https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

园艺学报 ›› 2022, Vol. 49 ›› Issue (12): 2597-2610.doi: 10.16420/j.issn.0513-353x.2021-0835

• 综述 • 上一篇    下一篇

景天酸代谢植物分子生物学研究进展及应用潜力

李俊璋1, 秦源2,3,4, 肖强1, 安昌2,4, 廖静怡3, 郑平2,*()   

  1. 1福建农林大学农学院,福州 350000
    2福建农林大学海峡联合研究院,福州 350000
    3福建农林大学生命科学学院,福州 350000
    4广西大学农学院,南宁 530000
  • 收稿日期:2022-04-22 修回日期:2022-08-31 出版日期:2022-12-25 发布日期:2023-01-02
  • 通讯作者: 郑平 E-mail:zhengping@fafu.edu.cn
  • 基金资助:
    国家自然科学基金项目(31970333);福建省科技厅产学研项目(2019N5008);福建省自然科学基金面上基金(高校联合资助)项目(2020J01594);广西壮族自治区特聘专家项目([2018]39)

Recent Advances in Molecular Biology of Crassulacean Acid Metabolism Plants and the Application Potential of CAM Engineering

LI Junzhang1, QIN Yuan2,3,4, XIAO Qiang1, AN Chang2,4, LIAO Jingyi3, ZHENG Ping2,*()   

  1. 1College of Agriculture,Fujian Agriculture and Forestry University,Fuzhou 350000,China
    2Haixia Institute of Science and Technology,Fujian Agriculture and Forestry University,Fuzhou 350000,China
    3College of Life Science,Fujian Agriculture and Forestry University,Fuzhou 350000,China
    4College of Agriculture,Guangxi University,Nanning 530000,China
  • Received:2022-04-22 Revised:2022-08-31 Online:2022-12-25 Published:2023-01-02
  • Contact: ZHENG Ping E-mail:zhengping@fafu.edu.cn

摘要:

景天酸代谢(crassulacean acid metabolism,CAM)植物在夜间固定CO2且具有较高的水分利用效率的碳集中机制(carbon concentrating mechanism)。将CAM光合作用途径“搬进”C3作物中提高C3作物水分利用效率以增强其抗旱性(即CAM工程化),在未来农业中具有重要的应用潜力。系统认识CAM植物光合作用途径及其相关调控机理,是开发和利用CAM光合作用途径的重要理论基础。目前,组学和分子生物学的发展大大促进了CAM植物相关研究。CAM途径关键基因及其功能逐渐被揭示,10多种CAM植物基因组被破译,转录因子、激素、miRNA、lncRNA、可变剪切、DNA甲基化等多种因素参与CAM途径调控过程。本文中主要对CAM植物分子生物学和组学研究进展进行综述,包括CAM植物生理特性研究、CAM植物组学资源、CAM途径相关基因及其调控等,并对未来的研究进行了展望。

关键词: 光合作用途径, 景天酸代谢, 多组学, 分子机制, 转录调控, 水分利用率

Abstract:

Crassulacean acid metabolism photosynthetic pathway is a kind of carbon concentrating mechanism that evolved from C3 photosynthesis and it is characterized by nocturnal CO2 fixation and high water use efficiency. Currently,there are growing interests in improving WUE to enhance drought resistance by“transferring”CAM pathway into C3 crops,also called‘CAM engineering’. CAM engineering has significant application potential in agriculture,while systematical investigations of CAM photosynthetic pathway / plants are a prerequisite to its progression. The wide applications of multi-omics and molecular biology methods have extensively promoted CAM plants related studies. CAM pathway-related key genes and their functions are being gradually revealed,and many CAM plant genomes have been published. Diverse mechanisms are involved in the regulation of the CAM pathway, including transcription factors,hormones,miRNA,lncRNA,alternative splicing,and DNA methylation This article mainly focuses on the latest progress of molecular biology and omics studies on CAM plants. In addtion,future research prospective and study interests are also discussed to guide further investigations on CAM plants.

Key words: crassulacean acid, metabolism, multi-omics, molecular mechanism, transcriptional regulation, water use efficiency

中图分类号: