮含量增加The contents of anthocyanins and flavones increased | Zlotek et al., | |
番茄 Solanum lycopersicon | 黄酮醇含量增加 The flavonols content increased. | Martinez et al., | |
茶树 Camellia sinensis | 儿茶素含量增加;C4H、F3H、DFR和ANR表达上调 The catechin content and the expression of C4H,F3H,DFR and ANR increased | Li et al., | |
低温Cold | 烟草 Nicotiana langsdorffii | 木质素含量增加;PAL、HCT和CAD基因上调表达 The lignins content and the expression of PAL,HCT and CAD increased | Zhou et al., |
桃树 Prunus persica | 儿茶素、槲皮素苷、山奈酚等多酚类含量增加;PAL、C4H、4Cl、CHI等酶活性升高 The contents of polyphenols such as catechin,quercetin and kaempferol,and the enzyme activity of PAL,C4H,4Cl and CHI increased | Wang et al., | |
紫外辐射 UV-B | 绿豆 Vigna radiata | 总黄酮含量增加;PAL、CHI酶活增加 The total flavones content and the enzyme activity of PAL and CHI increased. | Goyal et al., |
杨梅 Arbutus unedo | 茶黄素、阿魏酸苷、胡桃苷含量增加 The contents of theaflavins,ferulide and juglandin increased | Nenadis et al., | |
莴苣 Lactuca sativa | 类黄酮,酚酸类物质含量增加;PAL酶活提高 The contents of flavonoids and phenolic acids and the enzyme activity of PAL increased | Lee et al., Sytar et al., | |
葡萄 Vitis vinifera | 黄烷醇、槲皮素、山奈酚、杨梅素、没食子酸等含量增加 The contents of flavanols,quercetin,kaempfero,myricetin and gallic acid increased | Berli et al., Alonso et al., | |
草莓 Fragaria × ananassa | 山奈酚、矢车菊苷、天竺葵苷、槲皮素含量增加;CHS、CHI、FHT、DFR、FLS和UFGT基因上调表达 The contents of kaempferol,cyanidin,geranin and quercetin,and the expression of CHS,CHI,FHT,DFR,FLS and UFGT increased | Xu et al., | |
砷As | 茶树 Camellia sinensis | 花青素含量增加;PAL、CHS酶活增加;PAL、CHS、CHI、F3H、DFR、ANS基因上调表达 The anthocyanins content,the enzyme activity of PAL and CHS,as well as the expression of PAL,CHS,CHI,F3H,DFR and ANS increased | Li et al., |
铜,铅,镉,锌, 镍Cu,Pb,Cd, Zn,Ni | 玉米 Zea mays | 绿原酸、香草酸等多酚类物质和黄酮的含量增加 The contents of flavones and polyphenols such as chlorogenic acid and vanillic acid increased | Kisa et al., AbdElgawad et al., |
铝Al | 荞麦 Fagopyrum esculentum | 总酚、黄酮和花青素含量增加;PAL酶活性提高 The contents of total polyphenols,flavones and anthocyanins,and the enzyme activity of PAL increased | Smirnov et al., |
铜,铬,镉,铅 Cu,Cr,Cd,Pb | 芥菜 Brassica juncea | 花青素、类黄酮、多酚含量增加;PAL、CHS基因上调 The contents of anthocyanins,flavonoids and polyphenols,and the expression of PAL and CHS increased | Poonam et al., Kaur et al., Handa et al., Kohli et al., |
铜Cu | 葡萄 Vitis vinifera | PAL、C4H、CHS、F3H、DFR转录水平升高,UFGT和ANR转录水平降低 The transcripts of PAL,C4H,CHS,F3H and DFR increased,while UFGT and ANR decreased | Leng et al., |
病原物分类 Classification of pathogen | 病原物名称 Name of pathogen | 物种 Species | 类黄酮代谢途径的响应 Response of flavonoid pathway | 参考文献 Reference |
---|---|---|---|---|
真菌 Fungus | 异螺旋孢腔菌 Cochliobolus heterostrophus | 高粱 Sorghum bicolor | 花青素合成受到抑制 The synthesis of anthocyanins was inhibited | Lo & Nicholson, |
禾谷镰刀菌 Fusarium graminearum | 小麦 Triticum aestivum | 类黄酮积累 Flavonoids was accumulated. | Ravensdale et al., | |
茄镰孢菌 Nectria haematococca 大豆疫霉菌 Phytophthora sojae | 豌豆Pisum sativum 紫花苜蓿Medicago sativa 苜蓿Medicago truncatula 鹰嘴豆Cicer arietinum 大豆Glycine max | 豆科植物特异性合成异黄酮衍生物蝶形烷 ‘Butterfly alkane’,an isoflavone derivative,was specifically synthesized by legume | Liu et al., Subramanian et al., | |
链格孢霉 Alternaria alternata | 草莓 Fragaria × ananassa | 儿茶素在叶片中合成并抑制菌丝形成 Catechins were synthesized in leaves and inhibited mycelium formation | Yamamoto et al., | |
锈病真菌 Melampsora laricipopulina | 杨树 Populus L. | 黄烷-3-醇积累 Flavan-3-ols were accumulated | Ullah et al., | |
胶锈菌 Gymnosporangium yamadai Miyabe | 苹果 Malus × domestica | 儿茶素、花青素在病斑部积累 Catechins and anthocyanins was accumulated in disease spots | Lu et al., | |
细菌 Bacteria | 白叶枯萎病菌 Xanthomonas oryzae pv. Oryzae | 水稻 Oryza sativa | 芦丁处理激活了水杨酸信号通路 Exogenous rutin activated salicylic acid signaling pathway | Yang et al., |
丁香假单胞菌 Pst DC3000 | 拟南芥 Arabidopsis | 花青素合成受到抑制;CHS、CHI、FLS下调表达 The synthesis of anthocyanins and the expression of CHS,CHI and FLS were inhibited | Saijo et al., Schenke et al., | |
炭疽菌 Colletotrichum gloeosporioides | 高粱 Sorghum bicolor | 木犀草素在高抗品种中积累 Luteolin was accumulated in high-resistant varieties | Du et al., | |
