园艺学报 ›› 2022, Vol. 49 ›› Issue (10): 2205-2222.doi: 10.16420/j.issn.0513-353x.2021-0647
收稿日期:
2022-06-14
修回日期:
2022-07-11
出版日期:
2022-10-25
发布日期:
2022-10-31
通讯作者:
孙逊,张绍铃
E-mail:slzhang@njau.edu.cn;sunxun1991@njau.edu.cn
基金资助:
WANG Yun, ZHANG Zhenwu, SUN Xun(), ZHANG Shaoling()
Received:
2022-06-14
Revised:
2022-07-11
Online:
2022-10-25
Published:
2022-10-31
Contact:
SUN Xun,ZHANG Shaoling
E-mail:slzhang@njau.edu.cn;sunxun1991@njau.edu.cn
摘要:
自噬是真核生物进化过程中高度保守的降解过程,在植物防御及病原菌侵染过程中发挥重要作用。病原菌利用菌丝穿过自然孔口或微伤口侵入宿主细胞,建立病原菌—宿主植物互作关联,引发植物自噬响应。一方面,宿主植物利用自噬直接抵御病原菌侵害,增强植物抗病性;另一方面,宿主植物也可串扰其他信号转导事件,间接防御病原菌侵害。目前,关于植物自噬与病原菌互作方面的研究较少。本文中对近几年植物自噬与病原菌互作的相关研究进行综述,阐述植物与病原菌互作过程中宿主植物利用自噬对病原菌侵害进行直接防御,以及结合自噬与其他信号事件串扰间接抵御病原菌侵害,从植物抗病角度解析自噬参与调控的植物信号分子网络。
中图分类号:
王云, 张镇武, 孙逊, 张绍铃. 植物自噬与病原菌互作研究进展[J]. 园艺学报, 2022, 49(10): 2205-2222.
WANG Yun, ZHANG Zhenwu, SUN Xun, ZHANG Shaoling. A State-of-the-art Review on the Interaction Between Plant Autophagy and Pathogens[J]. Acta Horticulturae Sinica, 2022, 49(10): 2205-2222.
自噬基因 Autophagy gene | 功能 Function | 自噬复合物 Autophagic complex | 同源基因Homologous gene | |
---|---|---|---|---|
拟南芥 Arabidopsis thaliana | 稻瘟病菌 Magnaporthe oryzae | |||
Atg1 | 一种丝氨酸/苏氨酸蛋白激酶,参与自噬诱导,目的是从PAS吸收和释放其他Atg蛋白 A serine/threonine kinase that functions in recruitment and release of other Atg proteins from the PAS | Atg1激酶复合物 Atg1 kinase complex | AtATG1a-1c (Suttangkakul et al.,2011) | MoATG1 (刘小红 等, |
Atg2 | 与Atg9相互作用,在Atg2突变细胞中Atg9主要聚集在PAS位点。Atg2能够通过一个类似的疏水通道将脂质从一个膜转移到另一个膜 Interacted with Atg9,and in atg2 mutant cells Atg9 accumulates primarily at the PAS. Atg2 is able to transfer lipids from one membrane to the other via a hydrophobic channel similar | Atg9膜传递复合物 Atg9 membrane delivery complex | AtATG2 (Wang et al., | MoATG2 (Liu et al., |
Atg3 | 一种泛素结合酶(E2)类似物,通过Atg7激活c端残基,将atg8家族蛋白结合到磷脂乙醇胺(PE)上 A ubiquitin-conjugating enzyme(E2)analog that conjugates Atg8-family proteins to phosphatidylethanolamine(PE)after activation of the C-terminal residue by Atg7 | Atg8酯化体系 Atg8-lipidation system | AtATG3 (Yamaguchi et al., | MoATG3 (Yin et al., |
Atg4 | 一种半胱氨酸蛋白酶,通过去除位于c末端的氨基酸残基(s)来加工atg8家族蛋白,最终生成甘氨酸。Atg4还通过被称为去连接的步骤从atg8家族蛋白中去除PE A cysteine protease that processes Atg8-family proteins by removing the amino acid residue(s)that are located on the Cterminal side of what will become the ultimate glycine. Atg4 also removes PE from Atg8-family proteins in a step referred to as“deconjugation” | Atg8酯化体系 Atg8-lipidation system | AtATG4a-4b (Tsai et al., | MoATG4 (Liu et al., |
Atg5 | 一种包含泛素折叠的蛋白,是Atg12-Atg5-Atg16复合物的一部分,该复合物部分作为atg8家族蛋白偶联PE的E3连接酶 A protein containing ubiquitin folds that is part of the Atg12-Atg5-Atg16 complex,which acts in part as an E3 ligase for Atg8-family protein conjugation to PE | Atg12共轭体系 Atg12-conjugation system | AtATG5 (Yoshimoto et al., | MoATG5 (Lv et al., |
Atg6 | 参与自噬和液泡蛋白分选的两个PI3K-激酶复合物的组成部分 Components of two PI3K-kinase complexes involved in autophagy and vacuolar protein sorting | Class Ⅲ PI3 激酶复合物 Class Ⅲ PI3-kinase complex | AtATG6 (Qin et al., | MoATG6 (He et al., |
Atg7 | 泛素激活(E1)酶同源物,在ATP依赖过程中激活atg8家族蛋白和Atg12,导致atg8家族蛋白脂化 A ubiquitin activating(E1)enzyme homolog that activates both Atg8-family proteins and Atg12 in an ATP-dependent process,leading to the lipidation of Atg8-family proteins | Atg8酯化体系 Atg8-lipidation system Atg12共轭体系 Atg12-conjugation system | AtATG7 (Hanada et al., | MoATG7 (Zhang et al., |
Atg8 | 一种与PE结合的泛素样蛋白;参与吞噬体的货物招募和自噬体的生物发生。自噬体的大小受Atg8的调节 A ubiquitin-like protein that is conjugated to PE;involved in cargo recruitment into phagophores,and biogenesis of autophagosomes. Autophagosomal size is regulated by the amount of Atg8 | Atg8酯化体系 Atg8-lipidation system | AtATG8a-8i (Yoshimoto et al., | MoATG8 (Liu et al., |
Atg9 | 一种跨膜蛋白,可作为吞噬细胞扩张的脂质载体。与Atg23和Atg27相互作用 A transmembrane protein that may act as a lipid carrier for expansion of the phagophore. Interacted with Atg23/Atg27 | Atg9膜传递复合物 ATG9 membrane delivery complex | AtATG9 (Yoshimoto et al., | MoATG9 (Yin et al., |
Atg10 | 泛素偶联(E2)酶类似物,将Atg12偶联到Atg5 A ubiquitin conjugating(E2)enzyme analog that conjugates Atg12 to Atg5 | Atg12共轭体系 Atg12-conjugation system | AtATG10 (Phillips et al., | MoATG10 (Kershaw & Talbot, |
Atg11 | 一种支架蛋白,在选择性自噬类型中起作用,包括Cvt途径、线粒体自噬和噬根自噬。Atg11结合Atg19,K. phaffii/P;pastoris Atg30(PpAtg30)和Atg32作为其在特定货物识别中的角色的一部分。Atg11也与Atg9结合,并需要Atg11移动到PAS A scaffold protein that acts in selective types of autophagy including the Cvt pathway,mitophagy and pexophagy. Atg11 binds Atg19,K. phaffii/P. pastoris Atg30(PpAtg30)and Atg32 as part of its role in specific cargo recognition. Atg11 also binds Atg9 and is needed for its movement to the PAS | AtATG11 (Pierce et al., | MoATG11 (张凡忠, | |
Atg12 | 一种泛素样蛋白,通过其c端甘氨酸共价结合修饰Atg5的内部赖氨酸 A ubiquitin-like protein that modifies an internal lysine of Atg5 by covalently binding via its C-terminal glycine | Atg12共轭体系 Atg12-conjugation system | AtATG12a,AtATG12b (Phillips et al., | MoATG12 (Kershaw & Talbot, |
Atg13 | 与Atg1相互作用并调节Atg1激酶活性 Interacted with Atg1 and regulates Atg1 kinase activity | Atg1激酶复合物 Atg1 kinase complex | AtATG13a,AtATG13b (Suttangkakul et al., | MoATG13 (Liu et al., |
Atg14 | PtdIn3 -激酶复合物I的组成部分;它决定了复合体在PAS上的定位 A component of Ptdin3-kinase complex I;It determines the location of the complex on the PAS | Class Ⅲ PI3激酶复合物 Class Ⅲ PI3-kinase complex | AtATG14a,AtATG14b (Liu et al., | MoATG14 (Liu et al., |
Atg15 | 一种含有脂肪酶/酯酶活性位点基序的酵母液泡蛋白,是液泡腔内自噬和Cvt小体分解所必需的 A vacuolar lipase used to cleave the intima after fusion with vacuoles and release into the organelle lumen | MoATG15 (张凡忠, | ||
Atg16 | Atg12-Atg5-Atg16复合物的组成部分。Atg16二聚形成大型络合物 A component of the Atg12-Atg5-Atg16 complex. Atg16 dimerizes to form a large complex | Atg12共轭体系 Atg12-conjugation system | AtATG16L (Pierce et al., | MoATG16 (He et al., |
Atg17 | Atg1激酶复合体的一部分的酵母蛋白。Atg17对自噬不是必需的,但可以调节自噬反应的强度;较小的自噬体在Atg17缺失时形成 A yeast protein that is part of the Atg1 kinase complex. Atg17 is not essential for autophagy,but modulates the magnitude of the response;smaller autophagosomes are formed in the absence of Atg17 | Atg1激酶复合物 Atg1 kinase complex | MoATG17 (Liu & Bassham, | |
Atg18 | 一种酵母蛋白,通过其WD40 β-螺旋桨结构域与PtdIns3P(和PtdIns[3,5]P2)结合。Atg18与Atg2相互作用,在Atg18细胞中,Atg9主要在PAS区积累 A yeast protein that binds to PtdIns3P(and PtdIns[3,5]P2)via its WD40 β-propeller domain. Atg18 interacts with Atg2,and in atg18 cells Atg9 accumulates primarily at the PAS | Atg9膜传递复合物 ATG9 membrane delivery complex | AtATG18a-18h (Lai et al., | MoATG18 (Liu & Bassham, |
Atg19 | Cvt通路的受体,结合Atg11,Atg8和前体氨肽酶i的前肽。A receptor for the Cvt pathway that binds Atg11,Atg8 and the propeptide of precursor aminopeptidase I | |||
Atg20 | 一种酵母ptdins3p结合排序nexin,是Atg1激酶复合物的一部分,与Snx4/ Atg24相关 A yeast PtdIns3P-binding sorting nexin that is part of the Atg1 kinase complex and associates with Snx4/Atg24 | MoATG20 (Lv et al., | ||
Atg21 | 一种酵母PtdIns3P结合蛋白,是Atg18的同源物,并与Atg18部分冗余 A yeast PtdIns3P binding protein that is a homolog of,and partially redundant with,Atg18 | MoATG21 (He et al., | ||
Atg22 | 蛋白质自噬分解后外排所需的酵母空泡氨基酸渗透酶 A yeast vacuolar amino acid permease that is required for efflux after autophagic breakdown of proteins | MoATG22 (He et al., | ||
Atg23 | 一种与Atg9结合并转运的酵母外周膜蛋白[809,2804,2805]。Atg23(与Atg27一起)有助于Atg9外围位点/结构的有效形成,从而影响Atg9向PAS的传输 A yeast peripheral membrane protein that associates and transits with Atg9[809,2804,2805]. Atg23(together with Atg27)contributes to the efficient formation of the Atg9 peripheral sites/structures,and thus affects Atg9 trafficking to the PAS | |||
Atg24 | 一种包含PX结构域的蛋白,与磷酸PI(3)结合,是Cvt通路所必需的,但不是非特异性自噬 A protein containing a PX domain,bound to PI(3)phosphate,is required for the Cvt pathway,but is not nonspecific for autophagy | MoATG24 (He et al., | ||
Atg25 | 巨噬细胞所需的一种卷曲蛋白 A coiled-coil protein required for macropexophagy | |||
Atg26 | 法氏白蚁微噬和巨噬所必需的一种固醇糖基转移酶。而不是酿酒酵母 A sterol glucosyltransferase that is required for microand macropexophagy in K. phaffii/P. pastoris, but not in S. cerevisiae | MoATG26 (Chen et al., | ||
Atg27 | 一种Atg9向PAS移动所需的酵母整体膜蛋白;与Atg23共同促进Atg9外围位点/结构的有效形成 A yeast integral membrane protein that is required for the movement of Atg9 to the PAS;together with Atg23 it contributes to the efficient formation of the Atg9 peripheral sites/structures | MoATG27 (Kershaw & Talbot, | ||
Atg28 | 一种参与法氏白蚁微观和宏观噬食的卷曲卷曲蛋白 A coiled-coil protein involved in micro- and macropexophagy in K. phaffii/P. pastoris | MoATG28 (Kershaw et al., | ||
Atg29 | 真菌中有效的非选择性自噬所需的一种酵母蛋白。酵母Atg17-Atg31-Atg29复合物的一部分,在PAS上起蛋白质募集作用 A yeast protein required for efficient nonselective autophagy in fungi. Part of the yeast Atg17-Atg31-Atg29 complex that functions at the PAS for protein recruitment | Atg1激酶复合物 Atg1 kinase complex | MoATG29 (Li et al., | |
Atg30 | 在微噬和巨噬过程中识别过氧化物酶体所需的一种噬体受体 A pexophagy receptor required for the recognition of peroxisomes during micro- and macropexophagy | |||
Atg31 | 酵母Atg17-Atg31-Atg29复合体的一部分,在PAS上起作用,用于蛋白质募集和吞噬团形成的起始 Part of the yeast Atg17-Atg31-Atg29 complex that functions at the PAS for protein recruitment and initiation of phagophore formation |
表1 自噬相关基因汇总
Table 1 Summary of autophagy-related genes
自噬基因 Autophagy gene | 功能 Function | 自噬复合物 Autophagic complex | 同源基因Homologous gene | |
---|---|---|---|---|
拟南芥 Arabidopsis thaliana | 稻瘟病菌 Magnaporthe oryzae | |||
Atg1 | 一种丝氨酸/苏氨酸蛋白激酶,参与自噬诱导,目的是从PAS吸收和释放其他Atg蛋白 A serine/threonine kinase that functions in recruitment and release of other Atg proteins from the PAS | Atg1激酶复合物 Atg1 kinase complex | AtATG1a-1c (Suttangkakul et al.,2011) | MoATG1 (刘小红 等, |
Atg2 | 与Atg9相互作用,在Atg2突变细胞中Atg9主要聚集在PAS位点。Atg2能够通过一个类似的疏水通道将脂质从一个膜转移到另一个膜 Interacted with Atg9,and in atg2 mutant cells Atg9 accumulates primarily at the PAS. Atg2 is able to transfer lipids from one membrane to the other via a hydrophobic channel similar | Atg9膜传递复合物 Atg9 membrane delivery complex | AtATG2 (Wang et al., | MoATG2 (Liu et al., |
