园艺学报 ›› 2022, Vol. 49 ›› Issue (12): 2743-2760.doi: 10.16420/j.issn.0513-353x.2022-0488
陈和敏1,2, 李佐1,*(), 马男3, 肖文芳1, 陈和明1, 吕复兵1, 李宗艳2, 朱根发1,*()
收稿日期:
2022-06-18
修回日期:
2022-10-07
出版日期:
2022-12-25
发布日期:
2023-01-02
通讯作者:
李佐,朱根发
E-mail:lizuo8375@126.com;zhugenfa@gdaas.cn
基金资助:
CHEN Hemin1,2, LI Zuo1,*(), MA Nan3, XIAO Wenfang1, CHEN Heming1, LÜ Fubing1, Li Zongyan2, ZHU Genfa1,*()
Received:
2022-06-18
Revised:
2022-10-07
Online:
2022-12-25
Published:
2023-01-02
Contact:
LI Zuo,ZHU Genfa
E-mail:lizuo8375@126.com;zhugenfa@gdaas.cn
摘要:
综述了影响兰花衰老的外部因素、衰老过程中内部组织代谢变化、乙烯合成及信号传导通路调控兰花衰老的分子机制,总结了常见的兰花切花和盆花中常用的保鲜处理技术手段、处理后的应用效果及兰花衰老相关基因改良研究;展望了利用现代基因工程技术,通过调控功能基因延缓兰花衰老进程而实现延长兰花观赏期的新途径。
中图分类号:
陈和敏, 李佐, 马男, 肖文芳, 陈和明, 吕复兵, 李宗艳, 朱根发. 兰花切花保鲜及盆花品质保持技术研究进展[J]. 园艺学报, 2022, 49(12): 2743-2760.
CHEN Hemin, LI Zuo, MA Nan, XIAO Wenfang, CHEN Heming, LÜ Fubing, Li Zongyan, ZHU Genfa. Research Advances on Fresh-keeping Technologies of Orchid Cut Flowers and Potted Plants[J]. Acta Horticulturae Sinica, 2022, 49(12): 2743-2760.
种属 Genus | 衰老因素 Senescence factor | 衰老主要表现 Senescence performance | 参考文献 Reference |
---|---|---|---|
文心兰属 Oncidium | 温度偏高或偏低 The storage temperature is higher or lower | 高于15 ℃,衰老加快,褪色;低于9 ℃,造成寒害,花苞不开放 Flowers senescence accelerates and the color fade when the temperature is higher than 15 ℃,cold damage occurs and flower buds not blooming when the temperature is lower than 9 ℃ | 潘英文 等, |
花药帽脱落 Anther cap shedding | 花瓣提前1 ~ 3 d失水皱缩衰老 Petals dehydration and shrinkage earlier than the control for 1 to 3 days | 李欣 等, | |
外源乙烯 Exogenous ethylene | 花梗发黄,叶片黄化,花蕾脱落 Yellowing of the pedicels and the leaves,bud dropping on cut inflorescences | Raffeiner et al., | |
花期缩短 Florescence shortening | 程裕轩 等, | ||
花瓣提前2 ~ 3 d失水皱缩衰老 Petal dehydration and shrinkage earlier than the control for 2 to 3 days | 李欣 等, | ||
石斛属 Dendrobium | 正常大气压贮藏 Normal atmosphere storage | 生理活性增大,贮藏寿命缩短6 ~ 17 d Physiological activity increased,storage life shortened by 6 to 17 days | Poonsri, |
授粉 Pollination | 衰老进程加速,寿命缩短13.1 d Induced earlier senescence,vase life shortened by 13.1 days | Ketsa & Luangsuwalai, | |
授粉13 h后花瓣、萼片萎蔫 Visible wilting of petals and sepals after 13 h of pollination | Ketsa & Rugkong, | ||
外源乙烯 Exogenous ethylene | 花苞在3 ~ 4 d内褪色和枯萎 Flower buds faded and wilted in 3 to 4 days | 王郁芬 等, | |
花朵萎蔫率增加23.83%,叶片黄化率增加24% Flower wilting rate increased by 23.83%,leaf yellowing rate increased by 24% | 周彩莲, | ||
花蕾、花朵3 d内完全脱落 All floral buds and all open flowers abscised within 3 days | Uthaichay et al., | ||
蝴蝶兰属 Phalaenopsis | 低温摆放 Storage under low temperature | 低于10 ℃,易受寒害,花朵花苞凋谢 Cold damage occurs and flowers and floral buds wilting when the temperature is lower than 10 ℃ | 田丹青 等, |
季节差异 Seasonal differences | 春、夏两季瓶插寿命短于秋季1.6 ~ 2.7 d Longer vase life of 1.6 to 2.7 days in autumn than in spring or summer | Kim & Lee, | |
黑暗储运 Storage and shipping under dark conditions | 储运4 d,小花苞黄化、萎蔫 Flower buds yellowing and wilting after 4 days of storage and shipping | 张绮恂 等, | |
储运21 d,叶片黄化 Leaf yellowing after 21 days of storage and shipping | Hou et al., | ||
干旱、干旱和黑暗储运 Storage and shipping under drought or drought and dark conditions | 干旱:开花提前,开花数少,品质下降;干旱和黑暗:开花延迟,开花数少,叶片黄化 Drought induced early flowering with less flower number and lower quality;drought and darkness induced delayed flowering with fewer flower number and yellowing leaves | Jeong & Oh, | |
种属 Genus | 衰老因素 Senescence factor | 衰老主要表现 Senescence performance | 参考文献 Reference |
授粉 Pollination | 2 ~ 4 h后乙烯敏感性增加,12 h后乙烯产量增加,花朵在2 d内萎蔫 Ethylene sensitivity increased after 2 to 4 hours,ethylene production increased after 12 hours, and flowers wilted within 2 days | Porat et al., | |
外源乙烯 Exogenous ethylene | 处理7 d,萎蔫率达35.5% ~ 88.9% The wilting rate up to 35.5% to 88.9% after 7 days of treatment | 张绮恂 等, | |
花蕾花朵在3 d内衰败 Floral buds and flowers senescence within 3 days | Sun et al., | ||
花朵和花蕾萎蔫率达90%以上,花色变淡Floral buds and flowers senescence percentage up to more than 90%,and flower color fades | Favero et al., | ||
兰属 Cymbidium | 外源乙烯 Exogenous ethylene | 瓶插寿命缩短1.8 d,唇瓣变色萎蔫 Flower vase life shortening 1.8 days,labellum discoloration and wilting | Heyes & Johnston, |
授粉 Pollination | 缩短瓶插寿命5.8 d Flower vase life shortening 5.8 days | Heyes & Johnston, | |
卡特兰属 Cattleya | 外源乙烯 Exogenous ethylene | 衰老加速,缩短瓶插寿命3.5 d Increasing senescence,shortening flower vase life of 3.5 days | Yamane et al., |
指甲兰属 Aerides | 授粉 Pollination | 授粉后2 ~ 3 d内萎蔫,提前12 d衰败 Flower senescence in 2 to 3 days after pollination,earlier wilting of 12 days | Attri et al., |
钻喙兰属 Rhynchostylis | 授粉 Pollination | 授粉后3 ~ 4 d内萎蔫,提前17 d衰败 Flower senescence in 3 to 4 days after pollination,earlier wilting of 17 days | Attri et al., |
虾脊兰属 Calanthe | 采收阶段 Harvest stage | 开放20朵时采收较未开放采收缩短瓶插16 d Shorter vase life of 16 days during inflorescences harvested in the blooming period(20 opened florets)compare with in the budding period(0 opened florets) | Tsai et al., |
齿舌兰属 Odontoglossum | 外源乙烯 Exogenous ethylene | 7 d后花梗发黄,花蕾萎蔫 Yellowing of the pedicels and bud dropping on cut inflorescences after 7 days | Raffeiner et al., |
表 1 常见代表性兰花衰老主要因素及表现
Table 1 Main senescence factors and performances of popular commercial orchids
种属 Genus | 衰老因素 Senescence factor | 衰老主要表现 Senescence performance | 参考文献 Reference |
---|---|---|---|
文心兰属 Oncidium | 温度偏高或偏低 The storage temperature is higher or lower | 高于15 ℃,衰老加快,褪色;低于9 ℃,造成寒害,花苞不开放 Flowers senescence accelerates and the color fade when the temperature is higher than 15 ℃,cold damage occurs and flower buds not blooming when the temperature is lower than 9 ℃ | 潘英文 等, |
花药帽脱落 Anther cap shedding | 花瓣提前1 ~ 3 d失水皱缩衰老 Petals dehydration and shrinkage earlier than the control for 1 to 3 days | 李欣 等, | |
外源乙烯 Exogenous ethylene | 花梗发黄,叶片黄化,花蕾脱落 Yellowing of the pedicels and the leaves,bud dropping on cut inflorescences | Raffeiner et al., | |
花期缩短 Florescence shortening | 程裕轩 等, | ||
花瓣提前2 ~ 3 d失水皱缩衰老 Petal dehydration and shrinkage earlier than the control for 2 to 3 days | 李欣 等, | ||
石斛属 Dendrobium | 正常大气压贮藏 Normal atmosphere storage | 生理活性增大,贮藏寿命缩短6 ~ 17 d Physiological activity increased,storage life shortened by 6 to 17 days | Poonsri, |
授粉 Pollination | 衰老进程加速,寿命缩短13.1 d Induced earlier senescence,vase life shortened by 13.1 days | Ketsa & Luangsuwalai, | |
授粉13 h后花瓣、萼片萎蔫 Visible wilting of petals and sepals after 13 h of pollination | Ketsa & Rugkong, | ||