念珠菌 Candidatus liberibacter | 甜橙 Citrus sinensis | 黄酮苷、聚甲氧基黄酮、羟基肉桂酸酯在抗病品种中积累 Flavonoids,polymethoxyflavone and hydroxycinnamate were accumulated in resistant varieties | Hijaz et al., | |
害虫 Insect | 斜纹夜盗蛾 Spodoptera litura 棉铃虫Helicoverpa armigera | 烟草 Nicotiana tabacum | 黄酮醇在AtMYB12过表达植株中积累 Flavonols were accumulated in AtMYB12-overexpressed plants | Misra et al., |
大豆夜蛾 Anticarsia gemmatalis | 大豆 Glycine max | 槲皮素和山奈酚含量增加 Quercetin and kaempferol were accumulated | Gómez et al., |
表3 植物类黄酮代谢途径对生物胁迫的响应
Table 3 Response of plant flavonoid pathway to biotic stress
病原物分类 Classification of pathogen | 病原物名称 Name of pathogen | 物种 Species | 类黄酮代谢途径的响应 Response of flavonoid pathway | 参考文献 Reference |
---|---|---|---|---|
真菌 Fungus | 异螺旋孢腔菌 Cochliobolus heterostrophus | 高粱 Sorghum bicolor | 花青素合成受到抑制 The synthesis of anthocyanins was inhibited | Lo & Nicholson, |
禾谷镰刀菌 Fusarium graminearum | 小麦 Triticum aestivum | 类黄酮积累 Flavonoids was accumulated. | Ravensdale et al., | |
茄镰孢菌 Nectria haematococca 大豆疫霉菌 Phytophthora sojae | 豌豆Pisum sativum 紫花苜蓿Medicago sativa 苜蓿Medicago truncatula 鹰嘴豆Cicer arietinum 大豆Glycine max | 豆科植物特异性合成异黄酮衍生物蝶形烷 ‘Butterfly alkane’,an isoflavone derivative,was specifically synthesized by legume | Liu et al., Subramanian et al., | |
链格孢霉 Alternaria alternata | 草莓 Fragaria × ananassa | 儿茶素在叶片中合成并抑制菌丝形成 Catechins were synthesized in leaves and inhibited mycelium formation | Yamamoto et al., | |
锈病真菌 Melampsora laricipopulina | 杨树 Populus L. | 黄烷-3-醇积累 Flavan-3-ols were accumulated | Ullah et al., | |
胶锈菌 Gymnosporangium yamadai Miyabe | 苹果 Malus × domestica | 儿茶素、花青素在病斑部积累 Catechins and anthocyanins was accumulated in disease spots | Lu et al., | |
细菌 Bacteria | 白叶枯萎病菌 Xanthomonas oryzae pv. Oryzae | 水稻 Oryza sativa | 芦丁处理激活了水杨酸信号通路 Exogenous rutin activated salicylic acid signaling pathway | Yang et al., |
丁香假单胞菌 Pst DC3000 | 拟南芥 Arabidopsis | 花青素合成受到抑制;CHS、CHI、FLS下调表达 The synthesis of anthocyanins and the expression of CHS,CHI and FLS were inhibited | Saijo et al., Schenke et al., | |
炭疽菌 Colletotrichum gloeosporioides | 高粱 Sorghum bicolor | 木犀草素在高抗品种中积累 Luteolin was accumulated in high-resistant varieties | Du et al., | |
念珠菌 Candidatus liberibacter | 甜橙 Citrus sinensis | 黄酮苷、聚甲氧基黄酮、羟基肉桂酸酯在抗病品种中积累 Flavonoids,polymethoxyflavone and hydroxycinnamate were accumulated in resistant varieties | Hijaz et al., | |
害虫 Insect | 斜纹夜盗蛾 Spodoptera litura 棉铃虫Helicoverpa armigera | 烟草 Nicotiana tabacum | 黄酮醇在AtMYB12过表达植株中积累 Flavonols were accumulated in AtMYB12-overexpressed plants | Misra et al., |
大豆夜蛾 Anticarsia gemmatalis | 大豆 Glycine max | 槲皮素和山奈酚含量增加 Quercetin and kaempferol were accumulated | Gómez et al., |
[1] |
AbdElgawad H, Zinta G, Badreldin A H, Selim S, Beemster G, Hozzein W N, Wadaan M A M, Asard H, Abuelsoud W. 2020. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity. Environmental Pollution, 258:113705.
doi: 10.1016/j.envpol.2019.113705 URL |
[2] |
Agati G, Cerovic Z G, Pinelli P, Tattini M. 2011. Light-induced accumulation of ortho-dihydroxylated flavonoids as non-destructively monitored by chlorophyll fluorescence excitation techniques. Environmental and Experimental Botany, 73:3-9.
doi: 10.1016/j.envexpbot.2010.10.002 URL |
[3] |
Agati G, Tattini M. 2010. Multiple functional roles of flavonoids in photoprotection. New Phytologist, 186:786-793.
doi: 10.1111/j.1469-8137.2010.03269.x pmid: 20569414 |
[4] |
Aloisi I, Parrotta L, Ruiz K B, Landi C, Bini L, Cai G, Biondi S, del Duca S. 2016. New insight into quinoa seed quality under salinity:changes in proteomic and amino acid profiles,phenolic content,and antioxidant activity of protein extracts. Frontiers in Plant Science, 7:656.
doi: 10.3389/fpls.2016.00656 pmid: 27242857 |
[5] |
Alonso R, Berli F J, Fontana A, Piccoli P, Bottini R. 2016. Malbec grape(Vitis vinifera L.)responses to the environment:berry phenolics as influenced by solar UV-B,water deficit and sprayed abscisic acid. Plant Physiology and Biochemistry, 109:84-90.