Atg3 | 一种泛素结合酶(E2)类似物,通过Atg7激活c端残基,将atg8家族蛋白结合到磷脂乙醇胺(PE)上 A ubiquitin-conjugating enzyme(E2)analog that conjugates Atg8-family proteins to phosphatidylethanolamine(PE)after activation of the C-terminal residue by Atg7 | Atg8酯化体系 Atg8-lipidation system | AtATG3 (Yamaguchi et al., | MoATG3 (Yin et al., |
Atg4 | 一种半胱氨酸蛋白酶,通过去除位于c末端的氨基酸残基(s)来加工atg8家族蛋白,最终生成甘氨酸。Atg4还通过被称为去连接的步骤从atg8家族蛋白中去除PE A cysteine protease that processes Atg8-family proteins by removing the amino acid residue(s)that are located on the Cterminal side of what will become the ultimate glycine. Atg4 also removes PE from Atg8-family proteins in a step referred to as“deconjugation” | Atg8酯化体系 Atg8-lipidation system | AtATG4a-4b (Tsai et al., | MoATG4 (Liu et al., |
Atg5 | 一种包含泛素折叠的蛋白,是Atg12-Atg5-Atg16复合物的一部分,该复合物部分作为atg8家族蛋白偶联PE的E3连接酶 A protein containing ubiquitin folds that is part of the Atg12-Atg5-Atg16 complex,which acts in part as an E3 ligase for Atg8-family protein conjugation to PE | Atg12共轭体系 Atg12-conjugation system | AtATG5 (Yoshimoto et al., | MoATG5 (Lv et al., |
Atg6 | 参与自噬和液泡蛋白分选的两个PI3K-激酶复合物的组成部分 Components of two PI3K-kinase complexes involved in autophagy and vacuolar protein sorting | Class Ⅲ PI3 激酶复合物 Class Ⅲ PI3-kinase complex | AtATG6 (Qin et al., | MoATG6 (He et al., |
Atg7 | 泛素激活(E1)酶同源物,在ATP依赖过程中激活atg8家族蛋白和Atg12,导致atg8家族蛋白脂化 A ubiquitin activating(E1)enzyme homolog that activates both Atg8-family proteins and Atg12 in an ATP-dependent process,leading to the lipidation of Atg8-family proteins | Atg8酯化体系 Atg8-lipidation system Atg12共轭体系 Atg12-conjugation system | AtATG7 (Hanada et al., | MoATG7 (Zhang et al., |
Atg8 | 一种与PE结合的泛素样蛋白;参与吞噬体的货物招募和自噬体的生物发生。自噬体的大小受Atg8的调节 A ubiquitin-like protein that is conjugated to PE;involved in cargo recruitment into phagophores,and biogenesis of autophagosomes. Autophagosomal size is regulated by the amount of Atg8 | Atg8酯化体系 Atg8-lipidation system | AtATG8a-8i (Yoshimoto et al., | MoATG8 (Liu et al., |
Atg9 | 一种跨膜蛋白,可作为吞噬细胞扩张的脂质载体。与Atg23和Atg27相互作用 A transmembrane protein that may act as a lipid carrier for expansion of the phagophore. Interacted with Atg23/Atg27 | Atg9膜传递复合物 ATG9 membrane delivery complex | AtATG9 (Yoshimoto et al., | MoATG9 (Yin et al., |
Atg10 | 泛素偶联(E2)酶类似物,将Atg12偶联到Atg5 A ubiquitin conjugating(E2)enzyme analog that conjugates Atg12 to Atg5 | Atg12共轭体系 Atg12-conjugation system | AtATG10 (Phillips et al., | MoATG10 (Kershaw & Talbot, |
Atg11 | 一种支架蛋白,在选择性自噬类型中起作用,包括Cvt途径、线粒体自噬和噬根自噬。Atg11结合Atg19,K. phaffii/P;pastoris Atg30(PpAtg30)和Atg32作为其在特定货物识别中的角色的一部分。Atg11也与Atg9结合,并需要Atg11移动到PAS A scaffold protein that acts in selective types of autophagy including the Cvt pathway,mitophagy and pexophagy. Atg11 binds Atg19,K. phaffii/P. pastoris Atg30(PpAtg30)and Atg32 as part of its role in specific cargo recognition. Atg11 also binds Atg9 and is needed for its movement to the PAS | AtATG11 (Pierce et al., | MoATG11 (张凡忠, | |
Atg12 | 一种泛素样蛋白,通过其c端甘氨酸共价结合修饰Atg5的内部赖氨酸 A ubiquitin-like protein that modifies an internal lysine of Atg5 by covalently binding via its C-terminal glycine | Atg12共轭体系 Atg12-conjugation system | AtATG12a,AtATG12b (Phillips et al., | MoATG12 (Kershaw & Talbot, |
Atg13 | 与Atg1相互作用并调节Atg1激酶活性 Interacted with Atg1 and regulates Atg1 kinase activity | Atg1激酶复合物 Atg1 kinase complex | AtATG13a,AtATG13b (Suttangkakul et al., | MoATG13 (Liu et al., |
Atg14 | PtdIn3 -激酶复合物I的组成部分;它决定了复合体在PAS上的定位 A component of Ptdin3-kinase complex I;It determines the location of the complex on the PAS | Class Ⅲ PI3激酶复合物 Class Ⅲ PI3-kinase complex | AtATG14a,AtATG14b (Liu et al., | MoATG14 (Liu et al., |
Atg15 | 一种含有脂肪酶/酯酶活性位点基序的酵母液泡蛋白,是液泡腔内自噬和Cvt小体分解所必需的 A vacuolar lipase used to cleave the intima after fusion with vacuoles and release into the organelle lumen | MoATG15 (张凡忠, | ||
Atg16 | Atg12-Atg5-Atg16复合物的组成部分。Atg16二聚形成大型络合物 A component of the Atg12-Atg5-Atg16 complex. Atg16 dimerizes to form a large complex | Atg12共轭体系 Atg12-conjugation system | AtATG16L (Pierce et al., | MoATG16 (He et al., |
Atg17 | Atg1激酶复合体的一部分的酵母蛋白。Atg17对自噬不是必需的,但可以调节自噬反应的强度;较小的自噬体在Atg17缺失时形成 A yeast protein that is part of the Atg1 kinase complex. Atg17 is not essential for autophagy,but modulates the magnitude of the response;smaller autophagosomes are formed in the absence of Atg17 | Atg1激酶复合物 Atg1 kinase complex | MoATG17 (Liu & Bassham, | |
Atg18 | 一种酵母蛋白,通过其WD40 β-螺旋桨结构域与PtdIns3P(和PtdIns[3,5]P2)结合。Atg18与Atg2相互作用,在Atg18细胞中,Atg9主要在PAS区积累 A yeast protein that binds to PtdIns3P(and PtdIns[3,5]P2)via its WD40 β-propeller domain. Atg18 interacts with Atg2,and in atg18 cells Atg9 accumulates primarily at the PAS | Atg9膜传递复合物 ATG9 membrane delivery complex | AtATG18a-18h (Lai et al., | MoATG18 (Liu & Bassham, |
Atg19 | Cvt通路的受体,结合Atg11,Atg8和前体氨肽酶i的前肽。A receptor for the Cvt pathway that binds Atg11,Atg8 and the propeptide of precursor aminopeptidase I | |||
Atg20 | 一种酵母ptdins3p结合排序nexin,是Atg1激酶复合物的一部分,与Snx4/ Atg24相关 A yeast PtdIns3P-binding sorting nexin that is part of the Atg1 kinase complex and associates with Snx4/Atg24 | MoATG20 (Lv et al., | ||