外源乙烯 Exogenous ethylene | 花苞在3 ~ 4 d内褪色和枯萎 Flower buds faded and wilted in 3 to 4 days | 王郁芬 等, | |
花朵萎蔫率增加23.83%,叶片黄化率增加24% Flower wilting rate increased by 23.83%,leaf yellowing rate increased by 24% | 周彩莲, | ||
花蕾、花朵3 d内完全脱落 All floral buds and all open flowers abscised within 3 days | Uthaichay et al., | ||
蝴蝶兰属 Phalaenopsis | 低温摆放 Storage under low temperature | 低于10 ℃,易受寒害,花朵花苞凋谢 Cold damage occurs and flowers and floral buds wilting when the temperature is lower than 10 ℃ | 田丹青 等, |
季节差异 Seasonal differences | 春、夏两季瓶插寿命短于秋季1.6 ~ 2.7 d Longer vase life of 1.6 to 2.7 days in autumn than in spring or summer | Kim & Lee, | |
黑暗储运 Storage and shipping under dark conditions | 储运4 d,小花苞黄化、萎蔫 Flower buds yellowing and wilting after 4 days of storage and shipping | 张绮恂 等, | |
储运21 d,叶片黄化 Leaf yellowing after 21 days of storage and shipping | Hou et al., | ||
干旱、干旱和黑暗储运 Storage and shipping under drought or drought and dark conditions | 干旱:开花提前,开花数少,品质下降;干旱和黑暗:开花延迟,开花数少,叶片黄化 Drought induced early flowering with less flower number and lower quality;drought and darkness induced delayed flowering with fewer flower number and yellowing leaves | Jeong & Oh, | |
种属 Genus | 衰老因素 Senescence factor | 衰老主要表现 Senescence performance | 参考文献 Reference |
授粉 Pollination | 2 ~ 4 h后乙烯敏感性增加,12 h后乙烯产量增加,花朵在2 d内萎蔫 Ethylene sensitivity increased after 2 to 4 hours,ethylene production increased after 12 hours, and flowers wilted within 2 days | Porat et al., | |
外源乙烯 Exogenous ethylene | 处理7 d,萎蔫率达35.5% ~ 88.9% The wilting rate up to 35.5% to 88.9% after 7 days of treatment | 张绮恂 等, | |
花蕾花朵在3 d内衰败 Floral buds and flowers senescence within 3 days | Sun et al., | ||
花朵和花蕾萎蔫率达90%以上,花色变淡Floral buds and flowers senescence percentage up to more than 90%,and flower color fades | Favero et al., | ||
兰属 Cymbidium | 外源乙烯 Exogenous ethylene | 瓶插寿命缩短1.8 d,唇瓣变色萎蔫 Flower vase life shortening 1.8 days,labellum discoloration and wilting | Heyes & Johnston, |
授粉 Pollination | 缩短瓶插寿命5.8 d Flower vase life shortening 5.8 days | Heyes & Johnston, | |
卡特兰属 Cattleya | 外源乙烯 Exogenous ethylene | 衰老加速,缩短瓶插寿命3.5 d Increasing senescence,shortening flower vase life of 3.5 days | Yamane et al., |
指甲兰属 Aerides | 授粉 Pollination | 授粉后2 ~ 3 d内萎蔫,提前12 d衰败 Flower senescence in 2 to 3 days after pollination,earlier wilting of 12 days | Attri et al., |
钻喙兰属 Rhynchostylis | 授粉 Pollination | 授粉后3 ~ 4 d内萎蔫,提前17 d衰败 Flower senescence in 3 to 4 days after pollination,earlier wilting of 17 days | Attri et al., |
虾脊兰属 Calanthe | 采收阶段 Harvest stage | 开放20朵时采收较未开放采收缩短瓶插16 d Shorter vase life of 16 days during inflorescences harvested in the blooming period(20 opened florets)compare with in the budding period(0 opened florets) | Tsai et al., |
齿舌兰属 Odontoglossum | 外源乙烯 Exogenous ethylene | 7 d后花梗发黄,花蕾萎蔫 Yellowing of the pedicels and bud dropping on cut inflorescences after 7 days | Raffeiner et al., |
种属 Genus | 处理方法 Treatment | 瓶插(储藏) 寿命延长/d Extension of vase life or storage time | 其他效果 Other effect | 参考文献 Reference | ||
---|---|---|---|---|---|---|
文心兰属 Oncidium | 11 ℃,7 d | 6.00 | 无冻害,老化率降低 No cold damage,decrease the rate of senescence | 潘英文 等, | ||
石斛属 Dendrobium | 气调聚丙烯薄膜 包装 + 13 ℃ Modified atmosphere (5% CO2 + 2% O2)with polypropylene(PP)film packaging + 13 ℃ | 7.99 | 降低呼吸速率、乙烯产生、花青素降解、蛋白质降解和电解质泄漏Efficiently reduced the respiration rate,ethylene production,anthocyanin degradation,protein degradation, and electrolyte leakage | Poonsri, | ||
CO2 + O2 + 13 ℃ | 16.60 | ACC合成酶、ACC氧化酶活性下降 Lower ACC synthase and ACC oxidase activity | Poonsri, | |||
聚丙烯薄膜包装 + 13 ℃ Polypropylene(PP)film packaging + 13 ℃ | 9.00 | 降低呼吸速率、乙烯产生、花青素降解 Reduced the respiration rate,ethylene production and anthocyanin degradation | Yimyong & Soni, | |||
石斛属 Dendrobium | SUC + AOA | 6.90 | 促进开放,抑制花和蕾脱落、萎蔫 Promoted blooming, delayed floral bud or flowers abscission and petal wilting | Rattanawisal- anon et al., | ||
SUC + 柠檬酸 + AgNO3 SUC + citric acid + AgNO3 | 8.00 | 保持花瓣形态及色泽 Maintained the shape and color of petals | 马红芸 等, | |||
SUC + Al2(SO4)3 | 17.00 | 花蕾100%开放,花朵零脱落 Bud open rate reached to100%,no flower shedding | Muraleedharan et al., | |||
咪鲜胺 + 温吐80(5 min) Prochloraz + Tween 80 (5 min) | / | 抑制花药黑腐病,延迟花朵脱落,增强吸水 Protected against black anther disease,delayed floret dropping,enhance water uptake | Komol et al., | |||
1-MCP + 臭氧水溶液 1-MCP + aquеous ozone | 6.60 | 提高开花率,抑制微生物生长 Increased blooming rate,inhibited microbial growth | Almasi et al., | |||
SUC + AOA | 7.00 | 保持花的最高吸水性 Maintained the highest water uptake by the flowers | Chandran et al., | |||
蝴蝶兰 Phalaenopsis | STS,1.5 h + SUC + 8-HQS + STS | 26.75 | 延缓鲜质量与超氧化物歧化酶活性降低的速度,减缓脯氨酸含量的升高 Decreased the fresh weight of cut flower and SOD content,slowed down the increase of amino acids contents | 孔芳 等, | ||
卡特兰 Cattleya | (5 ℃ + CO2),24 h | 5.00 | 降低呼吸速率Reduced the respiration rate | Burana & Yamane, | ||
BA,24 h | 3.40 or 9.40 | 抑制乙烯产生 Inhibited ethylene production | Yamane et al., | |||
SUC + 1-MCP + BA | 7.20 | / | Yamane et al., | |||
万代兰 Vanda | 1-MCP,6 h | / | 抑制外源乙烯引起的衰老 Inhibited senescence induced by exogenous ethylene | Khunmuang et al., | ||
STS,24 h + 活性氯 STS,24 h + chlorine | 8.00 | 降低呼吸速率,提高花朵吸水和鲜质量 Reduced respiration rate,improved flower solution uptake and fresh weight | Khunmuang et al., | |||
DICA | 6.00 | 抑制微生物大量繁殖 Inhibited the proliferation of microorganisms | Sattayawong et al., | |||
莫氏兰 Mokara | DICA + CPB(pH 5.4) | 9.20 | 抑制细菌繁殖 Inhibited bacterial growth | Buanong, | ||
1-MCP,4 h | 7.80 | 降低乙烯生成速率 Reduced ethylene production rate | Almasi et al., | |||
兰属 Cymbidium | 1-MCP,12 h | 6.90 | / | Heyes & Johnston, |
表2 常见商品兰花切花保鲜技术处理及效果
Table 2 Preservation treatments and effects of popular commercial orchid cut flowers
种属 Genus | 处理方法 Treatment | 瓶插(储藏) 寿命延长/d Extension of vase life or storage time | 其他效果 Other effect | 参考文献 Reference | ||
---|---|---|---|---|---|---|
文心兰属 Oncidium | 11 ℃,7 d | 6.00 | 无冻害,老化率降低 No cold damage,decrease the rate of senescence | 潘英文 等, | ||
石斛属 Dendrobium | 气调聚丙烯薄膜 包装 + 13 ℃ Modified atmosphere (5% CO2 + 2% O2)with polypropylene(PP)film packaging + 13 ℃ | 7.99 | 降低呼吸速率、乙烯产生、花青素降解、蛋白质降解和电解质泄漏Efficiently reduced the respiration rate,ethylene production,anthocyanin degradation,protein degradation, and electrolyte leakage | Poonsri, | ||