doi: 10.1016/j.plaphy.2016.09.007 URL |
[6] |
Ancillotti C, Bogani P, Biricolti S, Calistri E, Checchini L, Ciofi L, Gonnelli C, del Bubba M. 2015. Changesin polyphenol and sugar concentrations in wild type and genetically modified Nicotiana langsdorffii Weinmann in response to water and heat stress. Plant Physiology and Biochemistry, 97:52-61.
doi: 10.1016/j.plaphy.2015.09.012 pmid: 26410575 |
[7] |
Auguy F, Abdel-Lateif K, Doumas P, Badin P, Guerin V, Bogusz D, Hocher V. 2011. Activation of the isoflavonoid pathway in actinorhizal symbioses. Functional Plant Biology, 38 (9):690-696.
doi: 10.1071/FP11014 pmid: 32480924 |
[8] |
Balakrishnan P, Laura G P. 2007. Chemical facilitation and induced pathogen resistance mediated by a root-secreted phytotoxin. New Phytologist, 173:852-860.
doi: 10.1111/j.1469-8137.2006.01964.x pmid: 17286833 |
[9] |
Berli F J, Fanzone M, Piccoli P, Bottini R. 2011. Solar UV-B and ABA are involved in phenol metabolism of Vitis vinifera L. increasing biosynthesis of berry skin polyphenols. Journal of Agricultural and Food Chemistry, 59:4874-4884.
doi: 10.1021/jf200040z URL |
[10] |
Bhuiyan N H, Selvaraj G, Wei Y, King J. 2009. Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. Journal of Experimental Botany, 60:509-521.
doi: 10.1093/jxb/ern290 pmid: 19039100 |
[11] |
Bonar N, Liney M, Zhang R X, Austin C, Dessoly J, Davidson D, Stephens J, McDougall G, Taylor M, Bryan G J, Hornyik C. 2018. Potato miR828 is associated with purple tuber skin and flesh color. Frontiers in Plant Science, 9:1742.
doi: 10.3389/fpls.2018.01742 pmid: 30619382 |
[12] |
Brown D E, Rashotte A M, Murphy A S, Normanly J, Tague B W, Peer W A, Taiz L, Muday G K. 2001. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiology, 126:524-535.
doi: 10.1104/pp.126.2.524 pmid: 11402184 |
[13] |
Castellarin S D, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, Di Gaspero G. 2007. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell and Environment, 30:1381-1399.
doi: 10.1111/j.1365-3040.2007.01716.x pmid: 17897409 |
[14] | Chen Hui-ze, Han Rong. 2015. Plants respond to UV-B radiation:a review. Chinese Bulletin of Botany, 50 (6):790-801. (in Chinese) |
陈慧泽, 韩榕. 2015. 植物响应UV-B辐射的研究进展. 植物学报, 50 (6):790-801.
doi: 10.11983/CBB14176 |
|
[15] |
Chen S, Wu F Y, Li Y T, Qian Y L, Pan X H, Li F X, Wang Y Y, Wu Z Y, Fu C X, Lin H, Yang A G. 2019. NtMYB4 and NtCHS 1 are critical factors in the regulation of flavonoid biosynthesis and are involved in salinity responsiveness. Frontiers in Plant Science, 10:178.
doi: 10.3389/fpls.2019.00178 URL |
[16] |
Cheng A X, Han X J, Wu Y F, Lou H X. 2014. The function and catalysis of 2-oxoglutarate-dependent oxygenases involved in plant flavonoid biosynthesis. International Journal of Molecular Sciences, 15:1080-1095.
doi: 10.3390/ijms15011080 URL |
[17] | Das K, Roychoudhury A. 2014. Reactive oxygen species(ROS)and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2:53. |
[18] |
Dastmalchi M, Dhaubhadel S. 2015. Proteomic insights into synthesis of isoflavonoids in soybean seeds. Proteomics, 15:1646-1657.
doi: 10.1002/pmic.201400444 pmid: 25757747 |
[19] | Davies K M, Albert N W, Zhou Y, Schwinn K E. 2018. Functions of flavonoid and betalain pigments in abiotic stress tolerance in plants. Annual Review of Plant Biology, 1:1-41. |
[20] |
Du Y G, Chu H, Wang M F, Ivan K C, Lo C. 2010. Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene(SbFNSII)in Sorghum. Journal of Experimental Botany, 61 (4):983-994.
doi: 10.1093/jxb/erp364 URL |
[21] |
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science, 15:573-581.
doi: 10.1016/j.tplants.2010.06.005 URL |
[22] | Falcone F M L, Rius S P, Casati P. 2012. Flavonoids:biosynthesis,biological functions,and biotechnological applications. Frontiers in Plant Science, 3:222. |
[23] |
Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. 2018. Antibacterial activity of flavonoids and their structure-activity relationship:an update review. Phytotherapy Research, 33:13-40.
doi: 10.1002/ptr.6208 URL |
[24] |
Fornalé S, Lopez E, Salazar-Henao J E, Fernández-Nohales P, Rigau J, Caparros-Ruiz D. 2014. AtMYB7,a new player in the regulation of UV-sunscreens in Arabidopsis thaliana. Plant Cell Physiology, 55:507-516.
doi: 10.1093/pcp/pct187 URL |
[25] |
Foyer C H. 2020. How plant cells sense the outside world through hydrogen peroxide. Nature, 578:518-519.
doi: 10.1038/d41586-020-00403-y URL |
[26] |
Foyer C H, Noctor G. 2005. Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. Plant Cell, 17:1866-1875.
doi: 10.1105/tpc.105.033589 URL |
[27] |
Gill S S, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48:909-930.
doi: 10.1016/j.plaphy.2010.08.016 pmid: 20870416 |
[28] |
Gómez J D, VitalID C E, Oliveira M G A, Ramos H J O. 2018. Broad range flavonoid profiling by LC/MS of soybean genotypes contrasting for resistance to Anticarsia gemmatalis(Lepidoptera:Noctuidae). PLoS ONE, 13(10):e0205010.
