园艺学报 ›› 2022, Vol. 49 ›› Issue (12): 2597-2610.doi: 10.16420/j.issn.0513-353x.2021-0835
李俊璋1, 秦源2,3,4, 肖强1, 安昌2,4, 廖静怡3, 郑平2,*()
收稿日期:
2022-04-22
修回日期:
2022-08-31
出版日期:
2022-12-25
发布日期:
2023-01-02
通讯作者:
郑平
E-mail:zhengping@fafu.edu.cn
基金资助:
LI Junzhang1, QIN Yuan2,3,4, XIAO Qiang1, AN Chang2,4, LIAO Jingyi3, ZHENG Ping2,*()
Received:
2022-04-22
Revised:
2022-08-31
Online:
2022-12-25
Published:
2023-01-02
Contact:
ZHENG Ping
E-mail:zhengping@fafu.edu.cn
摘要:
景天酸代谢(crassulacean acid metabolism,CAM)植物在夜间固定CO2且具有较高的水分利用效率的碳集中机制(carbon concentrating mechanism)。将CAM光合作用途径“搬进”C3作物中提高C3作物水分利用效率以增强其抗旱性(即CAM工程化),在未来农业中具有重要的应用潜力。系统认识CAM植物光合作用途径及其相关调控机理,是开发和利用CAM光合作用途径的重要理论基础。目前,组学和分子生物学的发展大大促进了CAM植物相关研究。CAM途径关键基因及其功能逐渐被揭示,10多种CAM植物基因组被破译,转录因子、激素、miRNA、lncRNA、可变剪切、DNA甲基化等多种因素参与CAM途径调控过程。本文中主要对CAM植物分子生物学和组学研究进展进行综述,包括CAM植物生理特性研究、CAM植物组学资源、CAM途径相关基因及其调控等,并对未来的研究进行了展望。
中图分类号:
李俊璋, 秦源, 肖强, 安昌, 廖静怡, 郑平. 景天酸代谢植物分子生物学研究进展及应用潜力[J]. 园艺学报, 2022, 49(12): 2597-2610.
LI Junzhang, QIN Yuan, XIAO Qiang, AN Chang, LIAO Jingyi, ZHENG Ping. Recent Advances in Molecular Biology of Crassulacean Acid Metabolism Plants and the Application Potential of CAM Engineering[J]. Acta Horticulturae Sinica, 2022, 49(12): 2597-2610.
植物 Plant | CAM类型 CAM type | 组装水平 Assembly level | 基因组/Mb Genome size | N50/kb | 文献 Reference |
---|---|---|---|---|---|
玉吊钟Kalanchoe fedtschenkoi | 组成型 Constitutive | 支架水平 Scaffold | 256 | 2 450(scaffold) | Yang et al., |
菠萝Ananas comosus | 组成型Constitutive | 染色体 Chromosome | 382 | 11 800(scaffold) | Ming et al., |
红菠萝Ananas comosus var. bracteatus CB5 | 组成型Constitutive | 染色体 Chromosome | 513 | 427(contig) | Chen et al., |
玉米石Sedum album | 组成型Constitutive | 重叠群 Contig | 302 | 93(contig) | Wai et al., |
麻疯树Jatropha curcas | 兼性Facultative | 支架水平 Scaffold | 339 | 15 400(scaffold) | Ha et al., |
台湾蝴蝶兰Phalaenopsis aphrodite | 组成型Constitutive | 染色体 Chromosome | 1 200 | 19 700(scaffold) | Chao et al., |
深圳拟兰Apostasia shenzhenica | 组成型Constitutive | 染色体 Chromosome | 349 | 3 029(scaffold) | Zhang et al., |
小兰屿蝴蝶兰Phalaenopsis equestris | 组成型Constitutive | 支架水平 Scaffold | ~980 | 359.1(scaffold) | Cai et al., |
黄石斛Dendrobium catenatum | 兼性Facultative | 支架水平 Scaffold | 1 010 | 391(scaffold) | Zhang et al., |
铁皮石斛Dendrobium officinale | 兼性Facultative | 染色体 Chromosome | 1 230 | 63 070(scaffold) | Niu et al., |
表1 已测基因组的CAM植物基因组信息统计
Table 1 The summary information of published CAM genome
植物 Plant | CAM类型 CAM type | 组装水平 Assembly level | 基因组/Mb Genome size | N50/kb | 文献 Reference |
---|---|---|---|---|---|
玉吊钟Kalanchoe fedtschenkoi | 组成型 Constitutive | 支架水平 Scaffold | 256 | 2 450(scaffold) | Yang et al., |
菠萝Ananas comosus | 组成型Constitutive | 染色体 Chromosome | 382 | 11 800(scaffold) | Ming et al., |
红菠萝Ananas comosus var. bracteatus CB5 | 组成型Constitutive | 染色体 Chromosome | 513 | 427(contig) | Chen et al., |
玉米石Sedum album | 组成型Constitutive | 重叠群 Contig | 302 | 93(contig) | Wai et al., |
麻疯树Jatropha curcas | 兼性Facultative | 支架水平 Scaffold | 339 | 15 400(scaffold) | Ha et al., |
台湾蝴蝶兰Phalaenopsis aphrodite | 组成型Constitutive | 染色体 Chromosome | 1 200 | 19 700(scaffold) | Chao et al., |
深圳拟兰Apostasia shenzhenica | 组成型Constitutive | 染色体 Chromosome | 349 | 3 029(scaffold) | Zhang et al., |
小兰屿蝴蝶兰Phalaenopsis equestris | 组成型Constitutive | 支架水平 Scaffold | ~980 | 359.1(scaffold) | Cai et al., |
黄石斛Dendrobium catenatum | 兼性Facultative | 支架水平 Scaffold | 1 010 | 391(scaffold) | Zhang et al., |
铁皮石斛Dendrobium officinale | 兼性Facultative | 染色体 Chromosome | 1 230 | 63 070(scaffold) | Niu et al., |
植物(文献) Plant(Reference) | CAM类型 CAM type | 转录因子 Transcription factor | 转录因子家族 Transcription factor family | 拟南芥同源基因 Arabidopsis homolog |
---|---|---|---|---|
冰叶日中花 Mesembryanthemum crystallinum (Amin et al., | 兼性 Facultative | McERF74 | AP2/ERF/CRF | AT1G53910 |
McNAC29 | NAC | AT1G69490 | ||
McBLH1 | HB/Homeodomain | AT2G35940 | ||
McbZIP2 | bZIP | AT2G18160 | ||
McAGL8 | MADS/AGAMOUS-LIKE8 | AT5G60910 | ||
McAP2-12 | AP2/ERF | AT1G53910 | ||
McbZIP44 | bZIP | AT1G75390 | ||
McHB7 | HB/Homeodomain | AT2G46680 | ||
玉吊钟 Kalanchoe fedtschenkoi (Yang et al., | 组成型 Constitutive | KfMYB59* | MYB | AT5G59780 |
KfLHY1 | Homeodomain | AT1G01060 | ||
KfbZIP29 | bZIP | AT4G38900 | ||
KfNF-YB3 | NF-Ys | AT4G14540 | ||
KfNAC83* | NAC | AT4G13180 | ||
KfAP2 | AP2/ERF/CRF | AT4G11140 | ||
KfCOL3 | Zinc Finger CONSTANS-like 4 | AT5G24930 | ||
KfCOL5 | Zinc Finger CONSTANS-like 5 | AT5G67660 | ||
棱轴土人参 Talinum triangulare (Maleckova et al., | 兼性 Facultative | TtOFP8 | - | AT5G19650 |
TtNF-YA9 | NF-YA | AT3G20910 | ||
TtNF-YB3 | NF-YB | AT4G14540 | ||
TtLBD21 | LBD | AT3G11090 | ||
TtHB-1 | HD-ZIP | AT3G01470 | ||
TtHSFA2 | HSF | AT2G26150 | ||
TtBBX15 | CO-like | AT1G25440 | ||
TtMP | ARF | AT1G19850 | ||
- | Trihelix | AT2G44730 | ||
- | - | AT4G00990 | ||
TtHSFC1 | HSF | AT3G24520 |
表 2 CAM调控或干旱胁迫有关候选转录因子
Table 2 The list of candidate transcription factors hypothesized to get involved in CAM regulation or drought-stress responses in CAM plants
植物(文献) Plant(Reference) | CAM类型 CAM type | 转录因子 Transcription factor | 转录因子家族 Transcription factor family | 拟南芥同源基因 Arabidopsis homolog |
---|---|---|---|---|
冰叶日中花 Mesembryanthemum crystallinum (Amin et al., | 兼性 Facultative | McERF74 | AP2/ERF/CRF | AT1G53910 |
McNAC29 | NAC | AT1G69490 | ||
McBLH1 | HB/Homeodomain | AT2G35940 | ||
McbZIP2 | bZIP | AT2G18160 | ||
McAGL8 | MADS/AGAMOUS-LIKE8 | AT5G60910 | ||
McAP2-12 | AP2/ERF | AT1G53910 | ||
McbZIP44 | bZIP | AT1G75390 | ||
McHB7 | HB/Homeodomain | AT2G46680 | ||
玉吊钟 Kalanchoe fedtschenkoi (Yang et al., | 组成型 Constitutive | KfMYB59* | MYB | AT5G59780 |
KfLHY1 | Homeodomain | AT1G01060 | ||
KfbZIP29 | bZIP | AT4G38900 | ||
KfNF-YB3 | NF-Ys | AT4G14540 | ||
KfNAC83* | NAC | AT4G13180 | ||
KfAP2 | AP2/ERF/CRF | AT4G11140 | ||
KfCOL3 | Zinc Finger CONSTANS-like 4 | AT5G24930 | ||
KfCOL5 | Zinc Finger CONSTANS-like 5 | AT5G67660 | ||
棱轴土人参 Talinum triangulare (Maleckova et al., | 兼性 Facultative | TtOFP8 | - | AT5G19650 |
TtNF-YA9 | NF-YA | AT3G20910 | ||
TtNF-YB3 | NF-YB | AT4G14540 | ||
TtLBD21 | LBD | AT3G11090 | ||
TtHB-1 | HD-ZIP | AT3G01470 | ||
TtHSFA2 | HSF | AT2G26150 | ||
TtBBX15 | CO-like | AT1G25440 | ||
TtMP | ARF | AT1G19850 | ||
- | Trihelix | AT2G44730 | ||
- | - | AT4G00990 | ||
TtHSFC1 | HSF | AT3G24520 |
[1] |
Abraham P E, Hurtado Castano N, Cowan-Turner D, Barnes J, Poudel S, Hettich R, Flütsch S, Santelia D, Borland A M. 2020. Peeling back the layers of crassulacean acid metabolism:functional differentiation between Kalanchoë fedtschenkoi epidermis and mesophyll proteomes. The Plant Journal, 103 (2):869-888.
doi: 10.1111/tpj.14757 pmid: 32314451 |
[2] |
Amin A B, Rathnayake K N, Yim W C, Garcia T M, Wone B, Cushman J C, Wone B W. 2019. Crassulacean acid metabolism abiotic stress-responsive transcription factors:a potential genetic engineering approach for improving crop tolerance to abiotic stress. Frontiers in Plant Science, 10:129.
doi: 10.3389/fpls.2019.00129 URL |
[3] |
Bai Y, Dai X, Li Y, Wang L, Li W, Liu Y, Cheng Y, Qin Y. 2019. Identification and characterization of pineapple leaf lncRNAs in crassulacean acid metabolism(CAM)photosynthesis pathway. Scientific Reports, 9 (1):6658.
doi: 10.1038/s41598-019-43088-8 URL |
[4] |
Bedre R, Irigoyen S, Petrillo E, Mandadi K K. 2019. New era in plant alternative splicing analysis enabled by advances in high-throughput sequencing(HTS)technologies. Frontiers in Plant Science, 10:740.
doi: 10.3389/fpls.2019.00740 URL |
[5] |
Borland A M, Griffiths H, Hartwell J, Smith J A. C. 2009. Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. Journal of Experimental Botany, 60 (10):2879-2896.
doi: 10.1093/jxb/erp118 pmid: 19395392 |
[6] |
Borland A M, Hartwell J, Weston D J, Schlauch K A, Tschaplinski T J, Tuskan G A, Yang X, Cushman J C. 2014. Engineering crassulacean acid metabolism to improve water-use efficiency. Trends in Plant Science, 19 (5):327-338.
doi: 10.1016/j.tplants.2014.01.006 pmid: 24559590 |
[7] |
Boxall S F, Dever L V, Kneřová J, Gould P D, Hartwell J. 2017. Phosphorylation of phosphoenolpyruvate carboxylase is essential for maximal and sustained dark CO2 fixation and core circadian clock operation in the obligate crassulacean acid metabolism species Kalanchoë fedtschenko. The Plant Cell, 29 (10):2519-2536.
doi: 10.1105/tpc.17.00301 URL |
[8] |
Boxall S F, Kadu N, Dever L V, Kneřová J, Waller J L, Gould P J D, Hartwell J. 2020. Kalanchoë PPC 1 is essential for crassulacean acid metabolism and the regulation of core circadian clock and guard cell signaling genes. The Plant Cell, 32 (4):1136-1160.
doi: 10.1105/tpc.19.00481 URL |
[9] |
Brilhaus D, Bräutigam A, Mettler-Altmann T, Winter K, Weber A P M. 2016. Reversible burst of transcriptional changes during induction of crassulacean acid metabolism in Talinum triangulare. Plant Physiology, 170 (1):102-122.
doi: 10.1104/pp.15.01076 pmid: 26530316 |
[10] |
Bronson D R, English N B, Dettman D L, Williams D G. 2011. Seasonal photosynthetic gas exchange and water-use efficiency in a constitutive CAM plant,the giant saguaro cactus(Carnegiea gigantea). Oecologia, 167:861.
doi: 10.1007/s00442-011-2021-1 pmid: 21822726 |
[11] |
Brulfert J, Kluge M, Güçlü S, Queiroz O. 1988. Interaction of photoperiod and drought as CAM inducing factors in Kalanchoë blossfeldiana Poelln,cv. Tom Thumb. Journal of Plant Physiology, 133 (2):222-227.
doi: 10.1016/S0176-1617(88)80141-X URL |
[12] |
Cai J, Liu X, Vanneste K, Proost S, Tsai W C, Liu K W, Chen L J, He Y, Xu Q, Bian C, Zheng Z, Sun F, Liu W, Hsiao Y Y, Pan Z J, Hsu C C, Yang Y P, Hsu Y C, Chuang Y C, Dievart A, Dufayard J F, Xu X, Wang J Y, Wang J, Xiao X J, Zhao X M, Du R, Zhang G Q, Wang M, Su Y Y, Xie G C, Liu G H, Li L Q, Huang L Q, Luo Y B, Chen H H, van de Peer Y, Liu Z J. 2015. The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics, 47 (1):65-72.