CO2 + O2 + 13 ℃ | 16.60 | ACC合成酶、ACC氧化酶活性下降 Lower ACC synthase and ACC oxidase activity | Poonsri, | |||
聚丙烯薄膜包装 + 13 ℃ Polypropylene(PP)film packaging + 13 ℃ | 9.00 | 降低呼吸速率、乙烯产生、花青素降解 Reduced the respiration rate,ethylene production and anthocyanin degradation | Yimyong & Soni, | |||
石斛属 Dendrobium | SUC + AOA | 6.90 | 促进开放,抑制花和蕾脱落、萎蔫 Promoted blooming, delayed floral bud or flowers abscission and petal wilting | Rattanawisal- anon et al., | ||
SUC + 柠檬酸 + AgNO3 SUC + citric acid + AgNO3 | 8.00 | 保持花瓣形态及色泽 Maintained the shape and color of petals | 马红芸 等, | |||
SUC + Al2(SO4)3 | 17.00 | 花蕾100%开放,花朵零脱落 Bud open rate reached to100%,no flower shedding | Muraleedharan et al., | |||
咪鲜胺 + 温吐80(5 min) Prochloraz + Tween 80 (5 min) | / | 抑制花药黑腐病,延迟花朵脱落,增强吸水 Protected against black anther disease,delayed floret dropping,enhance water uptake | Komol et al., | |||
1-MCP + 臭氧水溶液 1-MCP + aquеous ozone | 6.60 | 提高开花率,抑制微生物生长 Increased blooming rate,inhibited microbial growth | Almasi et al., | |||
SUC + AOA | 7.00 | 保持花的最高吸水性 Maintained the highest water uptake by the flowers | Chandran et al., | |||
蝴蝶兰 Phalaenopsis | STS,1.5 h + SUC + 8-HQS + STS | 26.75 | 延缓鲜质量与超氧化物歧化酶活性降低的速度,减缓脯氨酸含量的升高 Decreased the fresh weight of cut flower and SOD content,slowed down the increase of amino acids contents | 孔芳 等, | ||
卡特兰 Cattleya | (5 ℃ + CO2),24 h | 5.00 | 降低呼吸速率Reduced the respiration rate | Burana & Yamane, | ||
BA,24 h | 3.40 or 9.40 | 抑制乙烯产生 Inhibited ethylene production | Yamane et al., | |||
SUC + 1-MCP + BA | 7.20 | / | Yamane et al., | |||
万代兰 Vanda | 1-MCP,6 h | / | 抑制外源乙烯引起的衰老 Inhibited senescence induced by exogenous ethylene | Khunmuang et al., | ||
STS,24 h + 活性氯 STS,24 h + chlorine | 8.00 | 降低呼吸速率,提高花朵吸水和鲜质量 Reduced respiration rate,improved flower solution uptake and fresh weight | Khunmuang et al., | |||
DICA | 6.00 | 抑制微生物大量繁殖 Inhibited the proliferation of microorganisms | Sattayawong et al., | |||
莫氏兰 Mokara | DICA + CPB(pH 5.4) | 9.20 | 抑制细菌繁殖 Inhibited bacterial growth | Buanong, | ||
1-MCP,4 h | 7.80 | 降低乙烯生成速率 Reduced ethylene production rate | Almasi et al., | |||
兰属 Cymbidium | 1-MCP,12 h | 6.90 | / | Heyes & Johnston, |
图1 兰花切花主要衰老因素、衰老表现及常用保鲜处理简图
Fig. 1 Schematic diagram of main senescence factors,senescence performances and common preservation treatments of cut orchid flowers
品质保持技术 Preservation technology | 种属 Genus | 处理方法 Treatment | 效果 Preservation effect | 参考文献 Reference |
---|---|---|---|---|
物理处理 Physical treatment | 墨兰 Cymbidium | 昼:20 ℃(12 h),夜:10 ℃(12 h) Daytime:20 ℃(12 h),nightime:10 ℃ (12 h) | 延长单花寿命3 d,延长花期 20 d Prolong the blooming time of single flower by 3 days and whole inflorescence by 20 days | 李淑娴, |
化学处理 Chemical treatment | 蝴蝶兰 Phalaenopsis | 1-MCP + 15 ℃贮藏4 d后,分别摆放在25、20、15、10和5 ℃的环境中 Plants storage with 1-MCP under 15 ℃ condition for 4 days, then placed at 25,20,15,10 and 5 ℃,respectively | 摆放在25、20和10 ℃的环境下分别延长第1朵花寿命17、13和16.25 d Prolonged the first flower’s life by 17 days at 25 ℃,13 days at 20 ℃ and 16.25 days at 10 ℃,respectively | 田丹青 等, |
1-MCP或STS处理 Treatment by 1-MCP or STS | 1-MCP 和STS分别延长第1朵花寿命16、18 d Prolonged the first flower’s life of 16 days by 1-MCP and 18 days by STS, respectively | 田丹青 等, | ||
0.1 μL · L-1 1-MCP,12 h | 萎蔫率降为0 Wilting rate reduced to 0 | Chang et al., | ||
200 nL · L-1 1-MCP,24 h | 抑制乙烯引起花朵、花苞的凋落 Inhibition flowers and floral buds from wilting and dropping caused by ethylene | Favero et al., | ||
6% 1-MCP喷施花序 Spraying the inflorescence with 6% 1-MCP | 延长花期最长14 d Prolonged flowering period up to 14 days | Gehl et al., | ||
800 μL · L-1 1-MCP | 将乙烯和黑暗引起的花朵和花苞萎蔫率分别降低到:0、7.5%、2.9%、7.5% Reduced the wilting rates of flowers and floral buds caused by ethylene and darkness up to 0,7.5%,2.9% and 7.5 %,respectively | 张绮恂 等, | ||
石斛兰 Dendrobium | 800 nL · L-1 1-MCP | 叶片黄化率降低2%,花朵脱落率降低 3.78% Reduced the yellowing rate of leaves by 2%, and the dropping rate of flowers by 3.78% | 周彩莲, | |
800 nL · L-1 1-MCP | 花朵和花苞萎蔫率降低为3%、0 Reduced the wilting rates of flowers and floral buds up to 3% and 0,respectively | 王郁芬 等, | ||
兰属 Cymbidium | 50 mg · L-1 SA喷施抽梗致大排铃期 Spraying the flowers from pedicel period to big bell stage with 50 mg · L-1 SA | 延长花期6.67 d Prolonged the flowering period of 6.67 days | 李淑娴, | |
50 mg · L-1 CCC处理花蕾 Treating the floral buds with 50 mg · L-1 CCC | 延长花期7 d Prolonged the flowering period of 7 days | 颜凤霞 等, |
表3 常见代表性兰花盆花品质保持技术
Table 3 Preservation treatments and effects of popular commercial potted orchid plants
品质保持技术 Preservation technology | 种属 Genus | 处理方法 Treatment | 效果 Preservation effect | 参考文献 Reference |
---|---|---|---|---|
物理处理 Physical treatment | 墨兰 Cymbidium | 昼:20 ℃(12 h),夜:10 ℃(12 h) Daytime:20 ℃(12 h),nightime:10 ℃ (12 h) | 延长单花寿命3 d,延长花期 20 d Prolong the blooming time of single flower by 3 days and whole inflorescence by 20 days | 李淑娴, |
化学处理 Chemical treatment | 蝴蝶兰 Phalaenopsis | 1-MCP + 15 ℃贮藏4 d后,分别摆放在25、20、15、10和5 ℃的环境中 Plants storage with 1-MCP under 15 ℃ condition for 4 days, then placed at 25,20,15,10 and 5 ℃,respectively | 摆放在25、20和10 ℃的环境下分别延长第1朵花寿命17、13和16.25 d Prolonged the first flower’s life by 17 days at 25 ℃,13 days at 20 ℃ and 16.25 days at 10 ℃,respectively | 田丹青 等, |
1-MCP或STS处理 Treatment by 1-MCP or STS | 1-MCP 和STS分别延长第1朵花寿命16、18 d Prolonged the first flower’s life of 16 days by 1-MCP and 18 days by STS, respectively | 田丹青 等, | ||
0.1 μL · L-1 1-MCP,12 h | 萎蔫率降为0 Wilting rate reduced to 0 | Chang et al., | ||
200 nL · L-1 1-MCP,24 h | 抑制乙烯引起花朵、花苞的凋落 Inhibition flowers and floral buds from wilting and dropping caused by ethylene | Favero et al., | ||
6% 1-MCP喷施花序 Spraying the inflorescence with 6% 1-MCP | 延长花期最长14 d Prolonged flowering period up to 14 days | Gehl et al., | ||
800 μL · L-1 1-MCP | 将乙烯和黑暗引起的花朵和花苞萎蔫率分别降低到:0、7.5%、2.9%、7.5% Reduced the wilting rates of flowers and floral buds caused by ethylene and darkness up to 0,7.5%,2.9% and 7.5 %,respectively | 张绮恂 等, | ||
石斛兰 Dendrobium | 800 nL · L-1 1-MCP | 叶片黄化率降低2%,花朵脱落率降低 3.78% Reduced the yellowing rate of leaves by 2%, and the dropping rate of flowers by 3.78% | 周彩莲, | |
800 nL · L-1 1-MCP | 花朵和花苞萎蔫率降低为3%、0 Reduced the wilting rates of flowers and floral buds up to 3% and 0,respectively | 王郁芬 等, | ||
兰属 Cymbidium | 50 mg · L-1 SA喷施抽梗致大排铃期 Spraying the flowers from pedicel period to big bell stage with 50 mg · L-1 SA | 延长花期6.67 d Prolonged the flowering period of 6.67 days | 李淑娴, | |
50 mg · L-1 CCC处理花蕾 Treating the floral buds with 50 mg · L-1 CCC | 延长花期7 d Prolonged the flowering period of 7 days | 颜凤霞 等, |
图2 兰花盆花主要衰老因素、衰老表现及常用保鲜处理简图
Fig. 2 Schematic diagram of main senescence factors,senescence performances and common preservation treatments of potted orchids
改良兰花种属 Orchid genus | 功能基因 Functional gene | 基因来源 Origin | 改良效果 Improvement | 参考文献 Reference |
---|---|---|---|---|
文心兰 Oncidium/ Oncidesa | mutant ethylene receptor ETHYLENE RESPONSE 1(etr1-1) | 拟南芥 Arabidopsis thaliana | 成功获得转基因植株,后续功能基因表达以及保鲜相关生理指标测定和分析有待开展 Oncidium‘Sweet Sugar’has been successfully transformed. In future gene expression of etr1-1 in different plant organs will be analysed and the postharvest physiology of etr1-1 transgenic plants tested | Raffeiner et al., |
Ethylene-insensitive 2,OnEIN2 | 文心兰 Oncidesa Gower Ramsey | 转基因植株的EIN2表达量有所下降,低于对照野生型 The expression level of OnEIN2 of transgenic materials was decreased and lowers than in controls | 时欢, | |
杂交文心兰 Burrageara | mutant ethylene receptor ETHYLENE RESPONSE 1(etr1-1) | 拟南芥 Arabidopsis thaliana | 可延长花朵寿命7 d,能显著延缓花芽凋落至少19 d Flower longevity was improved by 7 days,bud drop was efficiently prevented for at least 19 days in the transgenic plants | Winkelmann et al., |
石斛兰 Dendrobium | inverted repeat (IR) of ACC gene(IRACC) | 苹果 Apple | 与未转化对照相比,转基因株系在幼苗期抑制乙烯的能力显著高于非转基因株系 The ability for ethylene suppression by small potted transgenic plants was significantly higher in transgenic lines than in untransformed control | Zheng et al., |
ACC oxidase(ACO)gene(CP-ACO1) | 番木瓜 Carica papaya | 转基因植株的ACO酶活性和乙烯含量均低于非转基因植株 Lower ACO enzyme activity and lower ethylene production in transgenic orchid than that of the non-transgenic orchid plants | Sornchai & Chanprame, | |
转基因植株的花苞显著延迟败育和脱落,开放花朵寿命延长,衰老和脱落推迟 Delayed the abortion and abscission in floral buds,the life span of open flowers were increased and delayed the senescence and abscission of open flowers in transgenic orchid | Sornchai et al., | |||
蝴蝶兰 Phalaenopsis | PaFYF1/2 | 蝴蝶兰 Phalaenopsis | 作为抑制因子共同作用,通过抑制乙烯信号下游基因来抑制花器官的衰老和脱落 PaFYF1/2 work together to perform their functions as transcriptional repressors,to prohibit in regulating downstream of the ethylene signaling pathway genes,to prohibit flower senescence and abscission | Chen et al., |
齿舌兰属Odontoglossum | mutant ethylene receptor ETHYLENE RESPONSE 1(etr1-1) | 拟南芥 Arabidopsis thaliana | 已成功构建再生体系,携带功能基因的载体构建成功,后续有待获得转基因植株及保鲜功能验证 Successful establishment of a regeneration and transformation protocol,and an expression vector containing functional genes. In future transformed plants migh be obtained subsequently and gene expression will be analysed and the postharvest physiology tested | Raffeiner et al., |
大花蕙兰Cymbidium hybrid | mutant ethylene receptor gene,ERS(boers) | 花椰菜 Brassica oleracea var. botrytis L. | 降低转基因植株对乙烯的敏感性,外源乙烯干扰下导致非转基因植株的叶子快速褐变,而转基因植株叶子却没有变化 Reduced the ethylene sensitivity of transgenic plants,and under exogenous ethylene treatments,leaf sections from nontransformed control plants turned yellow and discolored,in contrast,all leaves of boers-transformed plants retained their green color | Chen et al., |
表4 基因工程技术改良兰花衰老
Table 4 Improvement of orchid senescence by genetic engineering technologies
改良兰花种属 Orchid genus | 功能基因 Functional gene | 基因来源 Origin | 改良效果 Improvement | 参考文献 Reference |
---|---|---|---|---|
文心兰 Oncidium/ Oncidesa | mutant ethylene receptor ETHYLENE RESPONSE 1(etr1-1) | 拟南芥 Arabidopsis thaliana | 成功获得转基因植株,后续功能基因表达以及保鲜相关生理指标测定和分析有待开展 Oncidium‘Sweet Sugar’has been successfully transformed. In future gene expression of etr1-1 in different plant organs will be analysed and the postharvest physiology of etr1-1 transgenic plants tested | Raffeiner et al., |
Ethylene-insensitive 2,OnEIN2 | 文心兰 Oncidesa Gower Ramsey | 转基因植株的EIN2表达量有所下降,低于对照野生型 The expression level of OnEIN2 of transgenic materials was decreased and lowers than in controls | 时欢, | |
杂交文心兰 Burrageara | mutant ethylene receptor ETHYLENE RESPONSE 1(etr1-1) | 拟南芥 Arabidopsis thaliana | 可延长花朵寿命7 d,能显著延缓花芽凋落至少19 d Flower longevity was improved by 7 days,bud drop was efficiently prevented for at least 19 days in the transgenic plants | Winkelmann et al., |
石斛兰 Dendrobium | inverted repeat (IR) of ACC gene(IRACC) | 苹果 Apple | 与未转化对照相比,转基因株系在幼苗期抑制乙烯的能力显著高于非转基因株系 The ability for ethylene suppression by small potted transgenic plants was significantly higher in transgenic lines than in untransformed control | Zheng et al., |
ACC oxidase(ACO)gene(CP-ACO1) | 番木瓜 Carica papaya | 转基因植株的ACO酶活性和乙烯含量均低于非转基因植株 Lower ACO enzyme activity and lower ethylene production in transgenic orchid than that of the non-transgenic orchid plants | Sornchai & Chanprame, | |
转基因植株的花苞显著延迟败育和脱落,开放花朵寿命延长,衰老和脱落推迟 Delayed the abortion and abscission in floral buds,the life span of open flowers were increased and delayed the senescence and abscission of open flowers in transgenic orchid | Sornchai et al., | |||
蝴蝶兰 Phalaenopsis | PaFYF1/2 | 蝴蝶兰 Phalaenopsis | 作为抑制因子共同作用,通过抑制乙烯信号下游基因来抑制花器官的衰老和脱落 PaFYF1/2 work together to perform their functions as transcriptional repressors,to prohibit in regulating downstream of the ethylene signaling pathway genes,to prohibit flower senescence and abscission | Chen et al., |
齿舌兰属Odontoglossum | mutant ethylene receptor ETHYLENE RESPONSE 1(etr1-1) | 拟南芥 Arabidopsis thaliana | 已成功构建再生体系,携带功能基因的载体构建成功,后续有待获得转基因植株及保鲜功能验证 Successful establishment of a regeneration and transformation protocol,and an expression vector containing functional genes. In future transformed plants migh be obtained subsequently and gene expression will be analysed and the postharvest physiology tested | Raffeiner et al., |
大花蕙兰Cymbidium hybrid | mutant ethylene receptor gene,ERS(boers) | 花椰菜 Brassica oleracea var. botrytis L. | 降低转基因植株对乙烯的敏感性,外源乙烯干扰下导致非转基因植株的叶子快速褐变,而转基因植株叶子却没有变化 Reduced the ethylene sensitivity of transgenic plants,and under exogenous ethylene treatments,leaf sections from nontransformed control plants turned yellow and discolored,in contrast,all leaves of boers-transformed plants retained their green color | Chen et al., |
[1] | Adams D O, Yang S F. 1979. Ethylene biosynthesis:identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences, 76 (1):170-174. |
[2] |
Ahmad S S, Tahir I. 2016. How and why of flower senescence:understanding from models to ornamentals. Indian Journal of Plant Physiology, 21 (4):446-456.
doi: 10.1007/s40502-016-0267-7 URL |
[3] |
Almasi P, Mohamed M, Anwar P, Ahmad S H, Kadir J. 2015. Responses of Dendrobium‘Darrenn Glory’and Mokara‘Calypso Jumbo’orchids to 1-methylcyclopropene and aqueous ozone postharvest treatments. Bragantia, 74 (4):457-466.
doi: 10.1590/1678-4499.12414 URL |
[4] |
Attri L K, Nayyar H, Bhanwra R K, Vij S P. 2008. Pollination-induced floral senescence in orchids:status of oxidative stress. Russian Journal of Plant Physiology, 55 (6):821-828.
doi: 10.1134/S1021443708060125 URL |
[5] |
Blankenship S M, Dole J M. 2003. 1-Methylcyclopropene:a review. Postharvest Biology and Technology, 28 (1):1-25.
doi: 10.1016/S0925-5214(02)00246-6 URL |
[6] | Buanong M, Uthairatanakij A. 2020. Postharvest technology of cut flowers of orchids//Khasim S M,Hegde S N,González-Arnao M T,Thammasiri K. Biology:recent trends and challenges. Singapore(Ⅴ). Singapore: Springer Nature Singapore Pte Ltd:95-112. |
[7] | Buanong M. 2018. Effect of sodium dichloroisocyanurate and citrate phosphate buffer in vase solution on microbial growth and quality of Mokara orchid flowers‘Moo-daeng’. Acta Horticulturae,(1213):625-630. |
[8] | Burana C, Yamane K. 2017. Responses of cut Cattleya orchid‘Lc. Spring Clima × Christina’flowers to high carbon dioxide as related to controlled atmosphere. Acta Horticulturae, 1167:407-412. |
[9] |
Chandran S, Toh C L, Zuliana R, Yip Y K, Nair H, Boyce A N. 2006. Effects of sugars and aminooxyacetic acid on the longevity of pollinated Dendrobium(Heang Beauty)flowers. Journal of Applied Horticulture, 8 (2):117-120.
doi: 10.37855/jah.2006.v08i02.27 URL |
[10] |
Chang Y C A, Lin W L, Hou J Y, Yen W Y, Lee N. 2013. Concentration of 1-methylcyclopropene and the duration of its application affect anti-ethylene protection in Phalaenopsis. Scientia Horticulturae, 153:117-123.
doi: 10.1016/j.scienta.2013.02.003 URL |
[11] |
Chen M K, Lee P F, Yang C H. 2011. Delay of flower senescence and abscission in Arabidopsis transformed with an FOREVER YOUNGFLOWER homolog from Oncidium orchid. Plant Signaling and Behavior, 6 (11):1841-1843.
doi: 10.4161/psb.6.11.17612 URL |
[12] |
Chen W H, Jiang Z Y, Hsu H F, Yang C H. 2021. Silencing of FOREVER YOUNG FLOWER Like genes from Phalaenopsis orchids promotes flower senescence and abscission. Plant and Cell Physiology, 62 (1):111-124.
doi: 10.1093/pcp/pcaa145 URL |
[13] |
Chen W H, Lee Y I, Yang C H. 2018. Ectopic expression of two FOREVER YOUNG FLOWER orthologues from Cattleya orchid suppresses ethylene signaling and DELLA results in delayed flower senescence/abscission and reduced flower organ elongation in Arabidopsis. Plant Molecular Biology Reporter, 36:710-724.
doi: 10.1007/s11105-018-1114-y URL |
[14] |
Chen W H, Li P F, Chen M K, Lee Y I, Yang C H. 2015. FOREVER YOUNG FLOWER negatively regulates ethylene response DNA-binding factors by activating an ethylene-responsive factor to control Arabidopsis floral organ senescence and abscission. Plant Physiol, 168:1666-1683.
doi: 10.1104/pp.15.00433 URL |
[15] | Chen Y T, Chu M J, Chiou Y S, Shaw J F, Huang L C, Chen H H, Uchimiya H. 2007. Prolonging the longevity of Cymbidium flowers through genetic transformation. Acta Horticulture, 738:545-548. |
[16] | Cheng Yu-xuan, Yang Cui-ping, Tian Xiao-yan, Shi Le-song, Hu Jin, Yan Ping-yu, Gong Xiao-xiao, Zhuang Fen-yu, Pan Ying-wen, Liu Jin-ping. 2017. The effect of applying preservation agent to cut flower aging in different flowering stages of Oncidium. Journal of Tropical Biology, 8 (1):48-51,57. (in Chinese) |
程裕轩, 杨翠萍, 田晓岩, 石乐松, 胡进, 闫冰玉, 巩笑笑, 庄玉粉, 潘英文, 刘进平. 2017. 在文心兰不同开花阶段施用保鲜剂对切花衰老的影响. 热带生物学报, 8 (1):48-51,57. | |
[17] |
Clayton S, Aizen M A. 1996. Effects of pollinia removal and insertion on flower longevity in Chloraea alpina(Orchidaceae). Evolutionary Ecology, 10 (6):653-660.
doi: 10.1007/BF01237712 URL |
[18] | Dar R A, Nisar S, Tahir I. 2021. Ethylene:a key player in ethylene sensitive flower senescence:a review. Scientia Horticulturae,290. |
[19] | De L C, Vij S P, Medhi R P. 2014. Post-harvest physiology and technology in orchids. Journal of Horticulture, 1 (1):1-9. |
[20] | Deng Zeyi, Song Xiang, Hong Yang, Dai Silan. 2021. Applications of promoters in the genetic engineering of ornamental plants:a review. Acta Horticulturae Sinica, 48 (6):1250-1264. |
邓泽宜, 宋想, 洪艳, 戴思兰. 2021. 启动子在观赏植物基因工程中的应用综述. 园艺学报, 48 (6):1250-1264. | |
[21] |
Favero B T, Poimenopoulou E, Himmelboe M, Stergiou T, Müller R, Lütken H. 2016. Efficiency of 1-methylcyclopropene(1-MCP)treatment after ethylene exposure of mini-Phalaenopsis. Scientia Horticulturae, 211:53-59.
doi: 10.1016/j.scienta.2016.08.010 URL |
[22] |
Ferrante A, Trivellini A, Scuderi D, Romano D, Vernieri P. 2015. Post-production physiology and handling of ornamental potted plants. Postharvest Biology and Technology, 100:99-108.
doi: 10.1016/j.postharvbio.2014.09.005 URL |
[23] |
Gehl C, Jowkar M M, Wagenhaus J, Serek M. 2019. Application of 1-MCP as a liquid formulation prevents ethylene-induced senescence in Phalaenopsis orchid flowers and Kalanchoe blossfeldiana inflorescences. Journal of Horticultural Science and Biotechnology, 94 (4):499-508.
doi: 10.1080/14620316.2018.1563510 URL |
[24] |
Gehl C, Wamhoff D, Schaarschmidt F, Serek M. 2018. 12 promoters. Plant Growth Regulation, 86:351-363.
doi: 10.1007/s10725-018-0434-0 URL |
[25] |
Goh C J, Halevy A H, Engel R, Kofranek A M. 1985. Ethylene evolution and sensitivity in cut orchid flowers. Scientia Horticulturae, 26 (1):57-67.
doi: 10.1016/0304-4238(85)90102-5 URL |
[26] |
Guo H W, Ecker J R. 2004. The ethylene signaling pathway:new insights. Current Opinion in Plant Biology, 7:40-49.
doi: 10.1016/j.pbi.2003.11.011 URL |
[27] |
Heyes J A, Johnston J W. 1998. 1-methylcyclopropene extends cymbidium orchid vase life and prevents damaged pollinia from accelerating senescence. New Zealand Journal of Crop and Horticultural Science, 26 (4):319-324.
doi: 10.1080/01140671.1998.9514070 URL |
[28] | Hou J Y, Setter T L, Chang Y C A. 2010. Effects of simulated dark shipping on photosynthetic status and post-shipping performance in phalaenopsis Sogo Yukidian‘V3’. Journal of the American Society for Horticultural Science. American Society for Horticultural Science, 135 (2):183-190. |
[29] | Iqbal N, Khan N A, Ferrante A, Trivellini A, FranciniA, Khan M I R. 2017. Ethylene role in plant growth. development and senescence:interaction with other phytohormones. Frontiers in Plant Science, 8:475. |
[30] |
Jeong J H, Oh W. 2021. Drought and darkness during long-term simulated shipping delay post-shipping flowering of Phalaenopsis Sogo Yukidian ‘V3’. Horticulturae, 7:483.
doi: 10.3390/horticulturae7110483 URL |
[31] | Jia Pei-yi, Li Chun-jiao, Dong li. 2006. Advances in ethylene inhibitor in the postharvest physiology of ornamental plants. Chinese Agricultural Science Bulletin, 22 (2):246-251. (in Chinese) |
贾培义, 李春娇, 董丽. 2006. 乙烯抑制剂在采后观赏植物中的应用研究进展. 中国农学通报, 22 (2):246-251. | |
[32] |
Ketsa S, Luangsuwalai K. 1996. The relationship between 1-aminocyclopropane-1-carboxylic acid content in pollinia,ethylene production and senescence of pollinated Dendrobium orchid flowers. Postharvest Biology and Technology, 8 (1):57-64.
doi: 10.1016/0925-5214(95)00053-4 URL |
[33] | Ketsa S, Rugkong A. 1999. Senescence of Dendrobium‘Pompadour’flowers following pollination. Horticultural Science and Biotechnology, 74 (5):608-613. |
[34] | Khandaker M M, Rasdi M Z, Naeimah N N, Mat N. 2017. Effects of naphthalene acetic acid(NAA)on the plant growth and sugars effects on the cut flowers Mokarachark kuan orchid. Bioscience Journal, 33 (1):19-30. |
[35] | Khunmuang S, Kanlayanarat S, Wongchaochant S, Wongs A C, Meir S, Buanong. 2018. Development of means for delaying senescence and prolonging the vase life of cut flowers of Vanda orchid‘Sansai Blue’. Acta Horticulturae, 1213:581-586. |
[36] | Khunmuang S, Kanlayanarat S, Wongs-Aree C, Meir S, Philosoph-Hadas S, Buanong M. 2016. Effect of ethephon and 1-MCP treatments on the vase life of cut‘Sansai Blue’Vanda. Acta Horticulturae, 1131:119-125. |
[37] |
Kim H K, Lee A K. 2021. Comparative analysis of the quality of domestically distributed cut phalaenopsis flowers based on the season and place of origin. Horticulturae, 7:382.
doi: 10.3390/horticulturae7100382 URL |
[38] |
Kim J H, Woo H R, Kim J, Lim P O, Lee I C, Choi S H, Hwang D, Nam H G. 2009. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science, 323:1053-1057.
doi: 10.1126/science.1166386 URL |
[39] | Komol T, Uthairatnakij A, Jitareerat P. 2017. Suppressing black anther symptoms in orchid inflorescences by fungicides. Acta Horticulturae,(1167):363-368. |
[40] | Kong Fang, Lin Hong-long, Xue Zheng-lian, Yang Chao-ying. 2013. Research on preservatives of cut Phalaenopsis flower and related physiological influence. Northern Horticulture,(2):130-133. (in Chinese) |
孔芳, 凌宏龙, 薛正莲, 杨超英. 2013. 保鲜液对蝴蝶兰切花保鲜生理效应的研究. 北方园艺,(2):130-133. | |
[41] | Li Shu-xian. 2016. Mechanism of Flower Development and Early Flowering Technique of Cymbidium sinense [M. D. Dissertation]. Fuzhou: Fujian Agriculture and Forestry University. (in Chinese) |
李淑娴. 2016. 墨兰成花机理及花期调控技术研究[硕士论文]. 福州: 福建农林大学. | |
[42] | Li Xin, Liu Liang, Yu Rang-cai, Li Xin-yue, Yue Yun-yi, Yue Yue-chong, Fan Yang-ping. 2021. Studies on the Relationship of Anther Cap Shedding and Cut Flower Senescence in Oncidium flexuosum. Acta Horticulturae Sinica, 48 (6):1163-1172. (in Chinese) |
李欣, 刘亮, 余让才, 李昕悦, 玉云祎, 岳跃冲, 范燕萍. 2021. 文心兰花药帽脱落与切花花朵衰老的关系研究. 园艺学报, 48 (6):1163-1172. | |
[43] |
Liu Chang-yu, Chen Xun, Long Yu-qing, Chen Ya, Liu Xiang-dan, Zhou Ri-bao. 2019. Research advances in genes involved in ethylene biosynthesis and signal transduction during flower senescence. Biotechnology Bulletin, 35 (3):171-182. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0923 |
刘畅宇, 陈勋, 龙雨青, 陈娅, 刘湘丹, 周日宝. 2019. 乙烯生物合成及信号转导途径中介导花衰老相关基因的研究进展. 生物技术通报, 35 (3):171-182.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0923 |
|
[44] | Ma Hong-yun, Li Min, Wan Wei-la, Wu Dan-dan, Su Yi-lan. 2018. Effects of different fresh-keeping agents on physiological characters of Dendrobium hybridus cut flowers. Heilongjiang Agricultural Sciences,(12):47-50. (in Chinese) |
马红芸, 李敏, 王维娜, 吴丹丹, 苏一兰. 2018. 不同保鲜液对秋石斛切花生理效应的影响. 黑龙江农业科学,(12):47-50. | |
[45] |
Ma N, Ma C, Liu Y, Shahid M O, Wang C, Gao J. 2018. Petal senescence:a hormone view. Journal of Experimental Botany, 69:719-732.
doi: 10.1093/jxb/ery009 URL |
[46] |
Miryeganeh M. 2022. Epigenetic mechanisms of senescence in plants. Cells, 11 (2):251
doi: 10.3390/cells11020251 URL |
[47] |
Mubarok S, Suminar E, Nadia N K. 2019. Ethylene inhibition using 1-methylcyclopropene and future perspective for tropical ornamental plants. Asian Journal of Plant Sciences, 18 (1):1-8.
doi: 10.3923/ajps.2019.1.8 URL |
[48] |
Muraleedharan A, Sha K, Kumar S, Usha G, Joshi J L. 2021. Response of orchid cut flowers as affected by floral preservatives on the postharvest quality. Plant Archives, 21 (Suppliment-1):1825-1829.
doi: 10.51470/PLANTARCHIVES.2021.v21.S1.292 URL |
[49] | Pan Ying-wen, Lin Ming-guang, Han Song. 2011. Cold fresh-keeping technologies for cut flowers of Oncidium. Chinese Journal of Tropical Crops, 32 (4):752-755. (in Chinese) |
潘英文, 林明光, 韩松. 2011. 文心兰切花采后冷藏保鲜技术研究. 热带作物学报, 32 (4):752-755. | |
[50] |
Poonsri W. 2020. Effect of modified and controlled atmosphere storage on enzyme activity and senescence of Dendrobium orchids. Heliyon, 6 (9):e05070.