doi: 10.1371/journal.pone.0205010 URL |
[29] |
Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant Journal, 53:814-827.
doi: 10.1111/j.1365-313X.2007.03373.x URL |
[30] |
Górniak I, Bartoszewski R, Króliczewski J. 2019. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews, 18:241-272.
doi: 10.1007/s11101-018-9591-z |
[31] |
Goyal A, Siddiqui S, Upadhyay N, Soni J. 2014. Effects of ultraviolet irradiation,pulsed electric field,hot water and ethanol vapours treatment on functional properties of mung bean sprouts. Journal of Food Science and Technology, 51:708-714.
doi: 10.1007/s13197-011-0538-2 URL |
[32] |
Griesser M, Weingart G, Schoedl-Hummel K, Neumann N, Becker M, Varmuza K, Liebner F, Schuhmacher R, Forneck A. 2015. Severe drought stress is affecting selected primary metabolites,polyphenols,and volatile metabolites in grapevine leaves(Vitis vinifera cv. Pinot Noir). Plant Physiology and Biochemistry, 88:17-26.
doi: 10.1016/j.plaphy.2015.01.004 URL |
[33] |
Hamed R R, Maharem T M, Guneidy R A, Emam M A, Karim G S A A. 2019. Purification of fat body glutathione S-transferase from the desert locust Schistocerca gregaria:investigation of flavonoid inhibitory effects on enzyme activity. Physiological Entomology, 44:187-199.
doi: 10.1111/phen.12289 URL |
[34] | Handa N, Kohli S K, Sharma A, Thukral A K, Bhardwaj R, Abd-Allah E F, Alqarawi A A, Ahmad P. 2019. Selenium modulates dynamics of antioxidative defence expression,photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environmental and Experimental Botany, 161:180-192. |
[35] |
Havaux M, Kloppstech K. 2001. The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta, 213:953-966.
doi: 10.1007/s004250100572 URL |
[36] |
Hernández I, Alegre L, van Breusegem F, Munne-Bosch S. 2009. How relevant are flavonoids as antioxidants in plants? Trends in Plant Science, 14:125-132.
doi: 10.1016/j.tplants.2008.12.003 pmid: 19230744 |
[37] |
Hijaz F M, Manthey J A, Folimonova S Y, Davis C L, Jones S E, Reyes-De-Corcuera J I. 2013. An HPLC-MS characterization of the changes in sweet orange leaf metabolite profile following infection by the bacterial pathogen Candidatus Liberibacter asiaticus. PLoS ONE, 8:e79485.
doi: 10.1371/journal.pone.0079485 URL |
[38] | Hong Yan, Wu Yuwei, Song Xiang, Li Mengling, Dai Silan. 2021. Molecular mechanism of light-induced anthocyanin biosynthesis in horticultural crops. Acta Horticulturae Sinica, 48 (10):1983-2000. (in Chinese) |
洪艳, 武宇薇, 宋想, 李梦灵, 戴思兰. 2021. 光照调控园艺作物花青素苷生物合成的分子机制. 园艺学报, 48 (10):1983-2000. | |
[39] |
Iwakawa H O, Tomari Y. 2015. The functions of microRNAs:mRNA decay and translational repression. Trends in Cell Biology, 25:651-665.
doi: 10.1016/j.tcb.2015.07.011 URL |
[40] |
Jenkins G I. 2014. The UV-B photoreceptor UVR8:from structure to physiology. Plant Cell, 26(1):21-37.
doi: 10.1105/tpc.113.119446 URL |
[41] |
Jenkins G I. 2017. Photomorphogenic responses to ultraviolet-B light. Plant Cell and Environment, 40:2544-2557.
doi: 10.1111/pce.12934 URL |
[42] |
Jia Z, Zou B, Wang X, Qiu J, Ma H, Gou Z, Song S, Dong H. 2010. Quercetin-induced H2O2mediates the pathogen resistance against Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 396(2):522-527.
doi: 10.1016/j.bbrc.2010.04.131 URL |
[43] |
Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C. 2000. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. The EMBO Journal, 19:6150-6161.
doi: 10.1093/emboj/19.22.6150 URL |
[44] | Jin Y S. 2019. Recent advances in natural antifungal flavonoids and their derivatives. Bioorganic & Medicinal Chemistry Letters, 29:12658. |
[45] |
Kaur P, Bali S, Sharma A, Vig A P, Bhardwaj R. 2017. Effect of earthworms on growth,photosynthetic efficiency and metal uptake in Brassica juncea L. plants grown in cadmium-polluted soils. Environmental Science and Pollution Research, 24:13452-13465.
doi: 10.1007/s11356-017-8947-z URL |
[46] |
Khalil N, Fekry M, Bishr M, El-Zalabani S, Salama O. 2018. Foliar spraying of salicylic acid induced accumulation of phenolics,increased radical scavenging activity and modified the composition of the essential oil of water stressed Thymus vulgaris L. Plant Physiology and Biochemistry, 123:65-74.
doi: S0981-9428(17)30400-X pmid: 29223848 |
[47] |
Kisa D, Elmasta S M, Öztürk L, Kayır Ö. 2016. Responses of the phenolic compounds of Zea mays under heavy metal stress. Applied Biological Chemistry, 59:813-820.
doi: 10.1007/s13765-016-0229-9 URL |
[48] |
Kishi-Kaboshi M, Okada K, Kurimoto L, Murakami S, Umezawa T, Shibuya N, Yamane H, Miyao A, Takatsuji H, Takahashi A, Hirochika H. 2010. A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant Journal, 63:599-612.
doi: 10.1111/j.1365-313X.2010.04264.x URL |
[49] |
Kohli S K, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Wijaya L, Alyemeni M N, Ahmad P. 2018. Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents,antioxidative defense responses,and gene expression in Brassica juncea L. seedlings under Pb stress. Environmental Science and Pollution Research, 25:15159-15173.
doi: 10.1007/s11356-018-1742-7 URL |
[50] |
Kolb C A, Kaser M A, Kopecky J, Zotz G, Riederer M, Pfundel E E. 2001. Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiology, 127 (3):863-875.
