园艺学报 ›› 2023, Vol. 50 ›› Issue (1): 53-64.doi: 10.16420/j.issn.0513-353x.2021-1086
袁馨1, 徐云鹤1, 张雨培1, 单楠1, 陈楚英1, 万春鹏1, 开文斌1, 翟夏琬1, 陈金印1,2,*(), 甘增宇1,*()
收稿日期:
2022-09-16
修回日期:
2022-11-30
出版日期:
2023-01-25
发布日期:
2023-01-18
通讯作者:
*(E-mail:基金资助:
YUAN Xin1, XU Yunhe1, ZHANG Yupei1, SHAN Nan1, CHEN Chuying1, WAN Chunpeng1, KAI Wenbin1, ZHAI Xiawan1, CHEN Jinyin1,2,*(), GAN Zengyu1,*()
Received:
2022-09-16
Revised:
2022-11-30
Online:
2023-01-25
Published:
2023-01-18
Contact:
*(E-mail:摘要:
以‘红阳’猕猴桃为试材,研究脱落酸(ABA)对果实采后成熟过程中生长素(IAA)代谢的影响。结果表明,外源ABA处理能够加速自由态IAA的降解,提高IAA-Asp含量,同时可以显著促进IAA降解相关基因AcGH3.1的表达。从猕猴桃基因组数据库中分离鉴定到5个ABA响应结合因子基因(AcAREB1 ~ AcAREB5),荧光定量PCR显示,5个基因在果实采后成熟过程中均能不同程度响应ABA。酵母单杂交结果显示,AcAREB1能够直接结合到AcGH3.1的启动子上。亚细胞定位显示AcAREB1定位在细胞核上。酵母自激活试验表明AcAREB1具有转录激活活性。这些结果表明,在猕猴桃果实成熟过程中,AcAREB1可以响应ABA,调控AcGH3.1的表达,从而促进IAA的降解,最终使得果实开始软化成熟。
中图分类号:
袁馨, 徐云鹤, 张雨培, 单楠, 陈楚英, 万春鹏, 开文斌, 翟夏琬, 陈金印, 甘增宇. 猕猴桃后熟过程中ABA响应结合因子AcAREB1调控AcGH3.1的表达[J]. 园艺学报, 2023, 50(1): 53-64.
YUAN Xin, XU Yunhe, ZHANG Yupei, SHAN Nan, CHEN Chuying, WAN Chunpeng, KAI Wenbin, ZHAI Xiawan, CHEN Jinyin, GAN Zengyu. Studies on AcAREB1 Regulating the Expression of AcGH3.1 During Postharvest Ripening of Kiwifruit[J]. Acta Horticulturae Sinica, 2023, 50(1): 53-64.
基因 Gene | 上游序列(5′-3′)Forward sequence | 下游序列(5′-3′)Reverse sequence |
---|---|---|
AcGH3.1 | AGGGTCTGTACTTCCTGTTCG | TGTAGACGTTGTAGGGATCG |
AcAREB1 | GCAACAACAACCACCTTCAA | GTTCCCAAACCAATCATTCC |
AcAREB2 | GGGGCGGCAGTAGTGAACCA | AGTGTCAGACCAGGCGTAAT |
AcAREB3 | GGTCAGCGCACAGGATTGAG | AGCCAGATTTGATTGCTTGG |
AcAREB4 | ACGGATAGGAATAGTGCTGG | TAAATCACCGAAGAAGCCAC |
AcAREB5 | ATGGCTTCTTCGGTGATTTA | CTGCTGCTGTGATGATCTAAC |
GUS | CACAAACCGTTCTACTTTACTGG | GCGTAAGGGTAATGCGAGGT |
AcActin | TGGAATGGAAGCTGCAGGA | CACCACTGAGCACAATGTTGC |
表1 实时荧光定量引物
Table 1 Primers for qRT-PCR
基因 Gene | 上游序列(5′-3′)Forward sequence | 下游序列(5′-3′)Reverse sequence |
---|---|---|
AcGH3.1 | AGGGTCTGTACTTCCTGTTCG | TGTAGACGTTGTAGGGATCG |
AcAREB1 | GCAACAACAACCACCTTCAA | GTTCCCAAACCAATCATTCC |
AcAREB2 | GGGGCGGCAGTAGTGAACCA | AGTGTCAGACCAGGCGTAAT |
AcAREB3 | GGTCAGCGCACAGGATTGAG | AGCCAGATTTGATTGCTTGG |
AcAREB4 | ACGGATAGGAATAGTGCTGG | TAAATCACCGAAGAAGCCAC |
AcAREB5 | ATGGCTTCTTCGGTGATTTA | CTGCTGCTGTGATGATCTAAC |
GUS | CACAAACCGTTCTACTTTACTGG | GCGTAAGGGTAATGCGAGGT |
AcActin | TGGAATGGAAGCTGCAGGA | CACCACTGAGCACAATGTTGC |
引物名称 Primer name | 引物序列(5′-3′) Primer sequence |
---|---|
ProAcGH3.1-pHIS2 | F:GGGCGAATTCCCGGGGAGCTCCTTTTATATATATATATATAT |
R:CGGATCGATTCGCGAACGCGTATATGAAGTGGTCCCCAATT | |
