园艺学报 ›› 2023, Vol. 50 ›› Issue (1): 131-144.doi: 10.16420/j.issn.0513-353x.2021-0888
蔺海娇1, 梁雨晨1, 李玲1, 马军2, 张璐1, 兰振颖1, 苑泽宁1,*()
收稿日期:
2022-07-25
修回日期:
2022-12-06
出版日期:
2023-01-25
发布日期:
2023-01-18
通讯作者:
*(E-mail:基金资助:
LIN Haijiao1, LIANG Yuchen1, LI Ling1, MA Jun2, ZHANG Lu1, LAN Zhenying1, YUAN Zening1,*()
Received:
2022-07-25
Revised:
2022-12-06
Online:
2023-01-25
Published:
2023-01-18
Contact:
*(E-mail:摘要:
为探究薰衣草(Lavandula angustifolia Mill.)的耐冷机制,使用转录组学方法对薰衣草响应冷处理的分子调控网络进行挖掘分析。CBF转录因子和其靶基因COR形成的CBF-COR调控网络在增强植物耐冷胁迫中作用显著。本研究中共发现7个CBF基因(LaCBF)和11个COR基因(LaCOR)在冷处理下的表达具有显著差异,同时在CBF信号调控通路中发现4个上游基因LaICE1、LaCAMTA3、LaEBF1、LaCCA1对冷胁迫有响应,认为这些基因共同形成的冷信号调控网络在薰衣草抵御低温中起到了重要作用。
中图分类号:
蔺海娇, 梁雨晨, 李玲, 马军, 张璐, 兰振颖, 苑泽宁. 薰衣草CBF途径相关耐寒基因挖掘与调控网络分析[J]. 园艺学报, 2023, 50(1): 131-144.
LIN Haijiao, LIANG Yuchen, LI Ling, MA Jun, ZHANG Lu, LAN Zhenying, YUAN Zening. Exploration and Regulation Network Analysis of CBF Pathway Related Cold Tolerance Genes in Lavandula angustifolia[J]. Acta Horticulturae Sinica, 2023, 50(1): 131-144.
序号 ID | 引物序列(5′-3′) Primers sequence | |
---|---|---|
1 | CCA1-F:TGCCGGGAAAGAGGAGTACT | CCA1-R:CCCACTTCGTTAGGAGGCAA |
2 | LHY-F:TGGGTAATTGGGTCAAGGCC | LHY-R:TTCCGGGTCTTTCTCCATGC |
3 | ICE1-F:TTGAGCTGCGACCAGAGTTT | ICE1-R:CAGCTTAGACCTGTGCGGAT |
4 | CBF1-F:TGCAGCGGAGGCTTTCTATC | CBF1-R:AAGCCTTCAGCCATGTTGGA |
5 | CBF2-F:CGATACAGGCAAGTGGGTCT | CBF2-R:AATGTCCTGCACACTCGACG |
6 | CBF3-F:GTGCTGGAATTCTCCTCCGA | CBF3-R:TGACCTCGCAGACCCACTTA |
7 | ERD7-F:TGGTGAGGAAGAAGGATGCG | ERD7-R:CCACTTCAGCCTATCCACCG |
8 | COR413PM2-F:AGAGGCGGGGTAGTCATCTT | COR413PM2-R:GTCAGTGCTCGTGTGTGAGA |
9 | GAPDH-F:TAGGAGGTGGCAGGACATCA | GAPDH-R:CCCTTTACCCGTCACGTTGT |
表1 qPCR反应所用引物
Table 1 Primers used for qPCR
序号 ID | 引物序列(5′-3′) Primers sequence | |
---|---|---|
1 | CCA1-F:TGCCGGGAAAGAGGAGTACT | CCA1-R:CCCACTTCGTTAGGAGGCAA |
2 | LHY-F:TGGGTAATTGGGTCAAGGCC | LHY-R:TTCCGGGTCTTTCTCCATGC |
3 | ICE1-F:TTGAGCTGCGACCAGAGTTT | ICE1-R:CAGCTTAGACCTGTGCGGAT |
4 | CBF1-F:TGCAGCGGAGGCTTTCTATC | CBF1-R:AAGCCTTCAGCCATGTTGGA |
5 | CBF2-F:CGATACAGGCAAGTGGGTCT | CBF2-R:AATGTCCTGCACACTCGACG |
6 | CBF3-F:GTGCTGGAATTCTCCTCCGA | CBF3-R:TGACCTCGCAGACCCACTTA |
7 | ERD7-F:TGGTGAGGAAGAAGGATGCG | ERD7-R:CCACTTCAGCCTATCCACCG |
8 | COR413PM2-F:AGAGGCGGGGTAGTCATCTT | COR413PM2-R:GTCAGTGCTCGTGTGTGAGA |
9 | GAPDH-F:TAGGAGGTGGCAGGACATCA | GAPDH-R:CCCTTTACCCGTCACGTTGT |
图5 薰衣草CBF途径相关耐寒基因与拟南芥数据库比对的蛋白网络互作图
Fig. 5 Mapping of protein network interactions between CBF pathway related cold tolerance genes in Lavandula angustifolia and Arabidopsis thaliana database
图7 不同温度下薰衣草COR基因表达变化 不同字母表示差异显著(P < 0.05)。
Fig. 7 Changes of COR gene expression in Lavandula angustifolia at different temperatures Different letters indicated significant difference(P < 0.05).