pmid: 11706169 |
[51] |
Landi M, Tattini M, Gould K S. 2015. Multiple functional roles of anthocyanins in plant-environment interactions. Environmental and Experimental Botany, 119:4-17.
doi: 10.1016/j.envexpbot.2015.05.012 URL |
[52] |
Le R J, Huss B, Creach A, Hawkins S, Neutelings G. 2016. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science, 7:735.
doi: 10.3389/fpls.2016.00735 pmid: 27303427 |
[53] |
Lee M J, Son J E, Oh M M. 2014. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A,-B,or -C lamp. Journal of the Science of Food and Agriculture, 94:197-204.
doi: 10.1002/jsfa.6227 URL |
[54] |
Leng X, Jia H, Sun X, Shangguan L, Mu Q, Wang B, Fang J. 2015. Comparative transcriptome analysis of grapevine in response to copper stress. Scientific Reports, 5:17749.
doi: 10.1038/srep17749 pmid: 26673527 |
[55] |
Li M, Li Y, Zhang W, Li S, Gao Y, Ai X, Zhang D, Liu B, Li Q. 2018. Metabolomics analysis reveals that elevated atmospheric CO2 alleviates drought stress in cucumber seedling leaves. Analytical Biochemistry, 559:71-85.
doi: 10.1016/j.ab.2018.08.020 URL |
[56] |
Li S, Zachgo S. 2013. TCP 3 interacts with R2R3-MYB proteins,promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant Journal, 76:901-913.
doi: 10.1111/tpj.12348 URL |
[57] |
Li X, Ahammed G J, Zhang X N, Zhang L, Yan P, Zhang L P, Fu J Y, Han W Y. 2021. Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. Journal of Hazardous Materials, 403:123922.
doi: 10.1016/j.jhazmat.2020.123922 URL |
[58] |
Li X, Li M H, Deng W W, Ahammed G J, Wei J P, Yan P, Zhang L P, Fu J Y, Han W Y. 2020. Exogenous melatonin improves tea quality under moderate high temperatures by increasing epigallocatechin-3-gallate and theanine biosynthesis in Camellia sinensis L. Journal of Plant Physiology, 253:153273.
doi: 10.1016/j.jplph.2020.153273 URL |
[59] | Liu C J, Deavours B E, Richard S B, Ferrer J L, Blount J W, Huhman D, Dixon R A, Noel J P. 2006. Structural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses. Plant Cell, 12 (18):3656-3669. |
[60] |
Lo S C, Nicholson R L. 1998. Reduction of light-induced anthocyanin accumulation in inoculated Sorghum mesocotyls. implications for a compensatory role in the defense response. Plant Physiology, 116 (3):979-989.
doi: 10.1104/pp.116.3.979 pmid: 9501130 |
[61] |
Lu Y, Chen Q, Bu Y, Luo R, Hao S, Zhang J, Tian J, Yao Y. 2017. Flavonoid accumulation plays an important role in the rust resistance of Malus plant leaves. Frontiers in Plant Science, 8:1286.
doi: 10.3389/fpls.2017.01286 URL |
[62] |
Luo P, Shen Y X, Jin S X, Huang S S, Cheng X, Wang Z, Li P H, Zhao J, Bao M Z, Ning G G. 2016. Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling. Plant Science, 245:35-49.
doi: 10.1016/j.plantsci.2016.01.007 URL |
[63] |
Ma D, Sun D, Wang C, Li Y, Guo T. 2014. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiology and Biochemistry, 80:60-66.
doi: 10.1016/j.plaphy.2014.03.024 pmid: 24727789 |
[64] |
Ma Y, Feng Y Y, Diao T W, Zeng W L, Zuo Y. 2019. Experimental and theoretical study on antioxidant activity of the four anthocyanins. Journal of Molecular Structure, 1204:127509.
doi: 10.1016/j.molstruc.2019.127509 URL |
[65] |
Martinez V, Mestre T C, Rubio F, Girones-Vilaplana A, Moreno D A, Mittler R, Rivero R M. 2016. Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Frontiers in Plant Science, 7:838.
doi: 10.3389/fpls.2016.00838 pmid: 27379130 |
[66] |
McLusky S R, Bennett M H, Beale M H, Lewis M J, Gaskin P, Mansfield J W. 1999. Cell wall alterations and localized accumulation of feruloyl-3'-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis allii are associated with actin polarisation,peroxidase activity and suppression of flavonoid biosynthesis. Plant Journal, 17 (5):523-534.
doi: 10.1046/j.1365-313X.1999.00403.x URL |
[67] |
Meng J X, Gao Y, Han M L, Liu P Y, Yang C, Shen T, Li H H. 2020. In vitro anthocyanin induction and metabolite analysis in Malus spectabilis leaves under low nitrogen conditions. Horticultural Plant Journal, 6 (5):284-292.
doi: 10.1016/j.hpj.2020.06.004 URL |
[68] |
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell and Environment, 33:453-467.
doi: 10.1111/j.1365-3040.2009.02041.x URL |
[69] | Misra P, Pandey A, Tiwari M, Chandrashekar K, Sidhu O P, Asif M H, Chakrabarty D, Singh P K, Trivedi P K, Nath P, Tuli R. 2010. Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor,AtMYB12,leads to insect resistance. Plant Physiology, 4 (152):2258-2268. |
[70] |
Muhammad J R, Xu Y T, Tang X M, Huang Y, Liu J H, Deng X X, Xu Q. 2020. CsCYT75B1,a Citrus CYTOCHROME P 450 gene,is involved in accumulation of antioxidant flavonoids and induces drought tolerance in transgenic Arabidopsis. Antioxidants, 9:161.
doi: 10.3390/antiox9020161 URL |
[71] |
Mullineaux P M, Rausch T. 2005. Glutathione,photosynthesis and the redox regulation of stress-responsive gene expression. Photosynthesis Research, 86:459-474.