AcAREB1-BD | F:TCAGAGGAGGACCTGCATATGATGAACTTCAAGAACTATGG |
R:CCGCTGCAGGTCGACGGATCCTTAGCTCCTTGCTGCGTGTT | |
AcAREB1-AD | F:CGTACCAGATTACGCTCATATGATGAACTTCAAGAACTATGG R:GCAGCTCGAGCTCGATGGATCCTTAGCTCCTTGCTGCGTGTT |
AcAREB2-AD | F:CGTACCAGATTACGCTCATATGATGGGATCATATTTGAACTT R:GCAGCTCGAGCTCGATGGATCCTTATTCATTGCATAAAATAG |
AcAREB3-AD | F:CGTACCAGATTACGCTCATATGATGTACTTCAAGAACTATGG R:GCAGCTCGAGCTCGATGGATCCTCACCATGGGCTAGTCTGTG |
AcAREB4-AD | F:CGTACCAGATTACGCTCATATGATGAACTTCAGAAACTTTGG R:GCAGCTCGAGCTCGATGGATCCTCATGTTTCAACTATTGAAT |
AcAREB5-AD | F:CGTACCAGATTACGCTCATATGATGAACTTCAGAAACTTTGA R:GCAGCTCGAGCTCGATGGATCCTCACCATGGGCCAGTTTGTG |
AcAREB1-GFP | F:CCAAATCGACTCTAGTCTAGAATGAACTTCAAGAACTATGG R:GCCCTTGCTCACCATGGTACCGCTCCTTGCTGCGTGTT |
ProAcGH3.1-GUS | F:AACTGCAGCTTTTATATATATATATATAT R:CGGGATCCATATGAAGTGGTCCCCAATT |
表2 载体构建引物
Table 2 Primers for vector construction
引物名称 Primer name | 引物序列(5′-3′) Primer sequence |
---|---|
ProAcGH3.1-pHIS2 | F:GGGCGAATTCCCGGGGAGCTCCTTTTATATATATATATATAT |
R:CGGATCGATTCGCGAACGCGTATATGAAGTGGTCCCCAATT | |
AcAREB1-BD | F:TCAGAGGAGGACCTGCATATGATGAACTTCAAGAACTATGG |
R:CCGCTGCAGGTCGACGGATCCTTAGCTCCTTGCTGCGTGTT | |
AcAREB1-AD | F:CGTACCAGATTACGCTCATATGATGAACTTCAAGAACTATGG R:GCAGCTCGAGCTCGATGGATCCTTAGCTCCTTGCTGCGTGTT |
AcAREB2-AD | F:CGTACCAGATTACGCTCATATGATGGGATCATATTTGAACTT R:GCAGCTCGAGCTCGATGGATCCTTATTCATTGCATAAAATAG |
AcAREB3-AD | F:CGTACCAGATTACGCTCATATGATGTACTTCAAGAACTATGG R:GCAGCTCGAGCTCGATGGATCCTCACCATGGGCTAGTCTGTG |
AcAREB4-AD | F:CGTACCAGATTACGCTCATATGATGAACTTCAGAAACTTTGG R:GCAGCTCGAGCTCGATGGATCCTCATGTTTCAACTATTGAAT |
AcAREB5-AD | F:CGTACCAGATTACGCTCATATGATGAACTTCAGAAACTTTGA R:GCAGCTCGAGCTCGATGGATCCTCACCATGGGCCAGTTTGTG |
AcAREB1-GFP | F:CCAAATCGACTCTAGTCTAGAATGAACTTCAAGAACTATGG R:GCCCTTGCTCACCATGGTACCGCTCCTTGCTGCGTGTT |
ProAcGH3.1-GUS | F:AACTGCAGCTTTTATATATATATATATAT R:CGGGATCCATATGAAGTGGTCCCCAATT |
名称 Name | 基因编号 Gene ID | 染色体定位 Chromosome No. | 蛋白长度/aa Protein length | 分子量/kD Molecular weight | 等电点 Isoelectric point | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|
AcAREB1 | Ach00g131571 | 未知 Unknow | 431 | 47.30 | 9.79 | 细胞核 Nuclear |
AcAREB2 | Ach06g233651 | 06 | 448 | 49.08 | 9.16 | 细胞核 Nuclear |
AcAREB3 | Ach00g227711 | 未知 Unknow | 411 | 45.04 | 10.10 | 细胞核 Nuclear |
AcAREB4 | Ach11g026271 | 11 | 459 | 49.43 | 5.40 | 细胞核 Nuclear |
AcAREB5 | Ach05g315671 | 05 | 396 | 42.63 | 7.51 | 细胞核 Nuclear |
表3 猕猴桃AREB基因家族的基本性质
Table 3 Physicochemical properties of AcAREB gene family in kiwifruit
名称 Name | 基因编号 Gene ID | 染色体定位 Chromosome No. | 蛋白长度/aa Protein length | 分子量/kD Molecular weight | 等电点 Isoelectric point | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|