Atg21 | 一种酵母PtdIns3P结合蛋白,是Atg18的同源物,并与Atg18部分冗余 A yeast PtdIns3P binding protein that is a homolog of,and partially redundant with,Atg18 | MoATG21 (He et al., | ||
Atg22 | 蛋白质自噬分解后外排所需的酵母空泡氨基酸渗透酶 A yeast vacuolar amino acid permease that is required for efflux after autophagic breakdown of proteins | MoATG22 (He et al., | ||
Atg23 | 一种与Atg9结合并转运的酵母外周膜蛋白[809,2804,2805]。Atg23(与Atg27一起)有助于Atg9外围位点/结构的有效形成,从而影响Atg9向PAS的传输 A yeast peripheral membrane protein that associates and transits with Atg9[809,2804,2805]. Atg23(together with Atg27)contributes to the efficient formation of the Atg9 peripheral sites/structures,and thus affects Atg9 trafficking to the PAS | |||
Atg24 | 一种包含PX结构域的蛋白,与磷酸PI(3)结合,是Cvt通路所必需的,但不是非特异性自噬 A protein containing a PX domain,bound to PI(3)phosphate,is required for the Cvt pathway,but is not nonspecific for autophagy | MoATG24 (He et al., | ||
Atg25 | 巨噬细胞所需的一种卷曲蛋白 A coiled-coil protein required for macropexophagy | |||
Atg26 | 法氏白蚁微噬和巨噬所必需的一种固醇糖基转移酶。而不是酿酒酵母 A sterol glucosyltransferase that is required for microand macropexophagy in K. phaffii/P. pastoris, but not in S. cerevisiae | MoATG26 (Chen et al., | ||
Atg27 | 一种Atg9向PAS移动所需的酵母整体膜蛋白;与Atg23共同促进Atg9外围位点/结构的有效形成 A yeast integral membrane protein that is required for the movement of Atg9 to the PAS;together with Atg23 it contributes to the efficient formation of the Atg9 peripheral sites/structures | MoATG27 (Kershaw & Talbot, | ||
Atg28 | 一种参与法氏白蚁微观和宏观噬食的卷曲卷曲蛋白 A coiled-coil protein involved in micro- and macropexophagy in K. phaffii/P. pastoris | MoATG28 (Kershaw et al., | ||
Atg29 | 真菌中有效的非选择性自噬所需的一种酵母蛋白。酵母Atg17-Atg31-Atg29复合物的一部分,在PAS上起蛋白质募集作用 A yeast protein required for efficient nonselective autophagy in fungi. Part of the yeast Atg17-Atg31-Atg29 complex that functions at the PAS for protein recruitment | Atg1激酶复合物 Atg1 kinase complex | MoATG29 (Li et al., | |
Atg30 | 在微噬和巨噬过程中识别过氧化物酶体所需的一种噬体受体 A pexophagy receptor required for the recognition of peroxisomes during micro- and macropexophagy | |||
Atg31 | 酵母Atg17-Atg31-Atg29复合体的一部分,在PAS上起作用,用于蛋白质募集和吞噬团形成的起始 Part of the yeast Atg17-Atg31-Atg29 complex that functions at the PAS for protein recruitment and initiation of phagophore formation |
图1 植物自噬形成过程 当病原菌侵染植物时,首先自噬被诱导,自噬膜非特异性地包围附近细胞质成分。随后自噬膜不断向外扩张延伸, 形成的双膜自噬体靶向液泡与之融合,释放单膜自噬体,最后在液泡水解酶的作用下降解。
Fig. 1 The formation process of plant autophagy When pathogens infect plant,it first induces autophagy,and the autophagy membrane non-specifically surrounds the accessory cytoplasmic components. Subsequently,the autophagy membrane continuously expands and extends,and the formed double-membrane autophagosome is targeted to the vacuole to fuse with it. After fusion,the monomembrane autophagosome is released,and finally degraded under the action of vacuolar hydrolase.
图2 病原菌侵染过程中的植物自噬串扰的其他信号转导 PCD:细胞程序性死亡;ROS:活性氧;BR:油菜素内酯;ETH:乙烯;ABA:脱落酸;SA:水杨酸;JA:茉莉酸;TSPO:富含色氨酸的感应蛋白;AREBs:ABA响应元件结合蛋白;TOR:雷帕霉素靶蛋白;EDS1:增强疾病易感的防御基因; NPR:非表达病程相关基因;Atg:自噬基因。
Fig. 2 The crosstalk between autophagy and other signals transduction of plants during pathogen infection PCD:Programmed cell death;ROS:Reactive oxygen species;BR:Brassinolide;ETH:Ethylene;ABA:Abscisic acid;SA:Salicy acid;JA:Jasmonic acid;TSPO:Tryptopan-rich sensory protein;AREBs:ABA-responsive element binding protein ABA; TOR:Target of rapamycin;EDS1:Enhanced disease susceptibility 1;NPR:Nonexpresser of PR genes;Atg:Autophagy-related gene.
[1] |
Chanoca A, Kovinich N, Burkel B, Stecha S, Bohorquez-Restrepo A, Ueda T, Eliceiri K W, Grotewold E, Otegui M S. 2015. Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell, 27 (9):2545-2559.
doi: 10.1105/tpc.15.00589 URL |
[2] |
Chen C L, Yuan F, Li X Y, Ma R C, Xie H. 2021. Jasmonic acid and ethylene signaling pathways participate in the defense response of Chinese cabbage to Pectobacterium carotovorum infection. Journal of Integrative Agriculture, 20 (5):1314-1326.
doi: 10.1016/S2095-3119(20)63267-1 URL |
[3] | Chen X, Wang Z, Liu C. 2016. Roles of peroxisomes in the rice blast fungus. Biomed Res Int, 2016:9343417. |
[4] |
Chiramel A I, Brady N R, Bartenschlager R. 2013. Divergent roles of autophagy in virus infection. Cells, 2 (1):83-104.
doi: 10.3390/cells2010083 pmid: 24709646 |
[5] | Dagdas Y F, Belhaj K, Maqbool A, Chaparro-Garcia1 A, Pandey P, Petre1 B, Tabassum N, Cruz-Mireles1 N, Hughes R K, Sklenar J, Win J, Menke F, Findlay K, Banfield M J, Kamoun S, Bozkurt T O. 2016. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife Sciences, 5:e10856. |
[6] | Derrien B, Baumberger N, Schepetilnikov M, Viotti C, Cillia J D, Ziegler-Graff V, Schumacher K, Genschik P. 2012. Degradation of the antiviral component ARGONAUTE 1 by the autophagy pathway. Proceedings of the National Academy of Sciences, 109 (39):15942-15946. |
[7] |
Eskelinen E L. 2005. Maturation of autophagicvacuoles in mammalian cells. Autophagy, 1 (1):1-10.