doi: 10.1038/ng.3149 URL |
[13] |
Ceusters J, Borland A M, Taybi T, Frans M, Godts C, de Proft M. P. 2014. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism. Journal of Experimental Botany, 65 (13):3705-3714.
doi: 10.1093/jxb/eru185 pmid: 24803500 |
[14] |
Ceusters N, Borland A M, Ceusters J. 2021. How to resolve the enigma of diurnal malate XXX emobilization from the vacuole in plants with crassulacean acid metabolism? New Phytologist, 229 (6):3116-3124.
doi: 10.1111/nph.17070 URL |
[15] |
Ceusters N, Frans M, van den Ende W, Ceusters J. 2019a. Maltose Processing and Not β-amylase activity curtails hydrolytic starch degradation in the CAM orchid Phalaenopsis. Frontiers in Plant Science, 10:1386.
doi: 10.3389/fpls.2019.01386 URL |
[16] |
Ceusters N, Luca S, Feil R, Claes J E, Lunn J E, van den Ende W, Ceusters J. 2019b. Hierarchical clustering reveals unique features in the diel dynamics of metabolites in the CAM orchid Phalaenopsis. Journal of Experimental Botany, 70 (12):3269-3281.
doi: 10.1093/jxb/erz170 URL |
[17] |
Chao Y T, Chen W C, Chen C Y, Ho H Y, Yeh C H, Kuo Y T, Su C L, Yen S H, Hsueh H Y, Yeh J H, Hsu H L, Tsai Y H, Kuo T Y, Chang S B, Chen K Y, Shih M C. 2018. Chromosome-level assembly,genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnology Journal, 16 (12):2027-2041.
doi: 10.1111/pbi.12936 URL |
[18] |
Chen L Y, VanBuren R, Paris M, Zhou H, Zhang X, Wai C M, Yan H, Chen S, Alonge M, Ramakrishnan S, Liao Z, Liu J, Lin J, Yue J., Fatima M, Lin Z, Zhang J, Huang L, Wang H, Hwa T Y, Kao S M, Choi J Y, Sharma A, Song J, Wang L, Yim W C, Cushman J C, Paull R E, Matsumoto T, Qin Y, Wu Q, Wang J, Yu Q, Wu J, Zhang S, Boches P, Tung C W, Wang M L, Coppens d’Eeckenbrugge G, Sanewski G M, Purugganan M D, Schatz M C, Bennetzen J L, Lexer C, Ming R. 2019. The bracteatus pineapple genome and domestication of clonally propagated crops. Nature Genetics, 51 (10):1549-1558.
doi: 10.1038/s41588-019-0506-8 pmid: 31570895 |
[19] |
Chen L Y, Xin Y, Wai C M, Liu J, Ming R. 2020. The role of cis-elements in the evolution of crassulacean acid metabolism photosynthesis. Horticulture Research, 7 (1):5.
doi: 10.1038/s41438-019-0229-0 URL |
[20] |
Chomthong M, Griffiths H. 2020. Model approaches to advance crassulacean acid metabolism system integration. The Plant Journal, 101 (4):951-963.
doi: 10.1111/tpj.14691 pmid: 31943394 |
[21] |
Cushman J C. 2001. Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant physiology, 127 (4):1439-1448.
pmid: 11743087 |
[22] |
Dever L V, Boxall S F, Kneřová J, Hartwell J. 2015. Transgenic perturbation of the decarboxylation phase of crassulacean acid metabolism alters physiology and metabolism but has only a small effect on growth. Plant Physiology, 167 (1):44-59.
doi: 10.1104/pp.114.251827 pmid: 25378692 |
[23] |
Edwards E J. 2019. Evolutionary trajectories,accessibility and other metaphors:the case of C(4)and CAM photosynthesis. New Phytologist, 223 (4):1742-1755.
doi: 10.1111/nph.15851 pmid: 30993711 |
[24] |
Ermakova M, Danila F R, Furbank R T, von Caemmerer S. 2020. On the road to C 4 rice:advances and perspectives. The Plant Journal, 101 (4):940-950.
doi: 10.1111/tpj.14562 pmid: 31596523 |
[25] |
Ferrari R C, Bittencourt P P, Rodrigues M A, Moreno-Villena J J, Alves F R, Gastaldi V D, Boxall S F, Dever L V, Demarco D, Andrade S C. 2020. C4 and crassulacean acid metabolism within a single leaf:deciphering key components behind a rare photosynthetic adaptation. New Phytologist, 225 (4):1699-1714.