AcAREB1 | Ach00g131571 | 未知 Unknow | 431 | 47.30 | 9.79 | 细胞核 Nuclear |
AcAREB2 | Ach06g233651 | 06 | 448 | 49.08 | 9.16 | 细胞核 Nuclear |
AcAREB3 | Ach00g227711 | 未知 Unknow | 411 | 45.04 | 10.10 | 细胞核 Nuclear |
AcAREB4 | Ach11g026271 | 11 | 459 | 49.43 | 5.40 | 细胞核 Nuclear |
AcAREB5 | Ach05g315671 | 05 | 396 | 42.63 | 7.51 | 细胞核 Nuclear |
图2 猕猴桃(Actinidia chinensis,Ac)与番茄(Solanum lycopersicum,Sl)、拟南芥(Arabidopsis thaliana,At)AREB蛋白的进化分析
Fig. 2 Phylogenetic analysis of AREB protein from kiwifruit(Actinidia chinensis,Ac)and other plants (Solanum lycopersicum,Sl;Arabidopsis thaliana,At)
图3 猕猴桃猕猴桃(Ac)与番茄(Sl)AREB多序列比对分析 下划线:AREB-like保守结构域;双下划线:bZIP结构域。
Fig. 3 Multiple sequence alignment of AREB protein from kiwifruit(Ac)and Solanum lycopersicum(Sl) Conserved regions of AREB-like are underlined,and the bZIP signature(basic region and Leu zipper)is indicated over a double line.
[1] |
Bastias A, Yanez M, Osorio S, Arbona V, Gomez-Cadenas A, Fernie A R, Casaretto J A. 2014. The transcription factor AREB1 regulates primary metabolic pathways in tomato fruits. Journal of Experimental Botany, 65:2351-2363.
doi: 10.1093/jxb/eru114 pmid: 24659489 |
[2] |
Boettcher C, Boss P K, Davies C. 2011. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape(Vitis vinifera L.)berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. Journal of Experimental Botany, 62:4267-4280.
doi: 10.1093/jxb/err134 URL |
[3] |
Boettcher C, Keyzers R A, Boss P K, Davies C. 2010. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry(Vitis vinifera L.)and the proposed role of auxin conjugation during ripening. Journal of Experimental Botany, 61:3615-3625.
doi: 10.1093/jxb/erq174 URL |
[4] | Chen Jin-yin, Chen Ming, Gan Lin. 2005. Effects of ethephon and ABA treatments on physiology of‘Jinkui’kiwifruit during its ripening and softening. Acta Agriculturae Universitis Jiangxiensis, 27:6-11. (in Chinese) |
陈金印, 陈明, 甘霖. 2005. 乙烯利和ABA处理对‘金魁’猕猴桃果实后熟软化的生理效应. 江西农业大学学报, 27:6-11. | |
[5] | Chen Kun-song, Li Fang, Zhang Shang-long, Gavin S Ross. 1999. Role of abscisic acid and indole-3-acetic acid in kiwifruit ripening. Acta Horticulaturae Sinica, 26:81-86. (in Chinese) |
陈昆松, 李方, 张上隆, Gavin S Ross. 1999. ABA和IAA对猕猴桃果实成熟进程的调控. 园艺学报, 26:81-86. | |
[6] | Domingo C, Andres F, Tharreau D, Iglesias D J, Talon M. 2009. Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Molecular Plant, 22:201-210. |
[7] |
Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum, 147:15-27.