图9 薰衣草响应低温胁迫的CBF-COR调控网络 根据Shi等(2018)修改绘制。
Fig. 9 CBF-COR regulatory network in response to low temperature stress in Lavandula angustifolia Modified and drawn according to the literature Shi et al.(2018).
[1] |
Ahmet K, Özlem D, Katarzyna S, Şebnem K, Aygül K, Gökçen Y, Ferit K. 2021. Melatonin effects in enhancing chilling stress tolerance of pepper. Scientia Horticulturae,289:doi:10.1016/j.scienta.2021.110434.
doi: 10.1016/j.scienta.2021.110434 URL |
[2] |
Banerjee A, Roychoudhury A. 2017. Abscisic-acid-dependent basic leucine zipper(bZIP)transcription factors in plant abiotic stress. Protoplasma, 254 (1):3-16.
doi: 10.1007/s00709-015-0920-4 pmid: 26669319 |
[3] |
Breton G, Danyluk J, Charron J B, Sarhan F. 2003. Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis. Plant Physiol, 132 (1):64-74.
doi: 10.1104/pp.102.015255 URL |
[4] |
Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X H, Agarwal M, Zhu J K. 2003. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 17 (8):1043-1054.
doi: 10.1101/gad.1077503 URL |
[5] | Deng C Y, Ye H Y, Fan M, Pu T L, Yan J B. 2017. The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis. Plant Signal Behav, 12,e1316442. |
[6] |
Ding Y L, Shi Y T, Yang S H. 2020. Molecular regulation of plant responses to environmental temperatures. Molecular Plant, 13 (4):544-564.
doi: S1674-2052(20)30034-4 pmid: 32068158 |
[7] |
Doherty C J, Buskirk H A V, Myers S J, Thomashow M F. 2009. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. The Plant Cell, 21 (3):972-984.
doi: 10.1105/tpc.108.063958 URL |
[8] | Dong M A, Farré E M, Thomashow M F. 2011. CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR(CBF)pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 108 (17):7241-7246. |
[9] | Giannoulis K D, Evangelopoulos V, Gougoulias N, Wogiatzi E. 2020. Lavender organic cultivation yield and essential oil can be improved by using bio-stimulants. Acta Agriculturae Scandinavica,Section B — Soil & Plant Science, 70 (8):648-656. |
[10] |
Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. 1998. Low temperature regulation of the Arabidopsis CBF family of AP 2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal, 16 (4):433-442.
doi: 10.1046/j.1365-313x.1998.00310.x URL |
[11] | Gu Jiamao, Wang Chenyang, Wang Feng, Qi Mingfang, Liu Yufeng, Li Tianlai. 2021. Roles of CAMTA/SR in plant growth and development and stress response. Acta Horticulturae Sinica, 48 (4):613-631. (in Chinese) |
谷家茂, 王晨扬, 王峰, 齐明芳, 刘玉凤, 李天来. 2021. CAMTA/SR在植物生长发育及逆境响应中的作用. 园艺学报, 48 (4):613-631. | |
[12] |
Guo X Y, Liu D F, Chong K. 2018. Cold signaling in plants:insights into mechanisms and regulation. Journal of Integrative Plant Biology, 60 (9):745-756.
doi: 10.1111/jipb.12706 URL |
[13] |
Guo X Y, Zhang L, Dong G Q, Xu Z H, Li G M, Liu N, Wang A Y, Zhu J B. 2019. A novel cold-regulated protein isolated from Saussurea involucrata confers cold and drought tolerance in transgenic tobacco(Nicotiana tabacum). Plant Science,289:doi:10.1016/j.plantsci.2019.110246.