pmid: 16328783 |
[72] | Naikoo M I, Dar M I, Raghib F, Jaleel H, Ahmad B, Raina A, Khan F A, Naushin F. 2019. Plant signaling molecules. Amsterdam:Elsevier. |
[73] |
Nenadis N, Llorens L, Koufogianni A, Diaz L, Font J, Gonzalez J A, Verdaguer D. 2015. Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants. Journal of Photochemistry and Photobiology B:Biology, 153:435-444.
doi: 10.1016/j.jphotobiol.2015.10.016 URL |
[74] |
Ngaki M N, Louie G V, Philippe R N, Manning G, Pojer F, Bowman M E, Li L, Larsen E, Wurtele E S, Noel J P. 2012. Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis. Nature, 485:530-533.
doi: 10.1038/nature11009 URL |
[75] | Pashkovskiy P P, Ryazansky S S. 2013. Biogenesis,evolution,and functions of plant microRNAs. Biochemistry(Moscow), 78:627-637. |
[76] | Peer W A, Murphy A S. 2007. Flavonoids and auxin transport: modulators or regulators? Trends in Plant Science, 12:1360-1385. |
[77] |
Pei Y, Siemann E, Tian B, Ding J. 2020. Root flavonoids are related to enhanced AMF colonization of an invasive tree. AoB Plants, 12:plaa002.
doi: 10.1093/aobpla/plaa002 URL |
[78] |
Perin E C, Messias D S, Borowski J M, Crizel R L, Schott I B, Carvalho I R, Rombaldi C V, Galli V. 2019. ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chemistry, 271:516-526.
doi: S0308-8146(18)31375-X pmid: 30236710 |
[79] |
Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianelo A. 2013. Plant flavonoids biosynthesis,transport and involvement in stress responses. International Journal of Molecular Sciences, 14:14950-14973.
doi: 10.3390/ijms140714950 pmid: 23867610 |
[80] | Poonam R K, Bhardwaj R, Sirhindi G. 2015. Castasterone regulated polyphenolic metabolism and photosynthetic system in Brassica juncea plants under copper stress. Journal of Pharmacognosy and Phytochemistry, 4:282-289. |
[81] |
Procházkováa D, Boušováb I, Wilhelmová N. 2011. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82 (4):513-523.
doi: 10.1016/j.fitote.2011.01.018 pmid: 21277359 |
[82] |
Ravensdale M, Rocheleau H, Wang L, Nasmith C, Ouellet T, Subramaniam R. 2014. Components of priming-induced resistance to Fusarium head blight in wheat revealed by two distinct mutants of Fusarium graminearum. Molecular Plant Pathology, 15 (9):948-956.
doi: 10.1111/mpp.12145 pmid: 24751103 |
[83] |
Rayhan A S, Baek S K. 2020. Influence of drought stress on bioactive compounds,antioxidant enzymes and glucosinolate contents of Chinese cabbage(Brassica rapa). Food Chemistry, 308:125657.
doi: 10.1016/j.foodchem.2019.125657 URL |
[84] |
Rossi L, Borghi M, Francini A, Lin X, Xie D Y, Sebastiani L. 2016. Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio(salt-tolerant)and Leccino(salt-sensitive). Journal of Plant Physiology, 204:8-15.
doi: 10.1016/j.jplph.2016.07.014 URL |
[85] | Saffari Y, Sadrzadeh S M H. 2004. Green tea metabolite EGCG protects membranes against oxidative damage in vitro. Life Science, 74:1513-1518. |
[86] |
Saijo Y, Tintor N, Lu X, Rauf P, Pajerowska-Mukhtar K, Häweker H, Dong X, Robatzek S, Schulze-Lefert P. 2009. Receptor quality control in the endoplasmic reticulum for plant innate immunity. The EMBO Journal, 28 (21):3439-3449.
doi: 10.1038/emboj.2009.263 URL |
[87] |
Salehe N, Barat-Ali F. 2020. Tolerance responses in wheat landrace Bolani are related to enhanced metabolic adjustments under drought stress. Plant Physiology and Biochemistry, 150:244-225.
doi: S0981-9428(20)30101-7 pmid: 32169794 |
[88] |
Santamarıá-Hernando S, Senovilla M, González-Mula A, Martínez-García P M, Nebreda S, Rodríguez-Palenzuela P, López-Solanilla E, Rodríguez-Herva J J. 2019. The Pseudomonas syringae pv. tomato DC3000 PSPTO_0820 multidrug transporter is involved in resistance to plant antimicrobials and bacterial survival during tomato plant infection. PLoS ONE, 14:e0218815.
doi: 10.1371/journal.pone.0218815 URL |
[89] |
Sarbu L G, Bahrin L G, Babii C, Stefan M, Birsa M L. 2019. Synthetic flavonoids with antimicrobial activity:a review. Journal of Applied Microbiology, 127 (5):1282-1290.
doi: 10.1111/jam.14271 pmid: 30934143 |
[90] |
Schenke D, Böttcher C, Scheel D. 2011. Crosstalk between abiotic UV-B stress and biotic(flg22)stress signaling in Arabidopsis prevents flavonol accumulation in favor of pathogen defense compound production. Plant Cell and Environment, 34 (11):1849-1864.
doi: 10.1111/j.1365-3040.2011.02381.x URL |
[91] |
Shi M Z, Xie D Y. 2014. Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Patents on Biotechnology, 8:47-60.
doi: 10.2174/1872208307666131218123538 URL |
[92] |
Sisa M, Bonnet S L, Ferreira D, van der Westhuizen J H. 2010. Photochemistry of flavonoids. Molecules, 15:5196-5245.
doi: 10.3390/molecules15085196 pmid: 20714295 |
[93] | Smirnov O E, Kosyan A M, Kosyk O I, Taran N Y. 2015. Response of phenolic metabolism induced by aluminium toxicity in Fagopyrum esculentum Moench. plants. The Ukrainian Biochemical Journal, 87:129-135. |
[94] |
Stafford H A. 1991. Flavonoid evolution:an enzymic approach. Plant Physiology, 96:680-685.