doi: 10.1111/nph.16265 pmid: 31610019 |
[26] | Grams T E E, Thiel S. 2002. High light‐induced switch from C3‐photosynthesis to Crassulacean acid metabolism is mediated by UV‐A/blue light. Journal of Experimental Botany, 53 (373):1475-1483. |
[27] |
Guan Q, Kong W, Zhu D, Zhu W, Dufresne C, Tian J, Chen S. 2021. Comparative proteomics of Mesembryanthemum crystallinum guard cells and mesophyll cells in transition from C3 to CAM. Journal of Proteomics, 231:104019.
doi: 10.1016/j.jprot.2020.104019 URL |
[28] |
Ha J, Shim S, Lee T, Kang Y J, Hwang W J, Jeong H, Laosatit K, Lee J, Kim S K, Satyawan D, Lestari P, Yoon M Y, Kim M Y, Chitikineni A, Tanya P, Somta P, Srinives P, Varshney R K, Lee S H. 2019. Genome sequence of Jatropha curcas L.,a non-edible biodiesel plant,provides a resource to improve seed-related traits. Plant Biotechnology Journal, 17 (2):517-530.
doi: 10.1111/pbi.12995 URL |
[29] |
Hashiguchi A, Yamaguchi H, Hitachi K, Watanabe K. 2021. An optimized protein extraction method for gel-free proteomic analysis of opuntia ficus-Indica. Plants, 10 (1):115.
doi: 10.3390/plants10010115 URL |
[30] |
Heyduk K, Hwang M, Albert V, Silvera K, Lan T, Farr K, Chang T H, Chan M T, Winter K, Leebens-Mack J. 2019a. Altered gene regulatory networks are associated with the transition from C 3 to crassulacean acid metabolism in Erycina(Oncidiinae:Orchidaceae). Frontiers in Plant Science, 9:2000.
doi: 10.3389/fpls.2018.02000 URL |
[31] |
Heyduk K, Moreno-Villena J J, Gilman I S, Christin P A, Edwards E J. 2019b. The genetics of convergent evolution: insights from plant photosynthesis. Nature Reviews Genetics, 20 (8):485-493.
doi: 10.1038/s41576-019-0107-5 URL |
[32] |
Heyduk K, Ray J N, Ayyampalayam S, Leebens-Mack J. 2018. Shifts in gene expression profiles are associated with weak and strong crassulacean acid metabolism. American Journal of Botany, 105:587-601.
doi: 10.1002/ajb2.1017 pmid: 29746718 |
[33] |
Heyduk K, Ray J N, Leebens-Mack J. 2021. Leaf anatomy is not correlated to CAM function in a C3 + CAM hybrid species,Yucca gloriosa. Annals of Botany, 127 (4):437-449.
doi: 10.1093/aob/mcaa036 URL |
[34] |
Kong W, Yoo M J, Zhu D, Noble J D, Kelley T M, Li J, Kirst M, Assmann S M, Chen S. 2020. Molecular changes in Mesembryanthemum crystallinum guard cells underlying the C3 to CAM transition. Plant Molecular Biology, 103:653-667.
doi: 10.1007/s11103-020-01016-9 URL |
[35] |
Lim S D, Mayer J A, Yim W C, Cushman J C. 2020. Plant tissue succulence engineering improves water-use efficiency,water-deficit stress attenuation and salinity tolerance in Arabidopsis. The Plant Journal, 103:1049-1072.
doi: 10.1111/tpj.14783 URL |
[36] |
Lin H, Arrivault S, Coe R A, Karki S, Covshoff S, Bagunu E, Lunn J E, Stitt M, Furbank R T, Hibberd J M, Quick W P. 2020. A partial C 4 photosynthetic biochemical pathway in rice. Frontiers in Plant Science, 11:564463.
doi: 10.3389/fpls.2020.564463 URL |
[37] |
Liu D, Chen M, Mendoza B, Cheng H, Hu R, Li L, Trinh C T, Tuskan G A, Yang X. 2019. CRISPR/Cas9-mediated targeted mutagenesis for functional genomics research of crassulacean acid metabolism plants. Journal of Experimental Botany, 70 (22):6621-6629.
doi: 10.1093/jxb/erz415 pmid: 31562521 |
[38] |
Liu D, Palla K J, Hu R, Moseley R C, Mendoza C, Chen M, Abraham P E, Labbé J L, Kalluri U C, Tschaplinski T J, Cushman J C, Borland A M, Tuskan G A, Yang X. 2018. Perspectives on the basic and applied aspects of crassulacean acid metabolism(CAM)research. Plant Science, 274:394-401.
doi: 10.1016/j.plantsci.2018.06.012 URL |
[39] |
Lüttge U. 2010. Ability of crassulacean acid metabolism plants to overcome interacting stresses in tropical environments. AoB PLANTS,doi:10.1093/aobpla/plq005.
doi: 10.1093/aobpla/plq005 URL |
[40] |
Maleckova E, Brilhaus D, Wrobel T J, Weber A P M. 2019. Transcript and metabolite changes during the early phase of abscisic acid-mediated induction of crassulacean acid metabolism in Talinum triangulare. Journal of Experimental Botany, 70 (22):6581-6596.