doi: 10.1016/j.heliyon.2020.e05070 URL |
[51] | Poonsri W. 2021. Effects of active and passive modified atmosphere packaging on biochemical properties of cut Dendrobium orchid flowers. Heliyon, 7 (6):10. |
[52] |
Porat R, Halevy A H, Serek M, Borochov A. 1995. An increase in ethylene sensitivity following pollination is the initial event triggering an increase in ethylene production and enhanced senescence of Phalaenopsis orchid flowers. Physiologia Plantarum, 93 (4):778-784.
doi: 10.1111/j.1399-3054.1995.tb05131.x URL |
[53] | Qiao Yong-xue. 2014. Change of mainly physiological index of Phalaenopsis amabilisin course of senescence. Journal of Southwest Agricultural University, 27 (3):1045-1048. (in Chinese) |
乔永旭. 2014. 蝴蝶兰花衰老过程中主要生理指标的变化. 西南农业学报, 27 (3):1045-1048. | |
[54] | Raffeiner B, Serek M, Winkelmann T. 2009a. 1-Methylcyclopropene inhibits Ethylene effects in cut inflorescences and potted plants of Oncidium and Odontoglossum orchid species. European Journal of Horticultural Science, 74 (1):10-15. |
[55] |
Raffeiner B, Serek M, Winkelmann T. 2009b. Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant geneetr1-1. Plant Cell Tissue and Organ Culture, 98:125-134.
doi: 10.1007/s11240-009-9545-7 URL |
[56] |
Rattanawisalanon C, Ketsa S, Vandoorn W G. 2003. Effect of aminooxyacetic acid and sugars on the vase life of Dendrobium flowers. Postharvest Biology and Technology, 29 (1):93-100.
doi: 10.1016/S0925-5214(02)00242-9 URL |
[57] | Sattayawong N, Uthairatanakij A, Jitareerat P, Obsuwan K. 2010. Responses of Mokara‘Nora Pink’inflorescences to biocide in vase solution. Acta Horticulturae, 875:531-538. |
[58] | Shi Huan. 2018. Molecular Characterization and CRISPR/Cas9-mediated Editing of Oncidesa OnEIN2 gene [M. D. Dissertation]. Fuzhou: Fujian Agriculture and Forestry University. (in Chinese) |
时欢. 2018. 文心兰OnEIN2的基因特性与CRISPR/Cas9介导的基因编辑研究[硕士论文]. 福州: 福建农林大学. | |
[59] |
Sisler E C, Serek M. 1997. Inhibitors of ethylene responses in plants at the receptor level:recent developments. Physiologia Plantarum, 100 (3):577-582.
doi: 10.1111/j.1399-3054.1997.tb03063.x URL |
[60] | Sornchai P, Chanprame S. 2015. Genetic Transformation of Dendrobium‘Sonia Earsakul’with antisense Carica papaya ACO1 gene. Modern Applied Science, 9 (12). |
[61] |
Sornchai P, Doorn W, Imsabai W, Burns P, Chanprame S. 2020. Dendrobium orchids carrying antisense acc oxidase:small changes in flower morphology and a delay of bud abortion,flower senescence,and abscission of flowers. Transgenic Research, 29 (1):429-442.
doi: 10.1007/s11248-020-00209-8 URL |
[62] | Su Xiao-jun, Jiang Yue-min. 2001. Application of a new inhibitor of ethylene perception,1-methylcyclopropene in postharvest horticultural crops. Plant Physiology Communications, 37 (4):361-364. (in Chinese) |
苏小军, 蒋跃明. 2001. 新型乙烯受体抑制剂——1-甲基环丙烯在采后园艺作物中的应用. 植物生理学通讯, 37 (4):361-364. | |
[63] | Suksamran C, Buanong M, Kanlayanarat S. 2011. Effect of NAA on delaying flower abscission of Mokara orchid flower cv.‘Moodang’. Journal of Agricultural Science, 42 (Suppl 1):183-185. |
[64] |
Sun Y, Christensen B, Liu F, Wang H, Müller R. 2009. Effects of ethylene and 1-MCP(1-methylcyclopropene)on bud and flower drop in mini Phalaenopsis cultivars. Plant Growth Regulation, 59 (1):83-91.
doi: 10.1007/s10725-009-9391-y URL |
[65] |
Teixeira daSilva J A, Aceto S, Liu W, Yu H, Kanno A. 2014. Genetic control of flower development,color and senescence of Dendrobium orchids. Scientia Horticulturae, 175:74-86.
doi: 10.1016/j.scienta.2014.05.008 URL |
[66] | Tian Dan-qing, Ge Ya-ying, Pan Gang-min, Cao Qun-yang. 2008. Effect of Anxipei treatment on fresh-keeping effect of potted flowers of Phalaenopsis orchid at different temperatures. Journal of Zhejiang Agricultural Sciences,(2):161-164. (in Chinese) |
田丹青, 葛亚英, 潘刚敏, 曹群阳. 2008. 安喜培处理对蝴蝶兰盆花在不同温度下保鲜效果的影响. 浙江农业科学,(2):161-164. | |
[67] | Tian Dan-qing, Ge Ya-ying, Pan Gang-min, Liu Xiao-jing. 2010. Effects of different preservative treatments on potted orchids//Zhang Qi-xiang. Research progress of ornamental horticulture in China. Beijing: China Forestry Publishing House:502-504. (in Chinese) |
田丹青, 葛亚英, 潘刚敏, 刘晓静. 2010. 不同保鲜剂处理对蝴蝶兰盆花的保鲜效应//张启翔. 中国观赏园艺研究进展, 北京: 中国林业出版社:502-504. | |
[68] |
Trivellini A, Cocetta G, Vernieri P, Mensuali-Sodi A, Ferrante A. 2015. Effect of cytokinins on delaying Petunia flower senescence:a transcriptome study approach. Plant Molecular Biology, 87 (1-2):169-180.
doi: 10.1007/s11103-014-0268-8 pmid: 25425166 |
[69] | Tsai J Y, Wang T T, Huang P L, Do Y Y. 2021. Effects of developmental stages on postharvest performance of White Crane orchid (Calanthe triplicata)inflorescences. Scientia Horticulturae, 281:1-9. |
[70] |
Uthaichay N, Ketsa S, Doorn W. 2007. 1-MCP pretreatment prevents bud and flower abscission in Dendrobium orchids. Postharvest Biology and Technology, 43 (3):374-380.
doi: 10.1016/j.postharvbio.2006.09.015 URL |
[71] | Wang Kaixuan, Wang Yi, Shi Tian, Ding Xining, Yuan Junhui, Shi Guoan, Hu Yonghong. 2020. Physiological effects of rapamycin pretreatment on delaying the senescence of cut flower in tree peony‘Luoyanghong’. Acta Horticulturae Sinica, 47 (10):1956-1968. (in Chinese) |
王凯轩, 王依, 史田, 丁熙柠, 袁军辉, 史国安, 胡永红. 2020. 雷帕霉素预处理延缓牡丹‘洛阳红’切花衰老的生理效应. 园艺学报, 47 (10):1956-1968. | |
[72] | Wang San-geng, De Jin. 2006. Storage and preservation of orchid flowers. Scientific breeding,(1):50-51. (in Chinese) |
王三根, 德金. 2006. 兰科花卉的贮藏保鲜. 科学种养,(1):50-51. | |
[73] | Wang Yi, Wang Kaixuan, Hu Siyuan, Zhou Shuang, Shi Guoan. 2021. Effects of ethylene metabolism and energy status on vase quality of cut Itoh peony‘Bartzella’flowers. Acta Horticulturae Sinica, 48 (6):1135-1149. (in Chinese) |
王依, 王凯轩, 胡思源, 周爽, 史国安. 2021. 乙烯代谢和能量状态对‘巴茨拉’牡丹切花瓶插品质的作用研究. 园艺学报, 48 (6):1135-1149. | |
[74] | Wang Yu-fen, Li Nian, Zhang Yao-qian. 2009. Effects of ethylene and 1-Methylcyclopropene on postharvest quality of potted flowers of Dendrobium officinale. Journal of The Taiwan Society For Horticultural Science, 55 (4):207-217. (in Chinese) |
王郁芬, 李哖, 张耀乾. 2009. 乙烯及1-Methylcyclopropene对秋石斛兰盆花产后品质之影响. 台湾园艺, 55 (4):207-217. | |
[75] | Willis K J. 2017. State of the world’s plants. Report. Royal Botanic Gardens,Kew:10-11. |
[76] |
Winkelmann T, Warwas M, Raffeine B, Serek M, Mibus H. 2016. Improved postharvest quality of inflorescences of fbp1::etr1-1 transgenic Burrageara‘Stefan Isler Lava Flow’. Journal of Plant Growth and Regulation, 35 (2):390-400.