doi: 10.1016/j.plantsci.2019.110246 URL |
[14] | Gyana R R, Anuradha B, Dhaneswar S, Kundansigh R J, Rahul G S, Sanjib K P. 2020. Overexpression of ICE 1 gene in mungbean(Vigna radiata L.)for cold tolerance. Plant Cell,Tissue and Organ Culture(PCTOC), 143 (3):593-608. |
[15] | Iqbal Z, Shariq I M, Singh S P, Buaboocha T. 2020. Ca2+/calmodulin complex triggers CAMTA transcriptional machinery under stress in plants:signaling cascade and molecular regulation. Frontier Plant Science, 11:598327. |
[16] | Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science(New York), 280 (5360):104-106. |
[17] |
Jian H J, Xie L, Wang Y H, Cao Y R, Wan M Y, Lv D Q, Li J N, Lu K, Xu X F, Liu L Z. 2020. Characterization of cold stress responses in different rapeseed ecotypes based on metabolomics and transcriptomics analyses. PeerJ, 8:e8704.
doi: 10.7717/peerj.8704 URL |
[18] |
Jiang B C, Shi Y T, Peng Y, Jia Y X, Yan Y, Dong X J, Li H, Dong J, Li J G, Gong Z Z, Thomashow M F, Yang S H. 2020. Cold-induced CBF-PIF 3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Molecular Plant, 13 (6):894-906.
doi: 10.1016/j.molp.2020.04.006 URL |
[19] | Jin Xinkai, Li Xiaohan, Shen Hui, Li Jinhua, Pan Yu, Zhang Xingguo. 2018. Ectopic expression of AtCOR15a improves cold tolerance in Solanum lycopersicum. Acta Horticulturae Sinica, 45 (7):1283-1295. (in Chinese) |
金新开, 李小寒, 沈辉, 李金华, 潘宇, 张兴国. 2018. 拟南芥耐寒基因AtCOR15a在番茄中异源表达增强其耐寒性. 园艺学报, 45 (7):1283-1295. | |
[20] |
Kidokoro S, Yoneda K, Takasaki H, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. The Plant Cell, 29 (4):760-774.
doi: 10.1105/tpc.16.00669 pmid: 28351986 |
[21] |
Kim S M, Suh J P, Lee C K, Lee J H, Kim Y G, Jena K K. 2014. QTL mapping and development of candidate gene-derived DNA markers associated with seedling cold tolerance in rice(Oryza sativa L.). Molecular Genetics and Genomics, 289 (3):333-343.
doi: 10.1007/s00438-014-0813-9 URL |
[22] |
Lang Z B, Zhu J K. 2015. OST 1 phosphorylates ICE1 to enhance plant cold tolerance. Science China Life Sciences, 58 (3):317-318.
doi: 10.1007/s11427-015-4822-7 URL |
[23] | Li Qiong, Li Lili, Hou Juan, Luo Renren, Wang Ruidan, Hu Jianbin, Huang Song. 2022. Advances on mechanism of cucurbit crops in response to low-temperature stress. Acta Horticulturae Sinica, 49 (6):1382-1394. (in Chinese) |
李琼, 李丽丽, 侯娟, 罗忍忍, 王瑞丹, 胡建斌, 黄松. 2022. 瓜类作物响应低温胁迫机制的研究进展. 园艺学报, 49 (6):1382-1394. | |
[24] |
Lu X, Yang L, Yu M Y, Lai J B, Wang C, Mc N D, Zhou M X, Yang C W. 2017. A novel Zea mays ssp. mexicana L.MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana. Plant Physiol Biochem, 113:78-88.
doi: 10.1016/j.plaphy.2017.02.002 URL |
[25] |
Medina J, Catalá R, Salinas J. 2011. The CBFs:Three Arabidopsis transcription factors to cold acclimate. Plant Science, 180 (1):3-11.
doi: 10.1016/j.plantsci.2010.06.019 URL |
[26] |
Nosenko T, Böndel K B, Kumpfmüller G, Stephan W. 2016. Adaptation to low temperatures in the wild tomato species Solanum chilense. Mol Ecol, 25:2853-2869.
doi: 10.1111/mec.13637 URL |
[27] |
Park S, Lee C M, Doherty C J, Gilmour S J, Kim Y S, Thomashow M F. 2015. Regulation of the Arabidopsis CBF regulon by a complex low‐temperature regulatory network. The Plant Journal, 82 (2):193-207.