doi: 10.4161/auto.1.1.1270 URL |
[8] |
Fengsrud M, Erichsen E S, Berg T O, Raiborg C, Seglen P O. 2000. Ultrastructural characterization of the delimiting membranes of isolated autophagosomes and amphisomes by freeze-fracture electron microscopy. European Journal of Cell Biology, 79 (12):871-882.
pmid: 11152279 |
[9] |
Fernandez J, Marroquin-Guzman M, Wilson R A. 2014. Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzae. PLoS Pathog, 10 (9):e10004354. Doi: 10.1371/journal.ppat.1004354.
doi: 10.1371/journal.ppat.1004354 URL |
[10] |
Galluzzi L, Baehrecke E H, Ballabio A, Boya P, Bravo-San Pedro J, Cecconi F, Choi A M, Chu C T, Codogno P, Colom bo M I, Cuervo A M, Debnath J, DereticI V, Dikic I, Kroemer C. 2017. Molecular definitions of autophagy and related processes. EMBO J, 36 (13):1811-1836.
doi: 10.15252/embj.201796697 pmid: 28596378 |
[11] |
Goto-Yamada S, Oikawa K, Bizan J, Shigenobu S, Yamaguchi K, Mano S, Hayashi M, Ueda H, Hara-Nishimura I, Hara-Nishimura I, Yamada K. 2019. Sucrose starvation induces microautophagy in plant root cells. Front Plant Sci, 10:1604.
doi: 10.3389/fpls.2019.01604 pmid: 31850051 |
[12] |
Hackenberg T, Juul T, Auzina A, Gwizdz S, Malolepszy A, van Der Kelen K, Dam S, Bressendorff S, Lorentzen A, Roepstorff P, Lehmann Nielsen K, Jorgensen J E. Hofius D, van Breusegem F, Petersen M, Andersen S U. 2013. Catalase and NO CATALASE ACTIVITY 1 promote autophagy-dependent cell death in Arabidopsis. Plant Cell, 25 (11):4616-4626.
doi: 10.1105/tpc.113.117192 URL |
[13] | Hafren A, Macia J L, Love A J, Milner J J, Drucker M, Hofius D. 2017. Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proc Natl Acad Sci U S A, 114(10):E2026-E2035. |
[14] |
Hanada T, Noda N N, Satomi Y. 2007. The Atg12-Atg 5 conjugate has a novel e3-like activity for protein lipidation in autophagy. Journal of Biological Chemistry, 282 (52):37298-37302.
doi: 10.1074/jbc.C700195200 pmid: 17986448 |
[15] | Haxim Y, Ismayil A, Jia Q, Wang Y, Zheng X Y, Chen T Y, Qian L C, Liu N, Wang Y J, Han S J, Cheng J X, Qi Y J, Hong Y G, Liu Y L. 2017. Autophagy functions as an antiviral mechanism against geminiviruses in plants. eLife, 6:1-17. |
[16] |
Hayward A P, Dinesh-Kumar S P. 2011. What can plant autophagy do for an innate immune response? Annu Rev Phytopathol, 49:557-576.
doi: 10.1146/annurev-phyto-072910-095333 pmid: 21370973 |
[17] |
Heath M C. 2000. Hypersensitive response-related death. Plant Molecular Biology, 44 (3):321-334.
pmid: 11199391 |
[18] |
Henry E, Fung N, Liu J, Drakakaki G, Coaker G. 2015. Beyond glycolysis:GAPDHs are multi-functional enzymes involved in regulation of ROS,autophagy,and plant immune responses. PLoS Genet, 11 (4):e1005199.
doi: 10.1371/journal.pgen.1005199 URL |
[19] |
He M, Xu Y, Chen J, Luo Y, Lv Y, Su J, Chen X. 2018. MoSnt2-dependent deacetylation of histone H 3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae. Autophagy, 14 (9):1543-1561.
doi: 10.1080/15548627.2018.1458171 URL |
[20] |
He Y, Deng Y, Naqvi N I. 2013. Atg24-assisted mitophagy in the foot cells is necessary for proper asexual differentiation in Magnaporthe oryzae. Autophagy, 9 (11):1818-1827.
doi: 10.4161/auto.26057 URL |
[21] |
Hof A, Zechmann B, Schwammbach D, Huckelhoven R, Doehlemann G. 2014. Alternative cell death mechanisms determine epidermal resistance in incompatible barley-Ustilago interactions. Molecular Plant Microbe Interactions Mpmi, 27 (5):403.
doi: 10.1094/MPMI-10-13-0317-R URL |
[22] |
Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis D I, Petersen N H, Mattsson O, Jorgensen L B, Jones J D, Mundy J, Petersen M. 2009. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell, 137 (4):773-783.
doi: 10.1016/j.cell.2009.02.036 URL |
[23] |
Kabbage M, Williams B, Dickman M B. 2013. Cell death control:the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathogens, 9 (4):e1003287.
doi: 10.1371/journal.ppat.1003287 URL |
[24] | Kershaw M, Talbot N J. 2009. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Pnatl Acad Sci USA, 106 (37):15967-15972. |
[25] |
Kiraly L, Hafez Y M, Fodor J, Kiraly Z. 2008. Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J Gen Virol, 89 (3):799-808.
doi: 10.1099/vir.0.83328-0 URL |
[26] |
Lai Z, Wang F, Zheng Z, Fan B, Chen Z. 2011. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J, 66 (6):953-968.
doi: 10.1111/j.1365-313X.2011.04553.x URL |
[27] |
Lenz H D, Haller E, Melzer E, Kober K, Wurster K, Stahl M, Bassham D C, Vierstra R D, Parker J E, Bautor J, Molina A, Escudero V, Shindo T, Van-Der-Hoorn R A, Gust A A, Nurnberger T. 2011. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J, 66 (5):818-830.
doi: 10.1111/j.1365-313X.2011.04546.x URL |
[28] |
Li Y, Kabbage M, Liu W, Dickman M B. 2016. Aspartyl protease-mediated cleavage of BAG 6 is necessary for autophagy and fungal resistance in plants. Plant Cell, 28 (1):233-247.
doi: 10.1105/tpc.15.00626 URL |
[29] |
Li Z, Wu L, Wu H, Zhang X, Mei J, Zhou X, Liu W. 2020. Arginine methylation is required for remodelling pre-mRNA splicing and induction of autophagy in rice blast fungus. New Phytologist, 225 (1):413-429.
doi: 10.1111/nph.16156 pmid: 31478201 |
[30] | Liu Chao, Han Lihong, Chu Honglong, Wang Haibo, Gao Yong, Tang Lizhou. 2018. Research advances in molecular mechanism between plant and pathogen interaction. Microbiology China, 45 (10):2271-2279. (in Chinese) |
刘潮, 韩利红, 褚洪龙, 王海波, 高永, 唐利洲. 2018. 植物与病原菌互作的分子机制研究进展. 微生物学通报, 45 (10):2271-2279. | |
[31] |
Liu F, Hu W M, Li F Q, Marshall R S, Zarza X, Munnik T, Vierstra R D. 2020. AUTOPHAGY-RELATED14 and its associated phosphatidylinositol 3-Kinase complex promotes autophagy in Arabidopsis. The Plant Cell, 32 (12):3939-3960.
doi: 10.1105/tpc.20.00285 URL |
[32] |
Liu T, Liu X, Lu J, Zhang Min, Lin F. 2010. The cysteine protease MoAtg 4 interacts with MoAtg8 and is required for differentiation and pathogenesis in Magnaporthe oryzae. Autophagy, 6 (1):74-85.
doi: 10.4161/auto.6.1.10438 URL |
[33] |
Liu X, Gao H, Xu F, Lu J, Devenish R J, Lin F C. 2012. Autophagy vitalizes the pathogenicity of pathogenic fungi. Autophagy, 8 (10):1415-1425.
doi: 10.4161/auto.21274 URL |
[34] |
Liu X, Xu F, Snyder J H, Shi H, Lu J, Lin F. 2016. Autophagy in plant pathogenic fungi. Semin Cell Dev Biol, 57:128-137.
doi: 10.1016/j.semcdb.2016.03.022 URL |
[35] |
Liu X, Zhao Y, Zhu X, Zeng X, Huang L, Dong B, Lin F. 2017. Autophagy-related protein MoAtg 14 is involved in differentiation,development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Scientific reports, 7 (1):1-13.
doi: 10.1038/s41598-016-0028-x URL |
[36] | Liu Xiaohong, Lu Shuling, Lin Fucheng. 2008. Gene regulation of autophagy and its relationship with rice blast. Journal of Cell Biology, 30 (6):737-741. (in Chinese) |
刘小红, 鲁书玲, 林福呈. 2008. 细胞自噬的基因调控及其与稻瘟病的关系. 细胞生物学杂志, 30 (6):737-741. | |
[37] |
Liu Y, Bassham D C. 2010. TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS ONE, 5 (7):e11883.
doi: 10.1371/journal.pone.0011883 URL |
[38] |
Liu Y, Bassham D C. 2012. Autophagy:pathways for self-eating in plant cells. Annu Rev Plant Biol, 63:215-237.
doi: 10.1146/annurev-arplant-042811-105441 URL |
[39] |
Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar S P. 2005. Autophagy regulates programmed cell death during the plant innate immune response. Cell, 121 (4):567-577.
doi: S0092-8674(05)00240-0 pmid: 15907470 |
[40] |
Loewith R, Hall M N. 2011. Target of rapamycin(TOR)in nutrient signaling and growth control. Genetics, 189:1177-1201.
doi: 10.1534/genetics.111.133363 pmid: 22174183 |
[41] | Long Qin, Xie Yu, Xu Lanzhen, He Yongrui, Zou Xiuping, Chen Shanchun. 2020. Characteristics and mechanism of programmed cell death in response to citrus canker pathogen in the early stage of infection. Acta Horticulturae Sinica, 47 (6):1047-1058. (in Chinese) |
龙琴, 谢宇, 许兰珍, 何永睿, 邹修平, 陈善春. 2020. 溃疡病菌侵染早期柑橘细胞程序性死亡的响应特征及机制. 园艺学报, 47 (6):1047-1058. | |
[42] |
Lv W, Wang C, Yang N, Que Y, Talbot N J, Wang Z. 2017. Genome-wide functional analysis reveals that autophagy is necessary for growth,sporulation,deoxynivalenol production and virulence in Fusarium graminearum. Scientific Reports, 7 (1):1-12.
doi: 10.1038/s41598-016-0028-x URL |
[43] | Lv W, Xu Z, Talbot N J, Wang Z. 2020. The sorting nexin FgAtg 20 is involved in the Cvt pathway,non‐selective macroautophagy,pexophagy and pathogenesis in Fusarium graminearum. CELL MICROBIOL, 22 (8):e13208. |
[44] |
Marroquin-Guzman M, Sun G, Wilson R A. 2017. Glucose-ABL1-TOR signaling modulates cell cycle tuning to control terminal appressorial cell differentiation. PLoS Gene,Doi: 10.1371/journal.pgen.1006557.
doi: 10.1371/journal.pgen.1006557 URL |
[45] |
Marroquin-Guzman M, Wilson R A. 2015. GATA-dependent glutaminolysis drives appressorium formation in Magnaporthe oryzae by suppressing TOR inhibition of cAMP/PKA signaling. PLoS Pathog,Doi: 10.1371/journal.ppat.1004851.
doi: 10.1371/journal.ppat.1004851 URL |
[46] | Menand B, Desnos T, Nussaume L, Berger F, Robaglia C. 2002. Expression and disruption of the Arabidopsis TOR(target of rapamycin)gene. Proceedings of the National Academy of Sciences, 99 (9):6422-6427. |
[47] |
Menzies F M, Moreau K, Rubinsztein D C. 2011. Protein misfolding disorders and macroautophagy. Current Opinion in Cell Biology, 23 (2):190-197.
doi: 10.1016/j.ceb.2010.10.010 pmid: 21087849 |
[48] |
Minina E A, Bozhkov P V, Hofius D. 2014. Autophagy as initiator or executioner of cell death. Trends Plant Sci, 19 (11):692-697.
doi: 10.1016/j.tplants.2014.07.007 pmid: 25156061 |
[49] |
Moreau M, Tian M, Klessig D F. 2012. Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Research, 22 (12):1631-1633.
doi: 10.1038/cr.2012.100 pmid: 22785561 |
[50] |
Mur L A, Bi Y M, Darby R M, Firek S, Draper J. 1997. Compromising early salicylic acid accumulation delays the hypersensitive response and increases viral dispersal during lesion establishment in TMV‐infected tobacco. The Plant Journal, 12 (5):1113-1126.
doi: 10.1046/j.1365-313X.1997.12051113.x URL |
[51] | Mur L A, Kentor P, Lloyd A J, Ougham H, Prats E. 2008. The hypersensitive response;the centenary is upon us but how much do we know? J Exp Bot, 59 (3):501-520. |
[52] |
Nakamura S, Hidema J, Sakamoto W, Ishida H, Izumi M. 2018. Selective elimination of membrane-damaged chloroplasts via microautophagy. Plant Physiol, 177 (3):1007-1026.
doi: 10.1104/pp.18.00444 pmid: 29748433 |
[53] |
Pandey P, Leary A Y, Tumtas Y, Savage Z, Dagvadorj B, Duggan C, Bozkurt T. 2021. An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface. eLife, 10:e65285.
doi: 10.7554/eLife.65285 URL |
[54] |
Pierce G, Young P G, Passalacqua M J, Chappell K, Llinas R, Barte B. 2019. A facile forward-genetic screen for Arabidopsis autophagy mutants reveals twenty-one loss-of-function mutations disrupting six ATG genes. Autophagy, 15 (6):941-959.
doi: 10.1080/15548627.2019.1569915 pmid: 30734619 |
[55] |
Phillips A R, Suttangkakul A, Vierstra R D. 2008. The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics, 178:1339-1353.
doi: 10.1534/genetics.107.086199 pmid: 18245858 |
[56] | Popa C, Liang L, Gil S, Tatjer L, Hashii K, Tabuchi M, Coll M, Coll1 N S, Ariño J, Valls M. 2016. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway. Sci Reports, 6:27058. |
[57] |
Qi H, Xia F N, Xiao S. 2021. Autophagy in plants:physiological roles and post-translational regulation. J Integr Plant Biol, 63 (1):161-179.
doi: 10.1111/jipb.12941 URL |
[58] |
Qin G, Ma Z, Zhang L, Xing S, Hou X, Deng J, Liu J, Chen Z, Qu L J, Gu H. 2007. Arabidopsis AtBECLIN 1/AtAtg6/AtVps 30 is essential for pollen germination and plant development. Cell Res, 17 (3):249-263.