doi: 10.1007/s00344-015-9545-2 URL |
[77] | Woltering E J. 1989. Lip coloration in Cymbidium flowers by emasculation and by lip-produced ethylene. Acta Horticulturae, 261 (1980):145-150. |
[78] |
Woltering E J, van Doorn W G. 1988. Role of ethylene in senescence of petals—morphological and taxonomical relationships. Journal of Experimental Botany, 39 (208):1605-1616.
doi: 10.1093/jxb/39.11.1605 URL |
[79] | Wongjunta M, Wongs-Aree C, Salim S, Meir S, Philosoph-Hadas S, Buanong M. 2021. Involvement of ethylene in physiological processes determining the vase life of various hybrids of Mokara orchid cut flowers. Agronomy-Base, 11(1):160. |
[80] | Yamane K, Kuchii E, Fujishige N, Minegishi N, Ogata R. 1997. Efects of BA pretreatment on vase life,ethylene production,and soluble sugar contents in cut florets of four members of the Cattleya alliance. Journal of the Japanese Sciety for Horticultural Science, 65 (4):801-807. |
[81] | Yamane K, Yamaki Y, Fujishige N. 2004. Effects of exogenous ethylene and 1-MCP on ACC oxidase activity,Ethylene production and vase life in Cattleya Alliances. Journal of the Japanese Society for Horticultural Science, 73 (2):128-133. |
[82] | Yan Feng-xia, Tian Fan, Wang Lian-hui, Jiang Yun-li. 2017. Effects of four plant growth regulators on flowering of Cymbidium japonica. Modern Horticulture,(9):15-16. (in Chinese) |
颜凤霞, 田凡, 王莲辉, 姜运力. 2017. 四种植物生长调节剂对寒兰开花的影响. 现代园艺,(9):15-16. | |
[83] |
Yang S F. 1984. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 35 (1):155-189.
doi: 10.1146/annurev.pp.35.060184.001103 URL |
[84] | Yimyong W, Soni P. 2014. Effects of modified atmosphere packaging on quality of cut Dendrobium orchid. Journal of Food Agriculture and Environment, 12 (1):408-411. |
[85] | Zhang Qi-xun, Li Nian, Zhang Tian-hong. 2003. Ethylene and darkness cause wilting of potted flowers and buds of butterflies. Chinese Society for Horticultural Science, 49 (2):173-182. (in Chinese) |
张绮恂, 李哖, 张天鸿. 2003. 乙烯与黑暗引起蝴蝶兰盆花花朵及花苞萎蔫. 中国园艺, 49 (2):173-182. | |
[86] | Zhang Yong-ping. 2013. Relationship between natural senescence and active oxygen metabolism in Phalaenopsis amabilis. Journal of Northeast Forestry University, 41 (3):78-81. (in Chinese) |
张永平. 2013. 蝴蝶兰花自然衰老与活性氧代谢的关系. 东北林业大学报, 41 (3):78-81. | |
[87] | Zheng Bao-qiang. 2009. Study on flowering regulation and key cluture technology on Cattleya[Ph. D. Dissertation]. Beijing: Chinese Academy of Forestry. (in Chinese) |
郑宝强. 2009. 卡特兰花期调控及其关键栽培技术研究[博士论文]. 北京: 中国林业科学研究院. | |
[88] |
Zheng Q, Zheng Y P, Wang G D, Guo W M, Fan W F, Wang C. 2012. Sonication-assisted agrobacterium-mediated transformation of the ACC gene to interfere the production of ethylene in spring Dendrobium cv.‘Sanya’. Russian Journal of Plant Physiology, 59 (2):266-274.
doi: 10.1134/S1021443712010190 URL |
[89] | Zhou Cai-lian. 2007. Effects of 1-methyleyclopropene and multiple preservative on ornamental characters and fractional mechanisms in cut and potted flowers[M. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese) |
周彩莲. 2007. 1-甲基环丙烯(1-MCP)等处理对切花与盆花产后品质及有关机理的影响[硕士论文]. 南京: 南京农业大学. | |
[90] | Zhu Gen-fa, Yang Feng-xi, Lü Fu-bing, Li Zuo, Chen He-ming, Gao Jie, Xiao Wen-fang, Ren Rui, Wei Yong-lu, Jin Jian-peng, Lu Chu-qiao. 2020. Research advances in orchid breeding and industrialization technology. Guangdong Agricultural Sciences, 47 (11):218-225. (in Chinese) |
朱根发, 杨凤玺, 吕复兵, 李佐, 陈和明, 高洁, 肖文芳, 任锐, 魏永路, 金建鹏, 陆楚桥. 2020. 兰花育种及产业化技术研究进展. 广东农业科学, 47 (11):218-225. |
[1] | 张爱玲, 涂红艳, 肖 望, 钟晓晴, 陆秋婵, 成丽萍, 林晓萍, 麦钰玲. 白姜花二倍体与四倍体切花形态与显微结构变化观察[J]. 园艺学报, 2023, 50(2): 345-358. |
[2] | 黄杏娥, 郭应杰, 杨文宏, 汤王外, 郭承刚, 徐春莲, 和寿星. 兰花新品种‘云科高1号’[J]. 园艺学报, 2022, 49(S2): 207-208. |
[3] | 何元浩, 胡凤荣, 孙崇波, 陈 跃, 王筠竹. 国兰新品种‘黄逸’[J]. 园艺学报, 2022, 49(S1): 125-126. |
[4] | 于 静, 陈守良, 陈之林, . 杂交兰新品种‘守良梅’[J]. 园艺学报, 2022, 49(S1): 137-138. |
[5] | 王妍, 孙政, 冯珊, 袁心怡, 仲林林, 曾云流, 傅小鹏, 程运江, 包满珠, 张帆. 香石竹DcERF-1转录因子对切花衰老的负调控作用[J]. 园艺学报, 2022, 49(6): 1313-1326. |
[6] | 陈健鑫, 魏玉倩, 唐婕, 竺永金, 马焕成, 伍建榕. 云南大理栽培春兰中ORSV和CymMV的分子检测及序列分析[J]. 园艺学报, 2022, 49(3): 655-662. |
[7] | 李欣, 刘亮, 余让才, 李昕悦, 玉云祎, 岳跃冲, 范燕萍. 文心兰花药帽脱落与切花花朵衰老的关系研究[J]. 园艺学报, 2021, 48(6): 1163-1172. |
[8] | 曾泽湘, 肖显梅, 谭小丽, 范中奇, 陈建业. 菜薹BrWRKY57的特性及其对BrPPH1和BrNCED3的调控[J]. 园艺学报, 2021, 48(3): 518-530. |
[9] | 李钰卓, 刘柯, 袁璐, 曹丽雯, 王挺进, 甘苏生, 陈利萍. 菜薹BrNAP克隆及其在采后叶片衰老中的功能分析[J]. 园艺学报, 2021, 48(1): 60-72. |
[10] | 徐小迪1,2,李博强1,秦国政1,陈 彤1,张占全1,田世平1,2,*. 果实采后品质维持的分子基础与调控技术研究进展[J]. 园艺学报, 2020, 47(8): 1595-1609. |
[11] | 王凯轩, 王 依, 史 田, 丁熙柠, 袁军辉, 史国安, 胡永红, . 雷帕霉素预处理延缓牡丹‘洛阳红’切花衰老的生理效应[J]. 园艺学报, 2020, 47(10): 1956-1968. |
[12] | 卜朝阳,何荆洲,黄昌艳,曾艳华*. 兰花品种‘香公主’[J]. 园艺学报, 2019, 46(S2): 2875-2876. |
[13] | 王海波,王 帅,王孝娣,史祥宾,王志强,刘凤之*. 葡萄叶片衰老过程中不同光质对其光合和叶绿体超微结构的影响[J]. 园艺学报, 2019, 46(2): 205-214. |
[14] | 张超越,杨艳鸿,薛雨欣,吴 敏,李海刚,辛 杰,王守箐*,刘 林*. 番茄幼叶、成熟叶和衰老叶胞质脂滴的观察[J]. 园艺学报, 2019, 46(11): 2249-2256. |
[15] | 李秀娟1,*,朱尾银1,陈孝丑1,赖张龙2,江瑞荣1,高小坤1,徐建球1. 兰花新品种‘玉女丹心’[J]. 园艺学报, 2018, 45(S2): 2799-2800. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司