doi: 10.1111/tpj.12796 URL |
[28] | Peng T, Guo C, Yang J, Xu M, Zuo J, Bao M, Zhang J W. 2016. Overexpression of a Mei(Prunus mume)CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis. Plant Cell,Tissue and Organ Culture(PCTOC), 126 (3):373-385. |
[29] |
Pino M T, Skinner J S, Park E J, Jeknić Z, Hayes P M, Thomashow M F, Chen T H H. 2007. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnology Journal, 5 (5):591-604.
doi: 10.1111/j.1467-7652.2007.00269.x URL |
[30] |
Rai A N, Tamirisa S, Rao K V, Kumar V, Suprasanna P. 2016. Brassica RNA binding protein ERD4 is involved in conferring salt,drought tolerance and enhancing plant growth in Arabidopsis. Plant Molecular Biology, 90:375-387.
doi: 10.1007/s11103-015-0423-x URL |
[31] |
Ritonga F N, Chen S. 2020. Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants, 9 (5):560. doi: 10.3390/plants9050560.
doi: 10.3390/plants9050560 URL |
[32] |
Ruibal C, Castro A, Fleitas A L, Quezada J, Quero G, Vidal S. 2020. A chloroplast COR413 protein from Physcomitrella patens is required for growth regulation under high light and ABA responses. Frontiers in Plant Science,11:doi:10.3389/fpls.2020.00845.
doi: 10.3389/fpls.2020.00845 URL |
[33] |
Shi Y T, Ding Y L, Yang S H. 2018. Molecular regulation of CBF signaling in cold acclimation. Trends in Plant Science, 23 (7):623-637.
doi: S1360-1385(18)30086-4 pmid: 29735429 |
[34] |
Shi Y T, Tian S W, Hou L Y, Huang X Z, Zhang X Y, Guo H W, Yang S H. 2012. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and Type-A ARR genes in Arabidopsis. The Plant Cell, 24 (6):2578-2595.
doi: 10.1105/tpc.112.098640 URL |
[35] |
Su C, Chen K, Ding Q Q, Mou Y Y, Yang R, Zhao M J, Ma B, Xu Z S, Ma Y Z, Pan Y H, Chen M, Xi Y J. 2018. Proteomic analysis of the function of a novel cold-regulated multispanning transmembrane protein COR413-PM1 in Arabidopsis. International Journal of Molecular Sciences, 19 (9):2572.
doi: 10.3390/ijms19092572 URL |
[36] |
Tian J Y, Ma Y, Tian L, Huang C, Chen M, Wei A Z. 2021. Comparative physiology and transcriptome response patterns in cold-tolerant and cold-sensitive varieties of Zanthoxylum bungeanum Maxim. Industrial Crops & Products,167:doi:10.1016/j.indcrop.2021.113562.
doi: 10.1016/j.indcrop.2021.113562 URL |
[37] |
Walworth A E, Song G and Warner R M. 2014. Ectopic AtCBF3 expression improves freezing tolerance and promotes compact growth habit in petunia. Mol Breeding, 33 (3):731-741.
doi: 10.1007/s11032-013-9989-7 URL |
[38] |
Wisniewski M, Norelli J, Artlip T. 2015. Overexpression of a peach CBF gene in apple:a model for understanding the integration of growth, dormancy,and cold hardiness in woody plants. Frontiers in Plant Science, 6:85.
doi: 10.3389/fpls.2015.00085 pmid: 25774159 |
[39] |
Yin M Z, Wang Y P, Zhang L H, Li J Z, Quan W L, Yang L, Wang Q F, Chan Z L. 2017. The Arabidopsis Cys2/His 2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress. Journal of Experimental Botany, 68 (11):2991-3005.
doi: 10.1093/jxb/erx157 URL |
[40] |
Yuji Y, Stephen K R. 2016. Functionality of soybean CBF/DREB1 transcription factors. Plant Science, 246:80-90.
doi: S0168-9452(16)30019-X pmid: 26993238 |
[41] |
Zhang L, Guo X Y, Zhang Z X, Wang A Y, Zhu J B. 2021. Cold-regulated gene LeCOR413PM2 confers cold stress tolerance in tomato plants. Gene,764:doi:10.1016/j.gene.2020.145097.