doi: 10.1093/jxb/erz189 pmid: 31111894 |
[41] |
Ming R, van Buren R, Wai C M, Tang H, Schatz M C, Bowers J E, Lyons E, Wang M L, Chen J, Biggers E, Zhang J, Huang L, Zhang L, Miao W, Zhang J, Ye Z, Miao C, Lin Z, Wang H, Zhou H, Yim W C, Priest H D, Zheng C, Woodhouse M, Edger P P, Guyot R, Guo H-B, Guo H, Zheng G, Singh R, Sharma A, Min X, Zheng Y, Lee H, Gurtowski J, Sedlazeck F J, Harkess A, McKain M R, Liao Z, Fang J, Liu J, Zhang X, Zhang Q, Hu W, Qin Y, Wang K, Chen L Y, Shirley N, Lin Y-R, Liu L-Y, Hernandez A G, Wright C L, Bulone V, Tuskan G A, Heath K, Zee F, Moore P H, Sunkar R, Leebens-Mack J H, Mockler T, Bennetzen J L, Freeling M, Sankoff D, Paterson A H, Zhu X, Yang X, Smith J A C, Cushman J C, Paull R E, Yu Q. 2015. The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics, 47 (12):1435-1442.
doi: 10.1038/ng.3435 pmid: 26523774 |
[42] |
Niu Z, Zhu F, Fan Y, Li C, Zhang B, Zhu S, Hou Z, Wang M, Yang J, Xue Q, Liu W, Ding X. 2021. The chromosome-level reference genome assembly for Dendrobium officinale and its utility of functional genomics research and molecular breeding study. Acta Pharmaceutica Sinica B, 11 (7):2080-2092.
doi: 10.1016/j.apsb.2021.01.019 URL |
[43] |
Ping C Y, Chen F C, Cheng T C, Lin H L, Lin T S, Yang W J, Lee Y I. 2018. Expression profiles of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase genes in Phalaenopsis,implications for regulating the performance of crassulacean acid metabolism. Frontiers in plant science, 9:1587.
doi: 10.3389/fpls.2018.01587 URL |
[44] |
Sapeta H, Costa J M, Lourenço T, Maroco J, van der Linde P, Oliveira M M. 2013. Drought stress response in Jatropha curcas:growth and physiology. Environmental and Experimental Botany, 85:76-84.
doi: 10.1016/j.envexpbot.2012.08.012 URL |
[45] |
Shameer S, Baghalian K, Cheung C Y M, Ratcliffe R G, Sweetlove L J. 2018. Computational analysis of the productivity potential of CAM. Nature Plants, 4:165-171.
doi: 10.1038/s41477-018-0112-2 pmid: 29483685 |
[46] |
Shi Y, Zhang X, Chang X, Yan M, Zhao H, Qin Y, Wang H. 2021. Integrated analysis of DNA methylome and transcriptome reveals epigenetic regulation of CAM photosynthesis in pineapple. BMC Plant Biology, 21 (1):1-14.
doi: 10.1186/s12870-020-02777-7 URL |
[47] |
Silvera K, Neubig K M, Whitten W M, Williams N H, Winter K, Cushman J C. 2010. Evolution along the crassulacean acid metabolism continuum. Functional Plant Biology, 37 (11):995-1010.
doi: 10.1071/FP10084 URL |
[48] |
Stewart J R. 2015. Agave as a model CAM crop system for a warming and drying world. Frontiers in Plant Science, 6:684.
doi: 10.3389/fpls.2015.00684 pmid: 26442005 |
[49] |
Sussmilch F C, Brodribb T J, McAdam S A M. 2017. What are the evolutionary origins of stomatal responses to abscisic acid in land plants? Journal of Integrative Plant Biology, 59 (4):240-260.
doi: 10.1111/jipb.12523 |
[50] | Wai C M, van Buren R. 2018. Circadian regulation of pineapple CAM photosynthesis.//Genetics and genomics of pineapple. Cham,Springer International Publishing:247-258. |
[51] |
Wai C M, van Buren R, Zhang J, Huang L, Miao W, Edger P P, Yim W C, Priest H D, Meyers B C, MocklerT, Smith J A C, Cushman J C, Ming R. 2017. Temporal and spatial transcriptomic and microRNA dynamics of CAM photosynthesis in pineapple. The Plant Journal, 92 (1):19-30.
doi: 10.1111/tpj.13630 pmid: 28670834 |
[52] |
Wai C M, Weise S E, Ozersky P, Mockler T C, Michael T P, van Buren R. 2019. Time of day and network reprogramming during drought induced CAM photosynthesis in Sedum album. PLOS Genetics, 15 (6):e1008209.
doi: 10.1371/journal.pgen.1008209 URL |
[53] |
West-Eberhard M J, Smith J A C, Winter K. 2011. Photosynthesis,Reorganized. Science, 332 (6027):311.