doi: 10.1111/j.1399-3054.2012.01635.x URL |
[8] | Gan Z Y, Fei L Y, Shan N, Fu Y Q, Chen J Y. 2019. Identification and expression analysis of Gretchen Hagen 3(GH3)in kiwifruit(Actinidia chinensis)during postharvest process. Plants-Basel, 8 (11):473. |
[9] |
Gan Z Y, Shan N, Fei L Y, Wan C P, Chen J Y. 2020. Isolation of the 9-cis-epoxycarotenoid dioxygenase(NCED) gene from kiwifruit and its effects on postharvest softening and ripening. Scientia Horticulturae, 261:109020.
doi: 10.1016/j.scienta.2019.109020 URL |
[10] |
Gan Z Y, Yuan X, Shan N, Wan C P, Chen C Y, Xu Y H, Xu Q, Chen J Y. 2021. AcWRKY 40 mediates ethylene biosynthesis during postharvest ripening in kiwifruit. Plant Science, 309:110948.
doi: 10.1016/j.plantsci.2021.110948 URL |
[11] | Hou Qiandong, Shen Tianjiao, Yu Huanhuan, Qiu Zhilang, Wen Zhuang, Zhang Huimin, Wu Yawei, Wen Xiaopeng. 2021. Genome-wide identification and expression analysis of Prunus avium Gretchen Hagen 3(GH3)gene family. Acta Horticulturae Sinica, 48 (12):2360-2374. (in Chinese) |
侯黔东, 沈天娇, 余欢欢, 仇志浪, 文壮, 张惠敏, 吴亚维, 文晓鹏. 2021. 甜樱桃GH3基因家族全基因组鉴定与表达分析. 园艺学报, 48 (12):2360-2374. | |
[12] |
Jagadeeswaran G, Raina S, Acharya B R, Maqbool S B, Mosher S L, Appel H M, Schultz J C, Klessig D F, Raina R. 2007. Arabidopsis GH3-LIKE DEFENSE GENE 1 is required for accumulation of salicylic acid,activation of defense responses and resistance to pseudomonas syringae. Plant Journal, 51:234-246.
pmid: 17521413 |
[13] | Jain M, Kaur N, Tyagi A K, Khurana J P. 2006. The auxin-responsive GH3 gene family in rice (Oryza sativa). Functional & Integrative Genomics, 6:36-46. |
[14] |
Jia H F, Chai Y M, Li C L, Lu D, Luo J J, Qin L, Shen Y Y. 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology, 157:188-199.
doi: 10.1104/pp.111.177311 URL |
[15] | Khan S, Stone J M. 2007. Arabidopsis thaliana GH3.9 in auxin and jasmonate cross talk. Plant Signaling & Behavior, 2:483-485. |
[16] |
Kuang J F, Zhang Y, Chen J Y, Chen Q J, Jiang Y M, Lin H T, Xu S J, Lu W J. 2011. Two GH3 genes from longan are differentially regulated during fruit growth and development. Gene, 485:1-6.
doi: 10.1016/j.gene.2011.05.033 pmid: 21672614 |
[17] |
Kumar R, Agarwal P, Tyagi A K, Sharma A K. 2012. Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato(Solanum lycopersicum). Molecular Genetics and Genomics, 287:221-235.
doi: 10.1007/s00438-011-0672-6 URL |
[18] |
Liu K D, Kang B C, Jiang H, Moore S L, Li H X, Watkin C B, Setter T L, Jahn M M. 2005. A GH3-like gene,CcGH3,isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene. Plant Molecular Biology, 58:447-464.
doi: 10.1007/s11103-005-6505-4 URL |
[19] | Liu K D, Wang J X, Li H L, Zhong J D, Feng S X, Pan Y L, Yuan C C. 2016. Identification,expression and IAA-Amide synthetase activity analysis of Gretchen Hagen 3 in papaya fruit(Carica papaya L.)during postharvest process. Frontiers in Plant Science, 7:1555. |
[20] |
Lu W J, Mao L C, Chen J X, Han X Y, Ren X C, Ying T J, Luo Z S. 2018. Interaction of abscisic acid and auxin on gene expression involved in banana ripening. Acta Physiologiae Plantarum, 40:1-9.