doi: 10.1016/j.gene.2020.145097 URL |
[42] | Zhang Xiao-jiao, Shi Chun-feng, Li Chun-shui, Gao Jun-ping, Hong Bo. 2011. Cold stress tolerance of the filial generations produced by AtDREB1A transgenic ground cover chrysanthemum and a conventional variety. Acta Horticulturae Sinica, 38 (9):1717-1726. (in Chinese) |
张晓娇, 史春凤, 李春水, 高俊平, 洪波. 2011. 转AtDREB1A基因地被菊杂交后代优株耐寒性分析. 园艺学报, 38 (9):1717-1726. | |
[43] |
Zhou L, He Y J, Li J, Li L Z, Liu Y, Chen H Y. 2020. An eggplant SmICE1a gene encoding MYC‐type ICE1‐like transcription factor enhances freezing tolerance in transgenic Arabidopsis thaliana. Plant Biology, 22 (3):450-458.
doi: 10.1111/plb.13095 pmid: 32009285 |
[1] | 任 菲, 卢苗苗, 刘吉祥, 陈信立, 刘道凤, 眭顺照, 马 婧. 蜡梅胚胎晚期丰富蛋白基因CpLEA的表达及抗性分析[J]. 园艺学报, 2023, 50(2): 359-370. |
[2] | 李琼, 李丽丽, 侯娟, 罗忍忍, 王瑞丹, 胡建斌, 黄松. 瓜类作物响应低温胁迫机制的研究进展[J]. 园艺学报, 2022, 49(6): 1382-1394. |
[3] | 张瑞, 张夏燚, 赵婷, 王双成, 张仲兴, 刘博, 张德, 王延秀. 基于转录组分析垂丝海棠响应盐碱胁迫的分子机制[J]. 园艺学报, 2022, 49(2): 237-251. |
[4] | 王光鹏, 刘同坤, 徐新凤, 李竹帛, 高瞻远, 侯喜林. 大白菜LEA家族基因的鉴定及其部分成员在低温胁迫下的表达分析[J]. 园艺学报, 2022, 49(2): 304-318. |
[5] | 俞沁含, 焦淑珍, 吴楠, 张宁波, 徐伟荣. 葡萄E3泛素酶HOS1基因克隆、表达及抗血清制备[J]. 园艺学报, 2021, 48(6): 1173-1180. |
[6] | 刘彦英,倪珊珊,项蕾蕾,陈裕坤,赖钟雄*. 香蕉漆酶基因家族鉴定及低温胁迫下的表达分析[J]. 园艺学报, 2020, 47(5): 837-852. |
[7] | 付亚娟 1,2,陈霞婷 1,乔 洁 1,2,王 晶 1,2,李文静 1,侯晓强 1,2,*. 铁皮石斛亲环蛋白基因 DoCyP 的克隆及表达分析[J]. 园艺学报, 2020, 47(3): 581-589. |
[8] | 刘丰娇,张晓伟,李福德,翟 江,毕焕改,艾希珍. 黄瓜富氢水浸种对低温下幼苗光合碳同化及氮代谢的影响[J]. 园艺学报, 2020, 47(2): 287-300. |
[9] | 郑巧玲, 申 威, 姚文孔, 徐伟荣, . 山葡萄低温诱导酵母双杂三框cDNA文库构建和VaCIPK18互作蛋白筛选鉴定[J]. 园艺学报, 2020, 47(12): 2301-2316. |
[10] | 崔 波1,*,郝平安2,梁 芳1,张 燕1,王喜蒙1,4,李俊霖1,3,蒋素华1,许申平1. 蝴蝶兰AP2/ERF家族基因的克隆及在低温下表达特性分析[J]. 园艺学报, 2020, 47(1): 85-97. |
[11] | 张慧琳,朱 婉,田 丽,张 蔚*. 矮牵牛冷响应转录因子PhZPT2-12的特性及表达分析[J]. 园艺学报, 2019, 46(8): 1543-1552. |
[12] | 赵艳青1,杜建厂2,王盼乔1,秦晓东1,陈劲枫1,*. 哈氏黄瓜NAC转录因子的鉴定及低温表达分析[J]. 园艺学报, 2019, 46(7): 1303-1319. |
[13] | 王孝娣,冀晓昊,郑晓翠,王莹莹,宋 杨*,刘凤之*. 桃冷处理响应基因PdCIbHLH的克隆和功能鉴定[J]. 园艺学报, 2019, 46(3): 444-452. |
[14] | 韩 敏1,2,曹逼力2,刘树森3,徐 坤2,*. 低温胁迫下番茄幼苗根穗互作对其抗坏血酸—谷胱甘肽循环的影响[J]. 园艺学报, 2019, 46(1): 65-73. |
[15] | 韩 敏1,曹逼力1,刘树森2,徐 坤1,*. 低温胁迫下番茄嫁接苗根穗互作对叶片光合作用及氮代谢的影响[J]. 园艺学报, 2018, 45(5): 897-907. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司