doi: 10.1038/cr.2007.7 URL |
[59] | Rasul S, Dubreuil-Maurizi C, Lamotte O, Koen E, Poinssot B, Alcaraz G, Dendehenne D. 2014. Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant Signaling & Behavior, https://doi.org/10.1111/j.1365-3040.2012.02505.x. |
[60] | Rodriguez E, Chevalier J, Olsen J, Ansbol J, Kapousidou V, Zuo Z, Svenning S, Loefke C, Koemeda S, Drozdowskyj P S, Jez J, Durnberger G, Kuenzl F, Schutzbier M, Mechtler K, Ebstrup E N, Lolle S, Dagdas Y, Petersen M. 2020. Autophagy mediates temporary reprogramming and dedifferentiation in plant somatic cells. EMBO J, 39 (4):e103315. |
[61] |
Sadhu A, Moriyasu Y J, Acharya K, Bandyopadhyay M. 2019. Nitric oxide and ROS mediate autophagy and regulate Alternaria alternata toxin-induced cell death in tobacco BY-2 cells. Scientific Reports, 9 (1):8973-8973.
doi: 10.1038/s41598-019-45470-y pmid: 31222105 |
[62] |
Sarkar A, Chakraborty N, Acharya K. 2021. Unraveling the role of nitric oxide in regulation of defense responses in chilli against Alternaria leaf spot disease. Physiological and Molecular Plant Pathology, 114 (6839):101621.
doi: 10.1016/j.pmpp.2021.101621 URL |
[63] |
Seay M, Patel S, Dinesh-Kumar S P. 2006. Autophagy and plant innate immunity. Cell Microbiol, 8 (6):899-906.
pmid: 16681833 |
[64] |
Sienko K, Poormassalehgoo A, Yamada K, Goto-Yamada S. 2020. Microautophagy in plants:consideration of its molecular mechanism. Cells, 9 (4):887.
doi: 10.3390/cells9040887 URL |
[65] |
Su W, Bao Y, Yu X, Xia X, Liu C, Yin W. 2020. Autophagy and its regulators in response to stress in plants. Int J Mol Sci, 21 (23):8889.
doi: 10.3390/ijms21238889 URL |
[66] |
Sun X, Huo L, Jia X, Che R, Gong X, Wang P, Ma F. 2018. Overexpression of MdATG18a in apple improves resistance to Diplocarpon mali infection by enhancing antioxidant activity and salicylic acid levels. Horticulture Research, 5 (1):1-10.
doi: 10.1038/s41438-017-0012-z URL |
[67] |
Sun X, Pan B, Wang Y, wenyu Xu, shaoling Zhang. 2021. Exogenous calcium improved resistance to Botryosphaeria dothidea by increasing autophagy cctivity and salicylic acid level in pear. Molecular Plant-Microbe Interaction, 33 (9):1150-1160.
doi: 10.1094/MPMI-04-20-0101-R URL |
[68] |
Suttangkakul A, Li F, Chung T, Vierstra R D. 2011. The ATG1/ATG 13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell, 23 (10):3761-3779.
doi: 10.1105/tpc.111.090993 URL |
[69] |
Suzuki K, Ohsumi Y. 2010. Current knowledge of the pre-autophagosomal structure(PAS). FEBS Lett, 584 (7):1280-1286.
doi: 10.1016/j.febslet.2010.02.001 URL |
[70] |
Torres M A, Jones J D, Dangl J L. 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiol, 141 (2):373-378.
pmid: 16760490 |
[71] |
Tsai Y C, Koo Y, Delk N A, Gehl B, Braam J. 2013. Calmodulin-related CML24 interacts with ATG4b and affects autophagy progression in Arabidopsis. Plant J, 73:325-335.
doi: 10.1111/tpj.12043 URL |
[72] |
Ustun S, Hafren A, Liu Q, Marshall R S, Minina E A, Bozhkov P V, Vierstra R D, Hofius D. 2018. Bacteria exploit autophagy for proteasome degradation and enhanced virulence in plants. Plant Cell, 30 (3):668-685.
doi: 10.1105/tpc.17.00815 URL |
[73] |
Vanhee C, Zapoyocany G, Masquelier D, Ghislain M, Batoko H. 2011. The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant Cell, 23 (2):785-805.
doi: 10.1105/tpc.110.081570 URL |
[74] |
Voigt O, Pöggeler S. 2013. Self-eating to grow and kill:autophagy in filamentous ascomycetes. Applied Microbiology and Biotechnology, 97 (21):9277-9290.
doi: 10.1007/s00253-013-5221-2 URL |
[75] |
Wang C, Liu R, Lim G H, Lorenzo L D, Yu K S, Zhang K, Hunt A G, Kachroo A, Kachroo P. 2018. Pipecolic acid confers systemic immunity by regulating free radicals. Science Advances, 4 (5):eaar4509.
doi: 10.1126/sciadv.aar4509 URL |
[76] |
Wang Y, Nishimura M T, Zhao T, Tang D Z. 2011. ATG2,an autophagy-related protein,negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J, 68 (1):74-87.
doi: 10.1111/j.1365-313X.2011.04669.x URL |
[77] |
Wei Y, Liu W, Hu W, Liu G, Wu C, Liu W, Zeng H, He C, Shi H. 2017. Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt. Plant Cell Rep, 36 (8):1237-1250.
doi: 10.1007/s00299-017-2149-5 URL |
[78] |
Wiermer M, Feys B J, Parker J E. 2005. Plant immunity:the EDS1 regulatory node. Curr Opin Plant Biol, 8:383-389.
pmid: 15939664 |
[79] |
Xiong Y, Contento A L, Nguyen P Q, Bassham D C. 2007. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol, 143 (1):291-299.
pmid: 17098847 |
[80] | Yang M, Liu Y. 2022. Autophagy in plant viral infection. FEBS Letters. Doi: 10.1002/1873-3468.14349. |
[81] |
Yang M, Zhang Y, Xie X, Yue N, Li J, Wang X B, Han C G, Yu J L, Liu Y L, Li D. 2018. Barley stripe mosaic virus γb protein subverts autophagy to promote viral infection by disrupting the ATG7-ATG8 interaction. Plant Cell, 30:1582-1595.
doi: 10.1105/tpc.18.00122 URL |
[82] |
Yang X, Bassham D C. 2015. New insight into the mechanism and function of autophagy in plant cells. Int Rev Cell Mol Biol, 320:1-40.
doi: 10.1016/bs.ircmb.2015.07.005 pmid: 26614870 |
[83] | Yang Xiao-long, Li Yang-yang, Liu Yu-feng, Qi Ming-fang, Li Tian-lai. 2017. Review of selective autophagy in plant cell. Acta Horticulturae Sinica, 44 (10):2015-2028. (in Chinese) |
杨小龙, 李漾漾, 刘玉凤, 齐明芳, 李天来. 2017. 植物细胞选择性自噬研究进展. 园艺学报, 44 (10):2015-2028. | |
[84] | Yang Z, Klionsky D J. 2010. Eaten alive:a history of macroautophagy. Nature Cell Biology,Doi:10.1038/ncb0910-814. |
[85] |
Yamaguchi M, Noda N N, Nakatogawa H. 2011. Autophagy-related protein 8(Atg8)family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. Journal of Biological Chemistry, 285 (38):29599-29607.