doi: 10.1007/s11738-017-2577-4 URL |
[21] |
Ludwig-Mueller J. 2011. Auxin conjugates:their role for plant development and in the evolution of land plants. Journal of Experimental Botany, 62:1757-1773.
doi: 10.1093/jxb/erq412 pmid: 21307383 |
[22] |
Mou W S, Li D D, Luo Z S, Li L, Mao L C, Ying T J. 2018. SlAREB 1 transcriptional activation of NOR is involved in abscisic acid-modulated ethylene biosynthesis during tomato fruit ripening. Plant Science, 276:239-249.
doi: 10.1016/j.plantsci.2018.07.015 URL |
[23] |
Nakashima K, Yamaguchi-Shinozaki K. 2013. ABA signaling in stress-response and seed development. Plant Cell Reports, 32:959-970.
doi: 10.1007/s00299-013-1418-1 pmid: 23535869 |
[24] |
Nicolas P, Lecourieux D, Kappel C, Cluzet S, Cramer G, Delrot S, Lecourieux F. 2014. The basic leucine zipper transcription factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. Plant Physiology, 164:365-383.
doi: 10.1104/pp.113.231977 pmid: 24276949 |
[25] |
Sravankumar T, Akash Naik N, Kumar R. 2018. A ripening-induced SlGH3-2gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato(Solanum lycopersicum L.). Plant Molecular Biology, 98:455-469.
doi: 10.1007/s11103-018-0790-1 pmid: 30367324 |
[26] |
Staswick P E, Serban B, Rowe M, Tiryaki I, Maldonado M T, Maldonado M C, Suza W. 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell, 17:616-627.
doi: 10.1105/tpc.104.026690 pmid: 15659623 |
[27] |
Sun L, Sun Y F, Zhang M, Wang L, Ren J, Cui M M, Wang Y P, Ji K, Li P, Li Q, Chen P, Dai S J, Duan C R, Wu Y, Leng P. 2012. Suppression of 9-cis-epoxycarotenoid dioxygenase,which encodes a key enzyme in abscisic acid biosynthesis,alters fruit texture in transgenic tomato. Plant Physiology, 158:283-298.
doi: 10.1104/pp.111.186866 URL |
[28] |
Wang S S, Saito T, Ohkawa K, Ohara H, Suktawee S, Ikeura H, Kondo S. 2018. Abscisic acid is involved in aromatic ester biosynthesis related with ethylene in green apples. Journal of Plant Physiology, 221:85-93.
doi: S0176-1617(17)30295-X pmid: 29268086 |
[29] | Wang S K, Bai Y H, Shen C J, Wu Y R, Zhang S N, Jiang D A, Guilfoyle T J, Chen M, Qi Y H. 2010. Auxin-related gene families in abiotic stress response in Sorghum bicolor. Functional & Integrative Genomics, 10:533-546. |
[30] |
Yuan H Z, Zhao K, Lei H J, Shen X J, Liu Y, Liao X, Li T H. 2013. Genome-wide analysis of the GH3 family in apple (Malus × domestica). BMC Genomics, 14:297.
doi: 10.1186/1471-2164-14-297 URL |
[31] |
Yue P T, Wang Y N, Bu H D, Li XY, Yuan H, Wang A D. 2019. Ethylene promotes IAA reduction through PuERFs-activated PuGH3.1 during fruit ripening in pear (Pyrus ussuriensis). Postharvest Biology and Technology, 157:110955.
doi: 10.1016/j.postharvbio.2019.110955 URL |
[32] |
Zaharah S S, Singh Z, Symons G M, Reid J B. 2013. Mode of action of abscisic acid in triggering ethylene biosynthesis and softening during ripening in mango fruit. Postharvest Biology and Technology, 75:37-44.
doi: 10.1016/j.postharvbio.2012.07.009 URL |
[33] | Zeng Wen-fang, Pan Lei, Niu Liang, Lu Zhen-hua, Cui Guo-chao, Wang Zhi-qiang. 2015. Bioinformatics analysis and expression of the nectarine indole-3-aceticacid-amido synthase(GH3)gene family during fruit development. Acta Horticulturae Sinica, 42:833-842. (in Chinese) |
曾文芳, 潘磊, 牛良, 鲁振华, 崔国朝, 王志强. 2015. 桃GH3基因家族的生物信息学分析及其在果实发育中的表达. 园艺学报, 42:833-842. | |
[34] |
Zhang M, Yuan B, Leng P. 2009. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. Journal of Experimental Botany, 60:1579-1588.