doi: 10.1126/science.1205336 pmid: 21493847 |
[54] |
Winter K. 2019. Ecophysiology of constitutive and facultative CAM photosynthesis. Journal of Experimental Botany, 70 (22):6495-6508.
doi: 10.1093/jxb/erz002 pmid: 30810162 |
[55] |
Winter K, Garcia M, Holtum J A. 2009. Canopy CO2 exchange of two neotropical tree species exhibiting constitutive and facultative CAM photosynthesis,Clusia rosea and Clusia cylindrica. Journal of Experimental Botany, 60 (11):3167-3177.
doi: 10.1093/jxb/erp149 pmid: 19487388 |
[56] |
Winter K, Holtum J A, Smith J A. 2015. Crassulacean acid metabolism:a continuous or discrete trait? New Phytol, 208 (1):73-78.
doi: 10.1111/nph.13446 pmid: 25975197 |
[57] |
Winter K, Sage R F, Edwards E J, Virgo A, Holtum J A. 2019. Facultative crassulacean acid metabolism in a C3-C4 intermediate. Journal of Experimental Botany, 70 (22):6571-6579.
doi: 10.1093/jxb/erz085 pmid: 30820551 |
[58] | Winter K, Smith J A C. 2012. Crassulacean acid metabolism:biochemistry,ecophysiology and evolution. Springer Science & Business Media. |
[59] |
Xu S, Wang J, Guo Z, He Z, Shi S. 2020. Genomic convergence in the adaptation to extreme environments. Plant Communications, 1 (6):100117.
doi: 10.1016/j.xplc.2020.100117 URL |
[60] |
Yang X, Cushman J C, Borland A M, Edwards E J, Wullschleger S D, Tuskan G A, Owen N A, Griffiths H, Smith J A C, de Paoli H C. 2015. A roadmap for research on crassulacean acid metabolism(CAM)to enhance sustainable food and bioenergy production in a hotter,drier world. New Phytologist, 207:491-504.
doi: 10.1111/nph.13393 URL |
[61] |
Yang X, Hu R, Yin H, Jenkins J, Shu S, Tang H, Liu D, Weighill D A, Cheol Yim W, Ha J, HeydukK, Goodstein D M, Guo H B, Moseley R C, Fitzek E, Jawdy S, Zhang Z, Xie M, Hartwell J, Grimwood J, Abraham P E, Mewalal R, Beltrán J D, Boxall S F, Dever L V, Palla K J, Albion R, Garcia T, Mayer J A, Don Lim S, Man Wai C, Peluso P, Van Buren R, De Paoli H C, Borland A M, Guo H, Chen J G, Muchero W, Yin Y, Jacobson D A, Tschaplinski T J, Hettich R L, Ming R, Winter K, Leebens-Mack J H, Smith J A C, Cushman J C, Schmutz J, Tuskan G A. 2017. The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nature Communications, 8 (1):1-15.
doi: 10.1038/s41467-016-0009-6 URL |
[62] |
Yang X, Liu D, Tschaplinski T J, Tuskan G A. 2019. Comparative genomics can provide new insights into the evolutionary mechanisms and gene function in CAM plants. Journal of Experimental Botany, 70 (22):6539-6547.
doi: 10.1093/jxb/erz408 pmid: 31616946 |
[63] |
Yin H, Guo H-B, Weston D J, Borland A M, Ranjan P, Abraham P E, Jawdy S S, Wachira J, Tuskan G A, Tschaplinski T J, Wullschleger S D, Guo H, Hettich R L, Gross S M, Wang Z, Visel A, Yang X. 2018. Diel rewiring and positive selection of ancient plant proteins enabled evolution of CAM photosynthesis in Agave. BMC genomics, 19 (1):588.
doi: 10.1186/s12864-018-4964-7 URL |
[64] | Yuan G, Hassan M M, Liu D, Lim S D, Yim W C, Cushman J C, Markel K, Shih P M, Lu H, Weston D J. 2020. Biosystems design to accelerate C3-to-CAM progression. BioDesign Research, 2020. |
[65] |
Zhang G Q, Liu K W, Li Z, Lohaus R, Hsiao Y Y, Niu S C, Wang J Y, Lin Y C, Xu Q, Chen L J, Yoshida K, Fujiwara S, Wang Z W, Zhang Y Q, Mitsuda N, Wang M, Liu G H, Pecoraro L, Huang H X, Xiao X J, Lin M, Wu X Y, Wu W L, Chen Y Y, Chang S B, Sakamoto S, Ohme-Takagi M, Yagi M, Zeng S J, Shen C Y, Yeh C M, Luo Y B, Tsai W C, van de Peer Y, Liu Z J. 2017. The Apostasia genome and the evolution of orchids. Nature, 549 (7672):379-383.