doi: 10.1074/jbc.M110.113670 URL |
[86] |
Yin Z, Chen C, Yang J, Feng W, Liu X, Zuo R, Zhang Z. 2019. Histone acetyltransferase MoHat1 acetylates autophagy-related proteins MoAtg3 and MoAtg9 to orchestrate functional appressorium formation and pathogenicity in Magnaporthe oryzae. Autophagy, 15 (7):1234-1257.
doi: 10.1080/15548627.2019.1580104 URL |
[87] |
Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. 2010. AREB1,AREB2,and ABF 3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J, 61 (4):672-685.
doi: 10.1111/j.1365-313X.2009.04092.x URL |
[88] |
Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y. 2004. Processing of ATG8s,ubiquitin-like proteins and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell, 16 (11):2967-2983.
pmid: 15494556 |
[89] |
Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K. 2009. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell, 21 (9):2914-2927.
doi: 10.1105/tpc.109.068635 URL |
[90] | Zhang Zhehui, Wang Xin, Jin Kemo, Cheng lingyun, Wang Baolan, Shen Jianbo. 2021. Research progress on the mechanism of nitric oxide in plant development and plant-microbe interaction. Journal of Plant Nutrition and Fertilizer, 27 (4):706-718. (in Chinese) |
张喆慧, 王昕, 金可默, 程凌云, 王宝兰, 申建波. 2021. 一氧化氮在植物发育及植物-微生物互作中的作用机制研究进展. 植物营养与肥料学报, 27 (4):706-718. | |
[91] | Zhang fanzhong. 2016. Metabolic impact on Magnaporthe oryzae and its hosts after deletion of MoATG genes and screening of differential metabolites[Ph. D. Dissertation]. Hangzhou: Zhejiang University. (in Chinese) |
张凡忠. 2016. 稻瘟病菌自噬基因缺失对菌体及其寄主代谢的影响及差异代谢物筛选[博士论文]. 杭州: 浙江大学. | |
[92] |
Zhang S, Liang M, Naqvi N I, Lin C, Qian W, Zhang L, Deng Y. 2017. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg 7 in Magnaporthe oryzae. Autophagy, 13 (8):1318-1330.
doi: 10.1080/15548627.2017.1327103 URL |
[93] |
Zeng X, Zeng Z, Liu C, Yuan W, Hou N, Bian H, Zhu M, Han N. 2017. A barley homolog of yeast atg6 is involved in multiple abiotic stress responses and stress resistance regulation. Plant Physiology and Biochemistry, 115:97-106.
doi: S0981-9428(17)30107-9 pmid: 28343064 |
[94] |
Zhou J, Wang J, Yu J Q, Chen Z. 2014. Role and regulation of autophagy in heat stress responses of tomato plants. Front Plant Sci, 5:174.
doi: 10.3389/fpls.2014.00174 pmid: 24817875 |
[95] |
Zhu J K. 2016. Abiotic stress signaling and responses in plants. Cell, 167 (2):313-324.
doi: 10.1016/j.cell.2016.08.029 URL |
[96] |
Zhu X M, Li L, Wu M, Liang S, Shi H B, Liu X H, Lin F C. 2019. Current opinions on autophagy in pathogenicity of fungi. Virulence, 10 (1):481-489.
doi: 10.1080/21505594.2018.1551011 URL |
[97] |
Zhu X M, Liang S, Shi H B, Lu J P, Dong B, Liao Q S, Lin F C, Liu X H. 2018. VPS 9 domain-containing proteins are essential for autophagy and endocytosis in Pyricularia oryzae. Environ Microbiol, 20 (4):1516-1530.
doi: 10.1111/1462-2920.14076 URL |
[1] | 梁嘉莉, 吴启松, 陈广全, 张 荣, 徐春香, 冯淑杰, . 香蕉叶斑病病原菌芭蕉新拟盘多毛孢的鉴定[J]. 园艺学报, 2023, 50(2): 410-420. |
[2] | 刘鹏, 李钦, 张维瑞, 贺社起, 张素平, 马晓旭, 袁王俊. 连翘褐斑病病原菌鉴定及其对杀菌剂敏感性研究[J]. 园艺学报, 2022, 49(8): 1805-1814. |
[3] | 李琼, 李丽丽, 侯娟, 罗忍忍, 王瑞丹, 胡建斌, 黄松. 瓜类作物响应低温胁迫机制的研究进展[J]. 园艺学报, 2022, 49(6): 1382-1394. |
[4] | 贡长怡, 刘姣姣, 邓强, 张立新. 茶树炭疽病病原菌鉴定及其致病性分析[J]. 园艺学报, 2022, 49(5): 1092-1101. |
[5] | 李俊璋, 秦源, 肖强, 安昌, 廖静怡, 郑平. 景天酸代谢植物分子生物学研究进展及应用潜力[J]. 园艺学报, 2022, 49(12): 2597-2610. |
[6] | 苏江硕, 贾棣文, 王思悦, 张飞, 蒋甲福, 陈素梅, 房伟民, 陈发棣. 中国菊花遗传育种60年回顾与展望[J]. 园艺学报, 2022, 49(10): 2143-2162. |
[7] | 张婷婷, 薛婉钰, 刘娜, 陈书霞. 几种主要果菜类蔬菜果形遗传及其调控机制研究进展[J]. 园艺学报, 2022, 49(10): 2189-2204. |
[8] | 岳玲琦, 邢巧娟, 张晓兰, 梁雪, 王乾, 齐红岩. 光敏色素互作因子在植物抵御逆境胁迫中的作用研究进展[J]. 园艺学报, 2021, 48(4): 632-646. |
[9] | 贾兵, 郭国凌, 王友煜, 叶振风, 刘莉, 刘普, 衡伟, 朱立武. ‘黄金梨’缺铁黄化叶片受GA3诱导复绿的机理研究[J]. 园艺学报, 2021, 48(2): 254-264. |
[10] | 毛鹏鹏, 郑胤建, 杨其长, 许亚良, 王 芳, 廖秋红, 刘晓英. 光质对十字花科蔬菜硫代葡萄糖苷调控分子机制研究进展[J]. 园艺学报, 2020, 47(9): 1633-1647. |
[11] | 刘兴旺, 翟许玲, 张亚琦, 尹 帅, 冯钟萱, 任华中, . 黄瓜果实形态建成的遗传及分子基础研究进展[J]. 园艺学报, 2020, 47(9): 1793-1809. |
[12] | 徐小迪1,2,李博强1,秦国政1,陈 彤1,张占全1,田世平1,2,*. 果实采后品质维持的分子基础与调控技术研究进展[J]. 园艺学报, 2020, 47(8): 1595-1609. |
[13] | 陈 瑶 1,2,周寒梅 1何 兵 1,*,李 维 1. GA3 和 IAA 组合调控华重楼种子萌发机理初探[J]. 园艺学报, 2020, 47(2): 321-333. |
[14] | 杨若雯*,张 萍*,薛玉前,薛璟祺,王顺利**,张秀新**. 乙烯对‘班克海尔’和‘杨妃出浴’芍药切花开放和衰老的影响[J]. 园艺学报, 2018, 45(8): 1575-1586. |
[15] | 曹运琳,邢梦云,徐昌杰,李 鲜*. 植物黄酮醇生物合成及其调控研究进展[J]. 园艺学报, 2018, 45(1): 177-192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司