doi: 10.1104/pp.96.3.680 pmid: 16668242 |
[95] |
Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant Journal, 50:660-677.
doi: 10.1111/j.1365-313X.2007.03078.x pmid: 17419845 |
[96] |
Subramanian S, Graham M Y, Yu O, Graham T L. 2005. RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiology, 137:1345-1353.
doi: 10.1104/pp.104.057257 pmid: 15778457 |
[97] |
Sugiyama A, Yazaki K. 2014. Flavonoids in plant rhizospheres:secretion,fate and their effects on biological communication. Plant Biotechnol, 31 (5):431-443.
doi: 10.5511/plantbiotechnology.14.0917a URL |
[98] |
Swieca M. 2015. Elicitation with abiotic stresses improves pro-health constituents,antioxidant potential and nutritional quality of lentil sprouts. Saudi Journal of Biological Sciences, 22:409-416.
doi: 10.1016/j.sjbs.2014.12.007 URL |
[99] |
Sytar O, Zivcak M, Bruckova K, Brestic M, Hemmerich I, Rauh C, Simko I. 2018. Shift in accumulation of flavonoids and phenolic acids in lettuce attributable to changes in ultraviolet radiation and temperature. Scientia Horticulturae, 239:193-204.
doi: 10.1016/j.scienta.2018.05.020 URL |
[100] | Tan H, Man C, Xie Y, Yan J, Chu J, Huang J. 2019. A crucial role of GA-regulated flavonol biosynthesis in root growth of Arabidopsis. Molecule Plant, 12:521-537. |
[101] | Tanase C, Bujor O C, Popa V I. 2019. Polyphenols in plants. Cambridge: Academic Press. |
[102] | Turnbull J J, Nakajima J, Welford R W, Yamazaki M, Saito K, Schofield C J. 2004. Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis:anthocyanidin synthase,flavonol synthase, and flavanone 3 beta-hydroxylase. The Journal of Biochemistry, 279:1206-1216. |
[103] |
Ullah C, Tsai C J, Unsicker S B, Xue L, Reichelt M, Gershenzon J, Hammerbacher A. 2019. Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins. New Phytologist, 221:960-975.
doi: 10.1111/nph.15396 URL |
[104] |
Vandeputte O M, Kiendrebeogo M, Rajaonson S, Diallo B, Mol A, El Jaziri M, Baucher M I. 2010. Dentification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Applied and Environmental Microbiology, 76:243-253.
doi: 10.1128/AEM.01059-09 pmid: 19854927 |
[105] |
Verma V, Ravindran P, Kumar P P. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16:86.
doi: 10.1186/s12870-016-0771-y pmid: 27079791 |
[106] | Vogt T. 2010. Phenylpropanoid biosynthesis. Molecule Plant, 3:2-20. |
[107] |
Wang L, Shan T, Xie B, Ling C, Shao S, Jin P, Zheng Y. 2019. Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms. Food Chemistry, 272:530-538.
doi: S0308-8146(18)31488-2 pmid: 30309578 |
[108] |
Wang Y, Wang Y, Song Z, Zhang H. 2016. Repression of MYBL 2 by both microRNA858a and HY5 leads to the activation of anthocyanin biosynthetic pathway in Arabidopsis. Molecular Plant, 9 (10):1395-1405.
doi: 10.1016/j.molp.2016.07.003 URL |
[109] | William R, Chezem A M, Li F S, Weng J K, Nicole K C. 2017. SG2-Type R2R3-MYB transcription factor MYB 15 controls defense-induced lignification and basal immunity in Arabidopsis. Plant Cell, 17 (29):1907-1926. |
[110] |
Williams R J, Spencer J P E, Rice-Evans C. 2004. Flavonoids:antioxidants or signalling molecules? Free Radical Biology & Medicine, 36 (7):838-849.
doi: 10.1016/j.freeradbiomed.2004.01.001 URL |
[111] |
Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science, 20:176-185.
doi: 10.1016/j.tplants.2014.12.001 pmid: 25577424 |
[112] |
Xu Y, Charles M T, Luo Z, Mimee B, Veronneau P Y, Rolland D, Roussel D. 2017. Preharvest ultraviolet c irradiation increased the level of polyphenol accumulation and flavonoid pathway gene expression in strawberry fruit. Journal of Agricultural and Food Chemistry, 65:9970-9979.
doi: 10.1021/acs.jafc.7b04252 pmid: 29091440 |
[113] | Yao Q X, Peng Z K, Tong H, Yang F B, Xing G S, Wang L J, Zheng J J, Zhang Y J, Su Q. 2019. Tomato plant flavonoids increase whitefly resistance and reduce spread of tomato yellow leaf curl virus. Horticultural Entomology, 112(6):2790-2796. |
[114] |
Yamamoto M, Nakatsuka S, Otani H, Kohmoto K, Nishimura S. 2000. (+)-Catechin acts as an infection-inhibiting factor in strawberry leaf. Phytopathology, 90 (6):595-600.
doi: 10.1094/PHYTO.2000.90.6.595 pmid: 18944538 |
[115] |
Yang W, Xu X, Li Y, Wang Y, Li M, Wang Y, Ding X, Chu Z. 2016. Rutin-Mediated priming of plant resistance to three bacterial pathogens initiating the early SA signal pathway. PLoS ONE, 11 (1):e0146910.
doi: 10.1371/journal.pone.0146910 URL |
[116] |
Ye Zimao, Shen Wanxia, Liu Mengyu, Wang Tong, Zhang Xiaonan, Yu Xin, Liu Xiaofeng, Zhao Xiaochun. 2022. Effect of R2R3-MYB transcription factor CitMYB21 on flavonoids biosynthesis in Citrus. Acta Horticulturae Sinica,DOI:10.16420/j.issn.0513-353x.2021-1188. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-1188 |
叶子茂, 申晚霞, 刘梦雨, 王彤, 张晓楠, 余歆, 刘小丰, 赵晓春. 2022. R2R3-MYB转录因子CitMYB21对柑橘类黄酮生物合成的影响. 园艺学报,DOI:10.16420/j.issn.0513-353x.2021-1188.