doi: 10.1038/nature23897 URL |
[66] |
Zhang G Q, Xu Q, Bian C, Tsai W C, Yeh C M, Liu K W, Yoshida K, Zhang L S, Chang S B, Chen F, Shi Y, Su Y Y, Zhang Y Q, Chen L J, Yin Y, Lin M, Huang H, Deng H, Wang Z W, Zhu S L, Zhao X, Deng C, Niu S C, Huang J, Wang M, Liu G H, Yang H J, Xiao X J, Hsiao Y Y, Wu W L, Chen Y Y, Mitsuda N, Ohme-Takagi M, Luo Y B, van de Peer Y, Liu Z J. 2016. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase,floral development and adaptive evolution. Scientific Reports, 6:19029.
doi: 10.1038/srep19029 URL |
[67] |
Zhang Y, Dong W, Zhao X, Song A, Guo K, Liu Z, Zhang L. 2019. Transcriptomic analysis of differentially expressed genes and alternative splicing events associated with crassulacean acid metabolism in orchids. Horticultural Plant Journal, 5 (6):268-280.
doi: 10.1016/j.hpj.2019.12.001 |
[68] |
Zheng L, Ceusters J, van Labeke M C. 2019. Light quality affects light harvesting and carbon sequestration during the diel cycle of crassulacean acid metabolism in Phalaenopsis. Photosynthesis Research, 141 (2):195-207.
doi: 10.1007/s11120-019-00620-1 URL |
[1] | 王妍, 孙政, 冯珊, 袁心怡, 仲林林, 曾云流, 傅小鹏, 程运江, 包满珠, 张帆. 香石竹DcERF-1转录因子对切花衰老的负调控作用[J]. 园艺学报, 2022, 49(6): 1313-1326. |
[2] | 李琼, 李丽丽, 侯娟, 罗忍忍, 王瑞丹, 胡建斌, 黄松. 瓜类作物响应低温胁迫机制的研究进展[J]. 园艺学报, 2022, 49(6): 1382-1394. |
[3] | 苏江硕, 贾棣文, 王思悦, 张飞, 蒋甲福, 陈素梅, 房伟民, 陈发棣. 中国菊花遗传育种60年回顾与展望[J]. 园艺学报, 2022, 49(10): 2143-2162. |
[4] | 张婷婷, 薛婉钰, 刘娜, 陈书霞. 几种主要果菜类蔬菜果形遗传及其调控机制研究进展[J]. 园艺学报, 2022, 49(10): 2189-2204. |
[5] | 王云, 张镇武, 孙逊, 张绍铃. 植物自噬与病原菌互作研究进展[J]. 园艺学报, 2022, 49(10): 2205-2222. |
[6] | 杨博, 魏佳, 李坤峰, 王程亮, 倪隽蓓, 滕元文, 白松龄. PpyERF060-PpyABF3-PpyMADS71调控乙烯信号通路介导的梨芽休眠进程[J]. 园艺学报, 2022, 49(10): 2249-2262. |
[7] | 曾泽湘, 肖显梅, 谭小丽, 范中奇, 陈建业. 菜薹BrWRKY57的特性及其对BrPPH1和BrNCED3的调控[J]. 园艺学报, 2021, 48(3): 518-530. |
[8] | 李崇晖, 杨光穗, 张志群, 尹俊梅. 红掌R2R3-MYB转录因子基因AaMYB6调控花青素苷合成[J]. 园艺学报, 2021, 48(10): 1859-1872. |
[9] | 毛鹏鹏, 郑胤建, 杨其长, 许亚良, 王 芳, 廖秋红, 刘晓英. 光质对十字花科蔬菜硫代葡萄糖苷调控分子机制研究进展[J]. 园艺学报, 2020, 47(9): 1633-1647. |
[10] | 刘兴旺, 翟许玲, 张亚琦, 尹 帅, 冯钟萱, 任华中, . 黄瓜果实形态建成的遗传及分子基础研究进展[J]. 园艺学报, 2020, 47(9): 1793-1809. |
[11] | 徐小迪1,2,李博强1,秦国政1,陈 彤1,张占全1,田世平1,2,*. 果实采后品质维持的分子基础与调控技术研究进展[J]. 园艺学报, 2020, 47(8): 1595-1609. |
[12] | 王军伟,黄 科,黄英娟,毛舒香,柏艾梅,刘明月,吴秋云*. 十字花科蔬菜硫代葡萄糖苷合成相关转录因子调控研究进展[J]. 园艺学报, 2019, 46(9): 1752-1764. |
[13] | 芦 旺1,席万鹏1,2,*. MADS-box转录因子在果实成熟及品质形成中的调控作用研究进展[J]. 园艺学报, 2018, 45(9): 1802-1812. |
[14] | 曹运琳,邢梦云,徐昌杰,李 鲜*. 植物黄酮醇生物合成及其调控研究进展[J]. 园艺学报, 2018, 45(1): 177-192. |
[15] | 李 青1,2,秦玉芝2,胡新喜2,王万兴1,*,熊兴耀1,2,*. 马铃薯耐盐性研究进展[J]. 园艺学报, 2017, 44(12): 2408-2424. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司