园艺学报 ›› 2022, Vol. 49 ›› Issue (9): 2023-2036.doi: 10.16420/j.issn.0513-353x.2021-0268
收稿日期:
2021-11-30
修回日期:
2022-01-29
出版日期:
2022-09-25
发布日期:
2022-10-08
通讯作者:
方方
E-mail:fangfang@scau.edu.cn
基金资助:
XUE Weiwen, ZHOU Xianfang, ZHANG Zhaoqi, FANG Fang*()
Received:
2021-11-30
Revised:
2022-01-29
Online:
2022-09-25
Published:
2022-10-08
Contact:
FANG Fang
E-mail:fangfang@scau.edu.cn
摘要:
综述了果蔬采后品质和生理失调与其木质素积累的关系,以及木质素单体的生物合成,木质素聚合和转录调控的研究进展,介绍了不同采后处理技术对果蔬品质的影响。
中图分类号:
薛维文, 周显芳, 张昭其, 方方. 果蔬采后木质素积累及其调控对品质的影响研究进展[J]. 园艺学报, 2022, 49(9): 2023-2036.
XUE Weiwen, ZHOU Xianfang, ZHANG Zhaoqi, FANG Fang. Advances in Lignin Accumulation and Its Regulation on the Quality of Postharvest Fruit and Vegetables[J]. Acta Horticulturae Sinica, 2022, 49(9): 2023-2036.
物种 Species | 转录因子 Transcription factor | 调控机理 Regulation mechanism | 参考文献 Reference |
---|---|---|---|
枇杷 Eriobotrya japonica | EjMYB1/2 | 激活/抑制Ej4CL1和Ej4CL5的表达,调控低温诱导的果肉木质化 Activates/inhibits the expression of Ej4CL1 and Ej4CL5,regulate low temperature-induced pulp lignification | Xu et al., |
EjMYB8 | 激活EjPAL1、4CL1的启动子和ERF-MYB8复合物调节低温诱导的果实木质化 Activates EjPAL1,4CL1 promoter and the ERF-MYB8 complex,regulates low temperature-induced fruit lignification | Wang et al., | |
EjNAC3/4 | 激活EjCAD-like的启动子,调控低温诱导的枇杷木质化 Activates the EjCAD-like promoter,regulate low temperature-induced lignification in loquat | Ge et al., | |
EjAP2-1 | 与EjMYB1/2相互作用,抑制低温诱导的木质化 Interacts with EjMYB1/2,inhibits low temperature-induced lignification | Zeng et al., | |
EjbHLH1 | 抑制木质素生物合成基因Ej4CL1的表达 Inhibits the expression of lignin synthesis gene Ej4CL1 | Xu et al., | |
柚 Citrus maxima | CgMYB58 | 结合木质素合成基因CgPAL1、CgPAL2、Cg4CL1和CgC3H启动子,调控柚粒化 Combines with the promoters of lignin synthesis genes CgPAL1,CgPAL2,Cg4CL1 and CgC3H,regulates pomelo granulation | Shi et al., |
柑橘 Citrus reticulata | CsMYB330,CsMYB308 | 调控Cs4CL1表达,调控柑橘粒化 Regulates the expression of Cs4CL1,regulates citrus granulation | Ji et al., |
CsMYB85 | 结合CsMYB330启动子,调控柑橘汁囊木质化 Combines with the promoter of CsMYB330,regulates citrus granulation | Jia et al., | |
苹果 Malus pumila | MdMYB93 | 调控MdPAL、Md4CL和MdCAD表达,诱导果皮细胞壁木质素积累 Regulates the expression of MdPAL,Md4CL and MdCAD,induces lignin accumulation in pericarp cell wall | Legay et al., |
白梨 Pyrus bretschneideri | PbrMYB169 | 激活木质素合成相关基因C3H1、CCR1、CCOMT2、CAD、4CL1、4CL2、HCT2和LAC18的表达Activates the expression of C3H1,CCR1,CCOMT2,CAD,4CL1,4CL2,HCT2 and LAC18 | Xue et al., |
PbBZR1 | 抑制木质素生物合成基因PbCES9、PbCOMT3和PbHCT6的表达 Inhibits the expression of PbCES9,PbCOMT3 and PbHCT6 | Cao et al., | |
黄金梨 Pyrus pyrifolia Nakai | PpNAC187 | 调控PpCCR和PpCOMT转录本,诱导梨果实硬化 Regulates the transcripts of PpCCR and PpCOMT,induces hard-end in pear | Li et al., |
石榴 Punica granatum | PgSND1-like | 结合PgPAL、Pg4CL、PgF5H、PgCCR和PgCAD启动子特异元件,调控石榴籽硬度 Combines PgPAL,Pg4CL,PgF5H,PgCCR and PgCAD promoter-specific elements,regulate firmness of pomegranate seed | Xia et al., |
表1 部分转录因子调控采后园艺产品木质素的生物合成
Table 1 Some transcription factors regulate lignin biosynthesis of postharvest horticultural products
物种 Species | 转录因子 Transcription factor | 调控机理 Regulation mechanism | 参考文献 Reference |
---|---|---|---|
枇杷 Eriobotrya japonica | EjMYB1/2 | 激活/抑制Ej4CL1和Ej4CL5的表达,调控低温诱导的果肉木质化 Activates/inhibits the expression of Ej4CL1 and Ej4CL5,regulate low temperature-induced pulp lignification | Xu et al., |
EjMYB8 | 激活EjPAL1、4CL1的启动子和ERF-MYB8复合物调节低温诱导的果实木质化 Activates EjPAL1,4CL1 promoter and the ERF-MYB8 complex,regulates low temperature-induced fruit lignification | Wang et al., | |
EjNAC3/4 | 激活EjCAD-like的启动子,调控低温诱导的枇杷木质化 Activates the EjCAD-like promoter,regulate low temperature-induced lignification in loquat | Ge et al., | |
EjAP2-1 | 与EjMYB1/2相互作用,抑制低温诱导的木质化 Interacts with EjMYB1/2,inhibits low temperature-induced lignification | Zeng et al., | |
EjbHLH1 | 抑制木质素生物合成基因Ej4CL1的表达 Inhibits the expression of lignin synthesis gene Ej4CL1 | Xu et al., | |
柚 Citrus maxima | CgMYB58 | 结合木质素合成基因CgPAL1、CgPAL2、Cg4CL1和CgC3H启动子,调控柚粒化 Combines with the promoters of lignin synthesis genes CgPAL1,CgPAL2,Cg4CL1 and CgC3H,regulates pomelo granulation | Shi et al., |
柑橘 Citrus reticulata | CsMYB330,CsMYB308 | 调控Cs4CL1表达,调控柑橘粒化 Regulates the expression of Cs4CL1,regulates citrus granulation | Ji et al., |
CsMYB85 | 结合CsMYB330启动子,调控柑橘汁囊木质化 Combines with the promoter of CsMYB330,regulates citrus granulation | Jia et al., | |
苹果 Malus pumila | MdMYB93 | 调控MdPAL、Md4CL和MdCAD表达,诱导果皮细胞壁木质素积累 Regulates the expression of MdPAL,Md4CL and MdCAD,induces lignin accumulation in pericarp cell wall | Legay et al., |
白梨 Pyrus bretschneideri | PbrMYB169 | 激活木质素合成相关基因C3H1、CCR1、CCOMT2、CAD、4CL1、4CL2、HCT2和LAC18的表达Activates the expression of C3H1,CCR1,CCOMT2,CAD,4CL1,4CL2,HCT2 and LAC18 | Xue et al., |
PbBZR1 | 抑制木质素生物合成基因PbCES9、PbCOMT3和PbHCT6的表达 Inhibits the expression of PbCES9,PbCOMT3 and PbHCT6 | Cao et al., | |
黄金梨 Pyrus pyrifolia Nakai | PpNAC187 | 调控PpCCR和PpCOMT转录本,诱导梨果实硬化 Regulates the transcripts of PpCCR and PpCOMT,induces hard-end in pear | Li et al., |
石榴 Punica granatum | PgSND1-like | 结合PgPAL、Pg4CL、PgF5H、PgCCR和PgCAD启动子特异元件,调控石榴籽硬度 Combines PgPAL,Pg4CL,PgF5H,PgCCR and PgCAD promoter-specific elements,regulate firmness of pomegranate seed | Xia et al., |
处理技术 Treatment technique | 处理方法 Method | 作用原理 Action principle | 优点 Advantage | 缺点 Disadvantage | 参考文献 Reference | |
---|---|---|---|---|---|---|
物理处理 Physical treatment | 热处理、低温处理、气调贮藏等 Heat treatment,low temperature treatment,controlled atmosphere storage,etc. | 降低代谢速率、呼吸速率;抑制木质素合成酶活性及相关基因的表达,延缓果实木质化 Reduces metabolic rate and respiration rate,inhibits lignin synthase activity and expression of related genes,and delays fruit lignification | 无化学残留、安全、简单易行 No chemical residues,safe and simple | 不易控制;不适当温度、气体浓度造成果实伤害、腐烂 Difficult to control,fruit damage and decay due to improper temperature or gas concentration | Shao et al., | |
化学处理 Chemical treatment | 化学药剂、植物激素等 Chemicals,plant hormones,etc. | 木质素积累增多,细胞壁增厚,诱导抗性应答 Increases accumulation of lignin and thickening of cell walls,induces resistance responses | 用量少,易分解,使用方法简单,成本低 Less dosage,easy to decompose,simple to use,low cost | 长期使用导致病原菌抗药性,化学残留 Leads to drug resistance of pathogenic bacteria,and chemical residues | Qin et al., | |
生物处理 Biological treatment | 生物拮抗菌、壳聚糖、新型生物抑菌物 Biological antagonistic bacteria,chitosan,new biological antibacterial substances | 激发产品防御反应,促进木质素含量增加,增强防御病害能力 Stimulates the defense reaction of products,promotes the increase of lignin content,and enhances the ability of defense against diseases | 有利食用安全Contributes to food safety | 拮抗菌环境适应力差 Poor environmental adaptability | 田世平 等, |
表2 采后处理技术的作用原理及其优缺点
Table 2 Principles,advantages and disadvantages of post-harvest treatment techniques
处理技术 Treatment technique | 处理方法 Method | 作用原理 Action principle | 优点 Advantage | 缺点 Disadvantage | 参考文献 Reference | |
---|---|---|---|---|---|---|
物理处理 Physical treatment | 热处理、低温处理、气调贮藏等 Heat treatment,low temperature treatment,controlled atmosphere storage,etc. | 降低代谢速率、呼吸速率;抑制木质素合成酶活性及相关基因的表达,延缓果实木质化 Reduces metabolic rate and respiration rate,inhibits lignin synthase activity and expression of related genes,and delays fruit lignification | 无化学残留、安全、简单易行 No chemical residues,safe and simple | 不易控制;不适当温度、气体浓度造成果实伤害、腐烂 Difficult to control,fruit damage and decay due to improper temperature or gas concentration | Shao et al., | |
化学处理 Chemical treatment | 化学药剂、植物激素等 Chemicals,plant hormones,etc. | 木质素积累增多,细胞壁增厚,诱导抗性应答 Increases accumulation of lignin and thickening of cell walls,induces resistance responses | 用量少,易分解,使用方法简单,成本低 Less dosage,easy to decompose,simple to use,low cost | 长期使用导致病原菌抗药性,化学残留 Leads to drug resistance of pathogenic bacteria,and chemical residues | Qin et al., | |
生物处理 Biological treatment | 生物拮抗菌、壳聚糖、新型生物抑菌物 Biological antagonistic bacteria,chitosan,new biological antibacterial substances | 激发产品防御反应,促进木质素含量增加,增强防御病害能力 Stimulates the defense reaction of products,promotes the increase of lignin content,and enhances the ability of defense against diseases | 有利食用安全Contributes to food safety | 拮抗菌环境适应力差 Poor environmental adaptability | 田世平 等, |
[1] |
Baucher M, Halpin C, Petit-Conil M, Boerjan W. 2003. Lignin:genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol, 38 (4):305-350.
doi: 10.1080/10409230391036757 URL |
[2] |
Cao S, Zheng Y, Wang K, Rui H, Tang S. 2010. Effect of methyl jasmonate on cell wall modification of loquat fruit in relation to chilling injury after harvest. Food Chemistry, 118 (3):641-647.
doi: 10.1016/j.foodchem.2009.05.047 URL |
[3] |
Cao Y, Meng D, Li X, Wang L, Cai Y, Jiang L. 2020. A chinese white pear(Pyrus bretschneideri)BZR gene PbBZR1 act as a transcriptional repressor of lignin biosynthetic genes in fruits. Frontiers in Plant Science, 11:1087.
doi: 10.3389/fpls.2020.01087 URL |
[4] |
Carvajal F, Palma F, Jamilena M, Garrido D. 2015. Cell wall metabolism and chilling injury during postharvest cold storage in zucchini fruit. Postharvest Biology and Technology, 108:68-77.
doi: 10.1016/j.postharvbio.2015.05.013 URL |
[5] | Chen Haowei, Chen Mengjiao, Wang Yahui, Zhang Rongrong, Wang Xinrui, Xu Zhisheng, Tan Guofei, Xiong Aisheng. 2021. Research on the response mechanism of lignin in carrot taproot under salt stress. Acta Horticulturae Sinica, 48 (1):153-161. (in Chinese) |
陈皓炜, 陈梦娇, 王雅慧, 张榕蓉, 王欣蕊, 徐志胜, 谭国飞, 熊爱生. 2021. 盐胁迫下胡萝卜肉质根中木质素响应机理研究. 园艺学报, 48 (1):153-161. | |
[6] |
Chen Y, Mao W, Liu T, Feng Q, Li L, Li B. 2020. Genome editing as a versatile tool to improve horticultural crop qualities. Horticultural Plant Journal, 6 (6):372-384.
doi: 10.1016/j.hpj.2020.11.004 URL |
[7] | Cheng X, Li G, Ma C, Abdullah M, Zhang J, Zhao H, Jin Q, Cai Y, Lin Y. 2020. Correction:comprehensive genome-wide analysis of the pear (Pyrus bretschneideri)laccase gene(PbLAC)family and functional identification of PbLAC1 involved in lignin biosynthesis. PLoS ONE, 15 (1):e228183. |
[8] |
Choi S T, Huber D J. 2009. Differential sorption of 1-methylcyclopropene to fruit and vegetable tissues,storage and cell wall polysaccharides,oils,and lignins. Postharvest Biology and Technology, 52 (1):62-70.
doi: 10.1016/j.postharvbio.2008.11.002 URL |
[9] |
Coleman H D, Park J Y, Nair R, Chapple C, Mansfield S D. 2008. RNAi-mediated suppression of p-coumaroyl-CoA 3'-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proc Natl Acad Sci U S A, 105 (11):4501-4506.
doi: 10.1073/pnas.0706537105 URL |
[10] |
Deng Z, Jung J, Simonsen J, Zhao Y. 2018. Cellulose nanocrystals pickering emulsion incorporated chitosan coatings for improving storability of postharvest bartlett pears(Pyrus communis)during long-term cold storage. Food Hydrocolloids, 84:229-237.
doi: 10.1016/j.foodhyd.2018.06.012 URL |
[11] |
Ding X, Zhu X, Ye L, Xiao S, Wu Z, Chen W, Li X. 2019. The interaction of CpEBF 1 with CpMADSs is involved in cell wall degradation during papaya fruit ripening. Hortic Res, 6:13.
doi: 10.1038/s41438-018-0095-1 URL |
[12] | Dong Ying-fei. 2020. Effects of strigolactone on phenylpropane,NO and H2S metabolism in postharvest strawberry fruits[Ph. D. Dissertation]. Tai’an: Shandong Agricultural University. (in Chinese) |
董莹飞. 2020. 独脚金内酯对采后草莓果实一氧化氮、硫化氢以及苯丙烷代谢的影响[博士论文]. 泰安: 山东农业大学. | |
[13] | Dou Guoxia, Jiang Chunhao, Guo Hongna, Liu Jia, He Qinyu, Xiao Hongmei. 2019. Studies on the resistance induction of Hanseniaspora uvarum to postharvest gray mold in strawberry. Acta Horticulturae Sinica, 46 (7):1290-1302. (in Chinese) |
窦国霞, 蒋春号, 郭虹娜, 刘佳, 贺沁玉, 肖红梅. 2019. 葡萄汁有孢汉逊酵母对采后草莓灰霉病抗性诱导机理研究. 园艺学报, 46 (7):1290-1302. | |
[14] |
Droby S, Wisniewski M, Macarisin D, Wilson C. 2009. Twenty years of postharvest biocontrol research:is it time for a new paradigm? Postharvest Biology and Technology, 52 (2):137-145.
doi: 10.1016/j.postharvbio.2008.11.009 URL |
[15] |
Dukare A S, Paul S, Nambi V E, Gupta R K, Singh R, Sharma K, Vishwakarma R K. 2019. Exploitation of microbial antagonists for the control of postharvest diseases of fruits:a review. Crit Rev Food Sci Nutr, 59 (9):1498-1513.
doi: 10.1080/10408398.2017.1417235 URL |
[16] |
Eskandari S, Sharifnabi B. 2019. The modifications of cell wall composition and water status of cucumber leaves induced by powdery mildew and manganese nutrition. Plant Physiol Biochem, 145:132-141.
doi: 10.1016/j.plaphy.2019.10.037 URL |
[17] |
Fang F, Zhang X L, Luo H H, Zhou J J, Gong Y H, Li W J, Shi Z W, He Q, Wu Q, Li L, Jiang L L, Cai Z G, Oren-Shamir M, Zhang Z Q, Pang X Q. 2015. An intracellular laccase is responsible for epicatechin-mediated anthocyanin degradation in litchi fruit pericarp. Plant Physiol, 169 (4):2391-2408.
doi: 10.1104/pp.15.00359 pmid: 26514808 |
[18] | Gao Hui, Rao Jing-ping. 2005. Effect of MA storage on postharvest physiology and enzymatic activity of nectarines. Acta Horticulturae Sinica, 32 (1):91-93. (in Chinese) |
高慧, 饶景萍. 2005. 自发气调贮藏对油桃采后生理及相关酶活性变化的影响. 园艺学报, 32 (1):91-93. | |
[19] |
Ge H, Zhang J, Zhang Y J, Li X, Yin X R, Grierson D, Chen K S. 2017. EjNAC 3 transcriptionally regulates chilling-induced lignification of loquat fruit via physical interaction with an atypical CAD-like gene. J Exp Bot, 68 (18):5129-5136.
doi: 10.1093/jxb/erx330 URL |
[20] |
Giordano A, Liu Z, Panter S N, Dimech A M, Shang Y, Wijesinghe H, Fulgueras K, Ran Y, Mouradov A, Rochfort S, Patron N J, Spangenberg G C. 2014. Reduced lignin content and altered lignin composition in the warm season forage grass Paspalum dilatatum by down-regulation of a Cinnamoyl CoA reductase gene. Transgenic Res, 23 (3):503-517.
doi: 10.1007/s11248-014-9784-1 pmid: 24504635 |
[21] |
Gou M, Yang X, Zhao Y, Ran X, Song Y, Liu C. 2019. Cytochrome b5 is an obligate electron shuttle protein for syringyl lignin biosynthesis in Arabidopsis. Plant Cell, 31 (6):1344-1366.
doi: 10.1105/tpc.18.00778 URL |
[22] |
Graven P, de Koster C G, Boon J J, Bouman F. 1996. Structure and macromolecular composition of the seed coat of the musaceae. Annals of Botany, 77 (2):105-122.
doi: 10.1006/anbo.1996.0013 URL |
[23] |
Gui J, Shen J, Li L. 2011. Functional characterization of evolutionarily divergent 4-coumarate:coenzyme a ligases in rice. Plant Physiol, 157 (2):574-586.
doi: 10.1104/pp.111.178301 pmid: 21807887 |
[24] | Guo zi juan. 2016. The study of 1-MCP physiological regulation on rubbery papaya fruit and the related genes expression[Ph. D. Dissertation]. Haikou: Hainan University. (in Chinese) |
郭子娟. 2016. 1-MCP处理对番木瓜果实“橡皮化”现象的生理调控及相关基因表达分析[博士论文]. 海口: 海南大学. | |
[25] |
Heng W, Wang M, Yang J, Wang Z, Jiang X, Zhu L. 2016. Relationship between H2O2 in polyamine metabolism and lignin in the exocarp of a russet mutant of‘Dangshansuli’pear(Pyrus bretschneideri Rehd.). Plant Molecular Biology Reporter, 34 (6):1056-1063.
doi: 10.1007/s11105-016-0985-z URL |
[26] |
Hou X, Wei L, Xu Y, Khalil-Ur-Rehman M, Feng J, Zeng J, Tao J. 2018. Study on russet-related enzymatic activity and gene expression in 'Shine Muscat’grape treated with GA3 and CPPU. Journal of Plant Interactions, 13 (1):195-202.
doi: 10.1080/17429145.2018.1455904 URL |
[27] |
Hu Wei-rong, Kong Wei-na, Pang Xue-qun, Liu Shun-zhi, Zhang Zhao-qi. 2015. Effects of two storage temperatures on storage quality of Shatianyu pomelo. Food Science and Technology, 40 (8):334-339. (in Chinese)
doi: 10.1590/fst.41618 URL |
胡位荣, 孔维娜, 庞学群, 刘顺枝, 张昭其. 2015. 2种贮藏温度对沙田柚果实保鲜效果的影响. 食品科技, 40 (8):334-339. | |
[28] |
Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou Y, Yu J, Chen Z. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth,development,and response to environmental stress. Plant Physiology, 153 (4):1526-1538.
doi: 10.1104/pp.110.157370 URL |
[29] |
Huang W, Zhu N, Zhu C, Wu D, Chen K. 2019. Morphology and cell wall composition changes in lignified cells from loquat fruit during postharvest storage. Postharvest Biology and Technology, 157:110975.
doi: 10.1016/j.postharvbio.2019.110975 URL |
[30] |
Huang Y, Liang D, Xia H, Lin L J, Wang J, Lv X L. 2020. Lignin and quercetin synthesis underlies berry russeting in‘Sunshine Muscat’grape. Biomolecules, 10 (5):690.
doi: 10.3390/biom10050690 URL |
[31] |
Ji D, Chen T, Ma D, Liu J, Xu Y, Tian S. 2018. Inhibitory effects of methyl thujate on mycelial growth of Botrytis cinerea and possible mechanisms. Postharvest Biology and Technology, 142:46-54.
doi: 10.1016/j.postharvbio.2018.04.003 URL |
[32] |
Jia N, Liu J, Sun Y, Tan P, Cao H, Xie Y, Wen B, Gu T, Liu J, Li M, Huang Y, Lu J, Jin N, Sun L, Xin F, Fan B. 2018. Citrus sinensis MYB transcription factors CsMYB330 and CsMYB308 regulate fruit juice sac lignification through fine-tuning expression of the Cs4CL1 gene. Plant Sci, 277:334-343.
doi: 10.1016/j.plantsci.2018.10.006 URL |
[33] |
Jia N, Liu J, Tan P, Sun Y, Lv Y, Liu J, Sun J, Huang Y, Lu J, Jin N, Li M, Md S U I K, Xin F, Fan B. 2019. Citrus sinensis MYB transcription factor CsMYB85 induce fruit juice sac lignification through interaction with other CsMYB transcription factors. Front Plant Sci, 10:213.
doi: 10.3389/fpls.2019.00213 URL |
[34] |
Koshiba T, Yamamoto N, Tobimatsu Y, Yamamura M, Suzuki S, Hattori T, Mukai M, Noda S, Shibata D, Sakamoto M, Umezawa T. 2017. MYB-mediated upregulation of lignin biosynthesis in Oryza sativa towards biomass refinery. Plant Biotechnol, 34 (1):7-15.
doi: 10.5511/plantbiotechnology.16.1201a pmid: 31275003 |
[35] | Kumar S, Mukherjee A, Dutta J. 2020. Chitosan based nanocomposite films and coatings:emerging antimicrobial food packaging alternatives. Trends in Food Science & Technology, 97:196-209. |
[36] |
Lancaster J E, Grant J E, Lister C E, Taylor M C. 1994. Skin color in apples-influence of copigmentation and plastid pigments on shade and darkness of red color in five genotypes. Journal of the American Society for Horticultural Science, 119 (1):63-69.
doi: 10.21273/JASHS.119.1.63 URL |
[37] |
Lashbrooke J, Aharoni A, Costa F. 2015. Genome investigation suggests MdSHN3,an APETALA2-domain transcription factor gene,to be a positive regulator of apple fruit cuticle formation and an inhibitor of russet development. Journal of Experimental Botany, 66 (21):6579-6589.
doi: 10.1093/jxb/erv366 pmid: 26220084 |
[38] |
Lee B, Kim K, Jung W, Avice J, Ourry A, Kim T. 2007. Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). Journal of Experimental Botany, 58 (6):1271-1279.
doi: 10.1093/jxb/erl280 URL |
[39] |
Lee Y, Rubio M C, Alassimone J, Geldner N. 2013. A mechanism for localized lignin deposition in the endodermis. Cell, 153 (2):402-412.
doi: 10.1016/j.cell.2013.02.045 pmid: 23541512 |
[40] |
Legay S, Guerriero G, André C, Guignard C, Cocco E, Charton S, Boutry M, Rowland O, Hausman J. 2016. MdMyb 93 is a regulator of suberin deposition in russeted apple fruit skins. The New Phytologist, 212 (4):977-991.
doi: 10.1111/nph.14170 URL |
[41] |
Li H, He C, Li G, Zhang Z, Li B, Tian S. 2019a. The modes of action of epsilon-polylysine(ε-PL)against Botrytis cinerea in jujube fruit. Postharvest Biology and Technology, 147:1-9.
doi: 10.1016/j.postharvbio.2018.08.009 URL |
[42] |
Li L, Yang K, Wang S, Lou Y, Zhu C, Gao Z. 2020. Genome-wide analysis of laccase genes in moso bamboo highlights PeLAC10involved in lignin biosynthesis and in response to abiotic stresses. Plant Cell Reports, 39 (6):751-763.
doi: 10.1007/s00299-020-02528-w URL |
[43] |
Li M, Cheng C, Zhang X, Zhou S, Wang C, Ma C, Yang S. 2019b. PpNAC 187 enhances lignin synthesis in‘Whangkeumbae’pear(Pyrus pyrifolia) ‘Hard-End’fruit. Molecules, 24 (23):4338.
doi: 10.3390/molecules24234338 URL |
[44] |
Li S, Xu Y, Bi Y, Zhang B, Shen S, Jiang T, Zheng X. 2019c. Melatonin treatment inhibits gray mold and induces disease resistance in cherry tomato fruit during postharvest. Postharvest Biology and Technology, 157:110962.
doi: 10.1016/j.postharvbio.2019.110962 URL |
[45] |
Li X, Chapple C. 2010. Understanding lignification:challenges beyond monolignol biosynthesis. Plant Physiol, 154 (2):449-452.
doi: 10.1104/pp.110.162842 URL |
[46] |
Liu J, Tian S, Meng X, Xu Y. 2007. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 44 (3):300-306.
doi: 10.1016/j.postharvbio.2006.12.019 URL |
[47] |
Liu M, Wu F, Wang S, Lu Y, Chen X, Wang Y, Gu A, Zhao J, Shen S. 2019. Comparative transcriptome analysis reveals defense responses against soft rot in Chinese cabbage. Horticulture Research, 6 (1):68.
doi: 10.1038/s41438-019-0149-z URL |
[48] |
Lu G, Lu G, Li Z, Li Z, Zhang X, Zhang X, Wang R, Wang R, Yang S, Yang S. 2015. Expression analysis of lignin-associated genes in hard end pear(Pyrus pyrifolia Whangkeumbae)and its response to calcium chloride treatment conditions. Journal of Plant Growth Regulation, 34 (2):251-262.
doi: 10.1007/s00344-014-9461-x URL |
[49] | Lu S M, Kong F C. 2004. Effects of low oxygen-modified atmosphere packaging on browning and lignification of peeled bamboo shoots. Journal of Plant Physiology and Molecular Biology, 30 (4):387-392. |
[50] |
Luo Z, Xu X, Yan B. 2008. Accumulation of lignin and involvement of enzymes in bamboo shoot during storage. European Food Research and Technology, 226 (4):635-640.
doi: 10.1007/s00217-007-0595-y URL |
[51] |
Ma D, Ji D, Liu J, Xu Y, Chen T, Tian S. 2020. Efficacy of methyl thujate in inhibiting Penicillium expansum growth and possible mechanism involved. Postharvest Biology and Technology, 161:111070.
doi: 10.1016/j.postharvbio.2019.111070 URL |
[52] |
Martínez-González M D C A, Bautista-Baños S A S H, Correa-Pacheco Z N A Z, Corona-Rangel M L A M, Ventura-Aguilar R I A I, Del Río-García J C A M, Ramos-García M D L A. 2020. Effect of nanostructured chitosan/propolis coatings on the quality and antioxidant capacity of strawberries during storage. Coatings, 10 (2):90.
doi: 10.3390/coatings10020090 URL |
[53] |
Mellerowicz E J, Baucher M, Sundberg B, Boerjan W. 2001. Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol, 47 (1-2):239-274.
pmid: 11554475 |
[54] | Melo N F C B, Lima M A B, Stamford T L M, Galembeck A, Flores M A P, Campos Takaki G M, Costa Medeiros J A, Stamford Arnaud T M, Montenegro Stamford T C. 2020. In vivo and in vitro antifungal effect of fungal chitosan nanocomposite edible coating against strawberry phytopathogenic fungi. International Journal of Food Science & Technology, 55 (11):3381-3391. |
[55] |
Meng X, Li B, Liu J, Tian S. 2008. Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chemistry, 106 (2):501-508.
doi: 10.1016/j.foodchem.2007.06.012 URL |
[56] |
Meng X, Yang L, Kennedy J F, Tian S. 2010. Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate Polymers, 81 (1):70-75.
doi: 10.1016/j.carbpol.2010.01.057 URL |
[57] |
Mesquita G L, Tanaka F A O, Zambrosi F C B, Chapola R, Cursi D, Habermann G, Massola N S, Ferreira V P, Gaziola S A, Azevedo R A. 2019. Foliar application of manganese increases sugarcane resistance to orange rust. Plant Pathology, 68 (7):1296-1307.
doi: 10.1111/ppa.13041 |
[58] |
Nafussi B, Ben-Yehoshua S, Rodov V, Peretz J, Ozer B K, D'Hallewin G. 2001. Mode of action of hot-water dip in reducing decay of lemon fruit. Journal of Agricultural and Food Chemistry, 49 (1):107-113.
pmid: 11170566 |
[59] |
Qin G, Tian S, Chan Z, Li B. 2007. Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of Penicillium expansum:analysis based on proteomics approach. Mol Cell Proteomics, 6 (3):425-438.
doi: 10.1074/mcp.M600179-MCP200 URL |
[60] |
Shaipulah N F M, Muhlemann J K, Woodworth B D, van Moerkercke A, Verdonk J C, Ramirez A A, Haring M A, Schuurink N D A R. 2016. CCoAOMT down-regulation activates anthocyanin biosynthesis in petunia. Plant Physiology, 170 (2):717-731.
doi: 10.1104/pp.15.01646 pmid: 26620524 |
[61] | Shang Hai-tao, Zhu Lin, Yu Jing-fen, Kang Meng-li, Cui Yan, Ling Jian-gang. 2019. Effect of modified atmosphere storage on hollowing and quality of postharvest Cuiguan pear. Storage and Process, 19 (5):19-23. (in Chinese) |
尚海涛, 朱麟, 俞静芬, 康孟利, 崔燕, 凌建刚. 2019. 自发气调贮藏对采后翠冠梨糠心和品质的影响. 保鲜与加工, 19 (5):19-23. | |
[62] |
Shao X, Tu K, Tu S, Su J, Zhao Y. 2010. Effects of heat treatment on wound healing in gala and red fuji apple fruits. J Agric Food Chem, 58 (7):4303-4309.
doi: 10.1021/jf904273m URL |
[63] |
Shi C, Qi B, Wang X, Shen L, Luo J, Zhang Y. 2019. Proteomic analysis of the key mechanism of exocarp russet pigmentation of semi-russet pear under rainwater condition. Scientia Horticulturae, 254:178-186.
doi: 10.1016/j.scienta.2019.04.086 URL |
[64] |
Shi M, Liu X, Zhang H, He Z, Yang H, Chen J, Feng J, Yang W, Jiang Y, Yao J L, Deng C H, Xu J. 2020. The IAA-and ABA-responsive transcription factor CgMYB 58 upregulates lignin biosynthesis and triggers juice sac granulation in pummelo. Hortic Res, 7:139.
doi: 10.1038/s41438-020-00360-7 URL |
[65] |
Shigeto J, Tsutsumi Y. 2016. Diverse functions and reactions of class III peroxidases. New Phytol, 209 (4):1395-1402.
doi: 10.1111/nph.13738 pmid: 26542837 |
[66] |
Su X, Zhao Y, Wang H, Li G, Cheng X, Jin Q, Cai Y. 2019. Transcriptomic analysis of early fruit development in Chinese white pear(Pyrus bretschneideri Rehd.)and functional identification of PbCCR1 in lignin biosynthesis. BMC Plant Biol, 19 (1):417.
doi: 10.1186/s12870-019-2046-x URL |
[67] |
Suo J, Li H, Ban Q, Han Y, Meng K, Jin M, Zhang Z, Rao J. 2018. Characteristics of chilling injury-induced lignification in kiwifruit with different sensitivities to low temperatures. Postharvest Biology and Technology, 135:8-18.
doi: 10.1016/j.postharvbio.2017.08.020 URL |
[68] | Tan X L, Fan Z Q, Kuang J F, Lu W J, Reiter R J, Lakshmanan P, Su X G, Zhou J, Chen J Y, Shan W. 2019. Melatonin delays leaf senescence of Chinese flowering cabbage by suppressing ABFs‐mediated abscisic acid biosynthesis and chlorophyll degradation. Journal of Pineal Research, 67 (1):e12570. |
[69] |
Tan X L, Fan Z Q, Shan W, Yin X R, Kuang J F, Lu W J, Chen J Y. 2018. Association of BrERF 72 with methyl jasmonate-induced leaf senescence of Chinese flowering cabbage through activating JA biosynthesis-related genes. Hortic Res, 5 (1):22.
doi: 10.1038/s41438-018-0028-z URL |
[70] |
Tao S, Khanizadeh S, Zhang H, Zhang S. 2009. Anatomy,ultrastructure and lignin distribution of stone cells in two Pyrus species. Plant Science, 176 (3):413-419.
doi: 10.1016/j.plantsci.2008.12.011 URL |
[71] |
Techavuthiporn C, Boonyaritthongchai P. 2016. Effect of prestorage short-term anoxia treatment and modified atmosphere packaging on the physical and chemical changes of green asparagus. Postharvest Biology and Technology, 117:64-70.
doi: 10.1016/j.postharvbio.2016.01.016 URL |
[72] |
Thevenin J, Pollet B, Letarnec B, Saulnier L, Gissot L, Maia-Grondard A, Lapierre C, Jouanin L. 2011. The simultaneous repression of CCR and CAD,two enzymes of the lignin biosynthetic pathway,results in sterility and dwarfism in Arabidopsis thaliana. Mol Plant, 4 (1):70-82.
doi: 10.1093/mp/ssq045 URL |
[73] | Tian Lu-ming, Dong Xing-guang, Cao Yu-fen, Zhang Ying, Qi Dan. 2017. Correlation of flesh in pyrus fruit with its stone cells lignin. Southwest China Journal of Agricultural Sciences, 30 (9):2091-2096. (in Chinese) |
田路明, 董星光, 曹玉芬, 张莹, 齐丹. 2017. 梨属植物果肉和石细胞团木质素相关性分析. 西南农业学报, 30 (9):2091-2096. | |
[74] |
Tian S P, Fan Q, Xu Y, Jiang A L. 2002a. Effects of calcium on biocontrol activity of yeast antagonists against the postharvest fungal pathogen Rhizopus stolonifer. Plant Pathology, 51 (3):352-358.
doi: 10.1046/j.1365-3059.2002.00711.x URL |
[75] |
Tian S, Fan Q, Xu Y, Liu H. 2002b. Biocontrol efficacy of antagonist yeasts to gray mold and blue mold on apples and pears in controlled atmospheres. Plant Disease, 86 (8):848-853.
doi: 10.1094/PDIS.2002.86.8.848 URL |
[76] |
Tian S P, Yao H J, Deng X, Xu X B, Qin G Z, Chan Z L. 2007. Characterization and expression of beta-1,3-glucanase genes in jujube fruit induced by the microbial biocontrol agent Cryptococcus laurentii. Phytopathology, 97 (3):260-268.
doi: 10.1094/PHYTO-97-3-0260 pmid: 18943644 |
[77] | Tian Shi-ping, Luo Yun-bo, Wang Gui-xi. 2011. Postharvest biological basis of horticultural products. Beijing: Science Press. (in Chinese) |
田世平, 罗云波, 王贵禧. 2011. 园艺产品采后生物学基础. 北京: 科学出版社. | |
[78] |
Tobimatsu Y, Chen F, Nakashima J, Escamilla-Treviño L L, Jackson L, Dixon R A, Ralph J. 2013. Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. Plant Cell, 25 (7):2587-2600.
doi: 10.1105/tpc.113.113142 URL |
[79] |
Tu M, Wang X, Yin W, Wang Y, Li Y, Zhang G, Li Z, Song J, Wang X. 2020. Grapevine VlbZIP 30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes. Horticulture Research, 7 (1):150.
doi: 10.1038/s41438-020-00372-3 URL |
[80] |
Tu Y, Rochfort S, Liu Z, Ran Y, Griffith M, Badenhorst P, Louie G V, Bowman M E, Smith K F, Noel J P, Mouradov A, Spangenberg G. 2010. Functional analyses of caffeic acid O-Methyltransferase and Cinnamoyl-CoA-reductase genes from perennial ryegrass(Lolium perenne). Plant Cell, 22 (10):3357-3373.
doi: 10.1105/tpc.109.072827 URL |
[81] |
van Acker R, Dejardin A, Desmet S, Hoengenaert L, Vanholme R, Morreel K, Laurans F, Kim H, Santoro N, Foster C, Goeminne G, Legee F, Lapierre C, Pilate G, Ralph J, Boerjan W. 2017. Different routes for conifer- and sinapaldehyde and higher saccharification upon deficiency in the dehydrogenase CAD1. Plant Physiol, 175 (3):1018-1039.
doi: 10.1104/pp.17.00834 pmid: 28878036 |
[82] |
Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber J H, Ralph J, Boerjan W. 2012. Metabolic engineering of novel lignin in biomass crops. New Phytol, 196 (4):978-1000.
doi: 10.1111/j.1469-8137.2012.04337.x pmid: 23035778 |
[83] |
Voxeur A, Wang Y, Sibout R. 2015. Lignification:different mechanisms for a versatile polymer. Current Opinion in Plant Biology, 23:83-90.
doi: 10.1016/j.pbi.2014.11.006 pmid: 25449731 |
[84] |
Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J. 2009. Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol, 149 (1):370-383.
doi: 10.1104/pp.108.125765 pmid: 18971431 |
[85] |
Wang B, Jiang H, Bi Y, He X, Wang Y, Li Y, Zheng X, Prusky D. 2019. Preharvest multiple sprays with sodium nitroprusside promote wound healing of harvested muskmelons by activation of phenylpropanoid metabolism. Postharvest Biology and Technology, 158:110988.
doi: 10.1016/j.postharvbio.2019.110988 URL |
[86] | Wang Ce. 2015. Fruit section-drying regulating techniques of late-maturing navel orange and analysis of related genes’expression[Ph. D. Dissertation]. Wuhan: Huazhong Agricultural University. (in Chinese) |
王策. 2015. 晚熟肪橙果实枯水调控技术及相关基因的表达分析[博士论文]. 武汉: 华中农业大学. | |
[87] | Wang W Q, Zhang J, Ge H, Li S J, Li X, Yin X R, Grierson D, Chen K S. 2016. EjMYB 8 transcriptionally regulates flesh lignification in loquat fruit. PLoS ONE, 11 (4):e154399. |
[88] |
Wang X, Shi J, Wang R. 2018. Effect of Burkholderia contaminans on postharvest diseases and induced resistance of strawberry fruits. Plant Pathol J, 34 (5):403-411.
doi: 10.5423/PPJ.OA.02.2018.0031 URL |
[89] |
Wang X, Zhuo C, Xiao X, Wang X, Docampo-Palacios M, Chen F, Dixon R A. 2020a. Substrate specificity of LACCASE 8 facilitates polymerization of caffeyl alcohol for C-Lignin biosynthesis in the seed coat of Cleome hassleriana. The Plant Cell, 32 (12):3825-3845.
doi: 10.1105/tpc.20.00598 URL |
[90] |
Wang Y, Liu X, Chen T, Xu Y, Tian S. 2020b. Antifungal effects of hinokitiol on development of Botrytis cinerea in vitro and in vivo. Postharvest Biology and Technology, 159:111038.
doi: 10.1016/j.postharvbio.2019.111038 URL |
[91] |
Weng J K, Akiyama T, Ralph J, Chapple C. 2011. Independent recruitment of an O-methyltransferase for syringyl lignin biosynthesis in Selaginella moellendorffii. Plant Cell, 23 (7):2708-2724.
doi: 10.1105/tpc.110.081547 URL |
[92] |
Wu J, Pan T, Guo Z, Pan D. 2014. Specific lignin accumulation in granulated juice sacs of Citrus maxima. Journal of Agricultural and Food Chemistry, 62 (50):12082-12089.
doi: 10.1021/jf5041349 URL |
[93] |
Xia X, Li H, Cao D, Luo X, Yang X, Chen L, Liu B, Wang Q, Jing D, Cao S. 2019. Characterization of a NAC transcription factor involved in the regulation of pomegranate seed hardness(Punica granatum L.). Plant Physiology and Biochemistry, 139:379-388.
doi: 10.1016/j.plaphy.2019.01.033 URL |
[94] |
Xie C, Gong W, Zhu Z, Zhou Y, Yan L, Hu Z, Ai L, Peng Y. 2019. Mapping the secretome and its N linked glycosylation of Pleurotus eryngii and Pleurotus ostreatus grown on hemp stalks. Journal of Agricultural and Food Chemistry, 67 (19):5486-5495.
doi: 10.1021/acs.jafc.9b00061 URL |
[95] |
Xu M, Li S J, Liu X F, Yin X R, Grierson D, Chen K S. 2019. Ternary complex EjbHLH1-EjMYB2-EjAP2-1 retards low temperature-induced flesh lignification in loquat fruit. Plant Physiol Biochem, 139:731-737.
doi: 10.1016/j.plaphy.2019.04.032 URL |
[96] |
Xu Q, Wang W, Zeng J, Zhang J, Grierson D, Li X, Yin X, Chen K. 2015. A NAC transcription factor,EjNAC1,affects lignification of loquat fruit by regulating lignin. Postharvest Biology and Technology, 102:25-31.
doi: 10.1016/j.postharvbio.2015.02.002 URL |
[97] |
Xu Q, Yin X, Zeng J, Ge H, Song M, Xu C, Li X, Ferguson I B, Chen K S. 2014. Activator- and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat. Journal of Experimental Botany, 65 (15):4349-4359.
doi: 10.1093/jxb/eru208 URL |
[98] | Xu Xiao-di, Li Bo-qiang, Qin Guo-zheng, Chen Tong, Zhang Zhan-quan, Tian Shi-ping. 2020. Molecular basis and regulation strategies for quality maintenance of postharvest fruit. Acta Horticulturae Sinica, 47 (8):1595-1609. (in Chinese) |
徐小迪, 李博强, 秦国政, 陈彤, 张占全, 田世平. 2020. 果实采后品质维持的分子基础与调控技术研究进展. 园艺学报, 47 (8):1595-1609. | |
[99] |
Xue C, Yao J L, Qin M F, Zhang M Y, Allan A C, Wang D F, Wu J. 2019a. PbrmiR397a regulates lignification during stone cell development in pear fruit. Plant Biotechnol J, 17 (1):103-117.
doi: 10.1111/pbi.12950 URL |
[100] |
Xue C, Yao J L, Xue Y S, Su G Q, Wang L, Lin L K, Allan A C, Zhang S L, Wu J. 2019b. PbrMYB 169 positively regulates lignification of stone cells in pear fruit. Journal of Experimental Botany, 70 (6):1801-1814.
doi: 10.1093/jxb/erz039 URL |
[101] |
Yan B, Zhang Z, Zhang P, Zhu X, Jing Y, Wei J, Wu B. 2019. Nitric oxide enhances resistance against black spot disease in muskmelon and the possible mechanisms involved. Scientia Horticulturae, 256:108650.
doi: 10.1016/j.scienta.2019.108650 URL |
[102] |
Yao H J, Tian S P. 2005. Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. J Appl Microbiol, 98 (4):941-950.
pmid: 15752341 |
[103] |
Yu X, Gong H, Cao L, Hou Y, Qu S. 2020. MicroRNA397b negatively regulates resistance of Malus hupehensis to Botryosphaeria dothidea by modulating MhLAC7 involved in lignin biosynthesis. Plant Science, 292:110390.
doi: 10.1016/j.plantsci.2019.110390 URL |
[104] | Yuan Gao-peng. 2020. Screening of key genes for apple russeting formation and function identification of MdLIM11 gene[Ph. D. Dissertation]. Beijing: Chinese Academy of Agricultural Sciences. (in Chinese) |
袁高鹏. 2020. 苹果果锈形成关键基因筛选及MdLIM11功能鉴定[博士论文]. 北京: 中国农业科学院. | |
[105] |
Zeng J K, Li X, Xu Q, Chen J Y, Yin X R, Ferguson I B, Chen K S. 2015. EjAP2-1,an AP2/ERF gene,is a novel regulator of fruit lignification induced by chilling injury,via interaction with EjMYB transcription factors. Plant Biotechnology Journal, 13 (9):1325-1334.
doi: 10.1111/pbi.12351 URL |
[106] |
Zhang C, Hao Y. 2020. Advances in genomic,transcriptomic,and metabolomic analyses of fruit quality in fruit crops. Horticultural Plant Journal, 6 (6):361-371.