doi: 10.1093/jxb/erp026 pmid: 19246595 |
[35] |
Zhang S W, Li C H, Cao J, Zhang Y C, Zhang S Q, Xia Y F, Sun D Y, Sun Y. 2009. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiology, 151:1889-1901.
doi: 10.1104/pp.109.146803 URL |
[1] | 于婷婷, 李 欢, 宁源生, 宋建飞, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果GRAS全基因组鉴定及其对生长素的响应分析[J]. 园艺学报, 2023, 50(2): 397-409. |
[2] | 宋 放, 陈 奇, 袁炎良, 陈 沙, 尹海军, 蒋迎春, . 黄肉猕猴桃新品种‘先沃1号’[J]. 园艺学报, 2022, 49(S2): 47-48. |
[3] | 齐永杰, 高正辉, 马 娜, 王清明, 柯凡君, 陈 钱, 徐义流, . 黄肉抗溃疡病猕猴桃新品种‘皖农金果’[J]. 园艺学报, 2022, 49(S2): 49-50. |
[4] | 张慧琴, 楼国荣, 陆玲鸿, 古咸彬, 宋根华, 谢 鸣. 黄肉中华猕猴桃新品种‘金义’[J]. 园艺学报, 2022, 49(S2): 51-52. |
[5] | 吕正鑫, 贺艳群, 贾东峰, 黄春辉, 钟敏, 廖光联, 朱壹, 袁开昌, 刘传浩, 徐小彪. 猕猴桃种质资源表型性状遗传多样性分析[J]. 园艺学报, 2022, 49(7): 1571-1581. |
[6] | 梁晨, 孙如意, 向锐, 孙艺萌, 师校欣, 杜国强, 王莉. 葡萄生长调控因子GRF家族基因的鉴定及表达分析[J]. 园艺学报, 2022, 49(5): 995-1007. |
[7] | 李黎, 冯丹丹, 潘慧, 李文艺, 邓蕾, 汪祖鹏, 钟彩虹. 猕猴桃花粉灭菌方法比较及对果实品质的影响[J]. 园艺学报, 2022, 49(4): 769-777. |
[8] | 王丹, 王谧, 刘军, 周晓慧, 刘松瑜, 杨艳, 庄勇. 茄子U6启动子克隆及CRISPR/Cas9介导的基因编辑体系建立[J]. 园艺学报, 2022, 49(4): 791-800. |
[9] | 宋放, 李子璇, 王策, 王志静, 何利刚, 蒋迎春, 吴黎明, 白福玺. 柑橘菌根信号受体蛋白基因LYK2的克隆及功能分析[J]. 园艺学报, 2022, 49(2): 281-292. |
[10] | 黄仁维, 任迎虹, 祁伟亮, 曾睿, 刘欣宇, 邓彬艳. 桑树MaERF105-Like的克隆及其在干旱胁迫下的表达分析[J]. 园艺学报, 2022, 49(11): 2439-2448. |
[11] | 谢思艺, 周承哲, 朱晨, 詹冬梅, 陈兰, 吴祖春, 赖钟雄, 郭玉琼. 茶树CsTIFY家族全基因组鉴定及非生物胁迫和激素处理中主要基因表达分析[J]. 园艺学报, 2022, 49(1): 100-116. |
[12] | 吴小南, 王贺新, 谷 岩, 徐国辉, 娄 鑫, . 软枣猕猴桃新品种‘泉蜜’[J]. 园艺学报, 2021, 48(S2): 2793-2794. |
[13] | 杨天宸, 陈晓童, 吕可, 张荻. 百子莲脱水素基因ApSK3对逆境与激素信号的应答模式与调控机制[J]. 园艺学报, 2021, 48(8): 1565-1578. |
[14] | 李贵生. 猕猴桃‘金艳'和‘红阳'果实转录组的比较分析[J]. 园艺学报, 2021, 48(6): 1183-1196. |
[15] | 邓泽宜, 宋想, 洪艳, 戴思兰. 启动子在观赏植物基因工程中的应用综述[J]. 园艺学报, 2021, 48(6): 1250-1264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司