doi: 10.16420/j.issn.0513-353x.2021-1188 |
|
[117] |
Yin R, Ulm R. 2017. How plants cope with UV-B:from perception to response. Current Opinion in Plant Biology, 37:42-48.
doi: 10.1016/j.pbi.2017.03.013 URL |
[118] |
Zhang B, Wang Q. 2015. MicroRNA-based biotechnology for plant improvement. Journal of Cellular Physiology, 230:1-15.
doi: 10.1002/jcp.24685 pmid: 24909308 |
[119] |
Zhang J, Subramanian S, Stacey G, Yu O. 2009. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant Journal, 57:171-183.
doi: 10.1111/j.1365-313X.2008.03676.x URL |
[120] |
Zhong R, Ye Z H. 2012. MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiology, 53:368-380.
doi: 10.1093/pcp/pcr185 URL |
[121] |
Zhou M, Li W, Sun Z, Gao L, Meng Y, Tang Y, Wu Y. 2015. Production and transcriptional regulation of proanthocyanidin biosynthesis in forage legumes. Applied Microbiology and Biotechnology, 99:3797-3806.
doi: 10.1007/s00253-015-6533-1 pmid: 25805345 |
[122] |
Zhou P, Li Q, Liu G, Xu N, Yang Y, Zeng W, Chen A, Wang S. 2018. Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynthesis in Nicotiana tabacum under chilling stress. Functional Plant Biology, 46:30-43.
doi: 10.1071/FP18099 URL |
[123] |
Zlotek U, Szymanowska U, Baraniak B, Karas M. 2015. Antioxidant activity of polyphenols of adzuki bean(Vigna angularis)germinated in abiotic stress conditions. Acta Scientiarum Polonorum Technologia Alimentaria, 14:55-63.
doi: 10.17306/J.AFS.2015.1.6 URL |
[1] | 叶子茂, 申晚霞, 刘梦雨, 王 彤, 张晓楠, 余 歆, 刘小丰, 赵晓春, . R2R3-MYB转录因子CitMYB21对柑橘类黄酮生物合成的影响[J]. 园艺学报, 2023, 50(2): 250-264. |
[2] | 宋艳红, 陈亚铎, 张晓玉, 宋 盼, 刘丽锋, 李 刚, 赵 霞, 周厚成, . 森林草莓FvbHLH130转录因子调控植株提前开花[J]. 园艺学报, 2023, 50(2): 295-306. |
[3] | 任 菲, 卢苗苗, 刘吉祥, 陈信立, 刘道凤, 眭顺照, 马 婧. 蜡梅胚胎晚期丰富蛋白基因CpLEA的表达及抗性分析[J]. 园艺学报, 2023, 50(2): 359-370. |
[4] | 程庆华, 张志鹏, 吴艳萍, 万宇鹤, 陈应娟. 苦参碱对茶树炭疽菌的抑菌作用研究[J]. 园艺学报, 2023, 50(2): 432-440. |
[5] | 郑清波, 鲍泽洋, 蓝青青, 周钰雯, 周雨菲, 郑彩霞, 李 旭, . 童性与生长素对不定根发生的影响研究进展[J]. 园艺学报, 2023, 50(2): 441-450. |
[6] | 蔺海娇, 梁雨晨, 李玲, 马军, 张璐, 兰振颖, 苑泽宁. 薰衣草CBF途径相关耐寒基因挖掘与调控网络分析[J]. 园艺学报, 2023, 50(1): 131-144. |
[7] | 邵凤清, 罗秀荣, 王奇, 张宪智, 王文彩. 果实成熟过程中的DNA甲基化调控研究进展[J]. 园艺学报, 2023, 50(1): 197-208. |
[8] | 徐小萍, 曹清影, 蔡柔荻, 官庆栩, 张梓浩, 陈裕坤, 徐涵, 林玉玲, 赖钟雄. 龙眼miR408与DlLAC12克隆及其在球形胚发生和非生物胁迫下的表达分析[J]. 园艺学报, 2022, 49(9): 1866-1882. |
[9] | 侯潞丹, 赵梦然, 黄晨阳, 张金霞. 交替氧化酶增强糙皮侧耳高温耐受性的分子机制[J]. 园艺学报, 2022, 49(9): 1922-1934. |
[10] | 贾鑫, 曾臻, 陈月, 冯慧, 吕英民, 赵世伟. 月季‘月月粉’RcDREB2A的克隆与表达分析[J]. 园艺学报, 2022, 49(9): 1945-1956. |
[11] | 薛维文, 周显芳, 张昭其, 方方. 果蔬采后木质素积累及其调控对品质的影响研究进展[J]. 园艺学报, 2022, 49(9): 2023-2036. |
[12] | 许海峰, 王中堂, 陈新, 刘志国, 王利虎, 刘平, 刘孟军, 张琼. 冬枣果皮着色相关类黄酮靶向代谢组学及潜在MYB转录因子分析[J]. 园艺学报, 2022, 49(8): 1761-1771. |
[13] | 郑晓东, 袭祥利, 李玉琪, 孙志娟, 马长青, 韩明三, 李少旋, 田义轲, 王彩虹. 油菜素内酯对盐碱胁迫下平邑甜茶幼苗生长的影响及调控机理研究[J]. 园艺学报, 2022, 49(7): 1401-1414. |
[14] | 马维峰, 李艳梅, 马宗桓, 陈佰鸿, 毛娟. 苹果POD家族基因的鉴定与MdPOD15的功能分析[J]. 园艺学报, 2022, 49(6): 1181-1199. |
[15] | 路涛, 余宏军, 李强, 蒋卫杰. 叶果量调控对番茄生长发育、果实品质和产量的影响[J]. 园艺学报, 2022, 49(6): 1261-1274. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司