doi: 10.1016/j.hpj.2020.11.001 URL |
[107] |
Zhang C, Tian S. 2010. Peach fruit acquired tolerance to low temperature stress by accumulation of linolenic acid and N-acylphosphatidyle- thanolamine in plasma membrane. Food Chemistry, 120 (3):864-872.
doi: 10.1016/j.foodchem.2009.11.029 URL |
[108] |
Zhang J, Yin X R, Li H, Xu M, Zhang M X, Li S J, Liu X F, Shi Y N, Grierson D, Chen K S. 2020a. ETHYLENE RESPONSE FACTOR39-MYB 8 complex regulates low-temperature-induced lignification of loquat fruit. Journal of Experimental Botany, 71 (10):3172-3184.
doi: 10.1093/jxb/eraa085 URL |
[109] |
Zhang J Y, Li J M, Xue C, Wang R Z, Zhang M Y, Qi K J, Fan J, Hu H J, Zhang S L, Wu J. 2021. The variation of stone cell content in 236 germplasms of sand pear(Pyrus pyrifolia)and identification of related candidate genes. Horticultural Plant Journal, 7 (2):108-116.
doi: 10.1016/j.hpj.2020.09.003 URL |
[110] |
Zhang L, Wang G, Chang J, Liu J, Cai J, Rao X, Zhang L, Zhong J, Xie J, Zhu S. 2010. Effects of 1-MCP and ethylene on expression of three CAD genes and lignification in stems of harvested Tsai Tai(Brassica chinensis). Food Chemistry, 123 (1):32-40.
doi: 10.1016/j.foodchem.2010.03.122 URL |
[111] |
Zhang M, Wang D, Gao X, Yue Z, Zhou H. 2020b. Exogenous caffeic acid and epicatechin enhance resistance against Botrytis cinerea through activation of the phenylpropanoid pathway in apples. Scientia Horticulturae, 268:109348.
doi: 10.1016/j.scienta.2020.109348 URL |
[112] | Zhang S, Yang Q, Ma R. 2007. Erwinia carotovora ssp. carotovora infection induced“Defense Lignin”accumulation and lignin biosynthetic gene expression in Chinese cabbage(Brassica rapa L. ssp. pekinensis)Journal of Integrative Plant Biology, 49 (7):993-1002. |
[113] | Zhang Shen, Zhang Yi-xiang, Ye Hong, Nie Ke, Wu Guang-bin, Ni Hui, Zhang Zong-cheng, Chen Fa-he. 2021. Effects of heat treatment on juice sac granulation of harvested guanximiyou honey pummelo fruit in association with cell wall material metabolism. Food Science, 42 (11):17-25. (in Chinese) |
张珅, 张翼翔, 叶洪, 聂珂, 吴光斌, 倪辉, 张宗成, 陈发河. 2021. 热处理对采后琯溪蜜柚果实汁胞粒化的影响及其与细胞壁代谢的关系. 食品科学, 42 (11):17-25. | |
[114] |
Zhang Xu,Wang Xiao-jia,Li Si-chen,Dong Tian-tian,Wang Zhi-hui. 2019. Research progress of lignin biosynthesis and regulation during granulation of citrus. Acta Agriculturae Zhejiangensis, 31 (12):2131-2140. (in Chinese)
doi: 10.3969/j.issn.1004-1524.2019.12.22 |
张旭, 王小佳, 黎思辰, 董甜甜, 汪志辉. 2019. 柑橘果实粒化过程中木质素生物合成与调控研究进展. 浙江农业学报, 31 (12):2131-2140.
doi: 10.3969/j.issn.1004-1524.2019.12.22 |
|
[115] |
Zhang X, Wu F, Gu N, Yan X, Wang K, Dhanasekaran S, Gu X, Zhao L, Zhang H. 2020c. Postharvest biological control of rhizopus rot and the mechanisms involved in induced disease resistance of peaches by Pichia membranefaciens. Postharvest Biology and Technology, 163:111146.
doi: 10.1016/j.postharvbio.2020.111146 URL |
[116] |
Zhang Z Q, Qin G Z, Li B Q, Tian S P. 2015. Effect of cinnamic acid for controlling gray mold on table grape and its possible mechanisms of action. Current Microbiology, 71 (3):396-402.
doi: 10.1007/s00284-015-0863-1 pmid: 26143055 |
[117] |
Zhao S G, Wen J, Wang H X, Zhang Z H, Li X B. 2016. Changes in lignin content and activity of related enzymes in the endocarp during the walnut shell development period. Horticultural Plant Journal, 2 (3):141-146.
doi: 10.1016/j.hpj.2016.08.003 URL |
[118] |
Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang Z Y, Dixon R A. 2013. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 25 (10):3976-3987.
doi: 10.1105/tpc.113.117770 URL |
[119] |
Zhao Y, Tu K, Su J, Tu S, Hou Y, Liu F, Zou X. 2009. Heat treatment in combination with antagonistic yeast reduces diseases and elicits the active defense responses in harvested cherry tomato fruit. J Agric Food Chem, 57 (16):7565-7570.
doi: 10.1021/jf901437q URL |
[120] | Zheng J, Li S, Xu Y, Zheng X. 2019. Effect of oxalic acid on edible quality of bamboo shoots(Phyllostachys prominens)without sheaths during cold storage. LWT- Food Science & Technology, 109:194-200. |
[121] |
Zhou Y, Ma J, Xie J, Deng L, Yao S, Zeng K. 2018. Transcriptomic and biochemical analysis of highlighted induction of phenylpropanoid pathway metabolism of citrus fruit in response to salicylic acid,Pichia membranaefaciens and oligochitosan. Postharvest Biology and Technology, 142:81-92.
doi: 10.1016/j.postharvbio.2018.01.021 URL |
[1] | 叶子茂, 申晚霞, 刘梦雨, 王 彤, 张晓楠, 余 歆, 刘小丰, 赵晓春, . R2R3-MYB转录因子CitMYB21对柑橘类黄酮生物合成的影响[J]. 园艺学报, 2023, 50(2): 250-264. |
[2] | 宋艳红, 陈亚铎, 张晓玉, 宋 盼, 刘丽锋, 李 刚, 赵 霞, 周厚成, . 森林草莓FvbHLH130转录因子调控植株提前开花[J]. 园艺学报, 2023, 50(2): 295-306. |
[3] | 郑清波, 鲍泽洋, 蓝青青, 周钰雯, 周雨菲, 郑彩霞, 李 旭, . 童性与生长素对不定根发生的影响研究进展[J]. 园艺学报, 2023, 50(2): 441-450. |
[4] | 邵凤清, 罗秀荣, 王奇, 张宪智, 王文彩. 果实成熟过程中的DNA甲基化调控研究进展[J]. 园艺学报, 2023, 50(1): 197-208. |
[5] | 葛诗蓓, 张学宁, 韩文炎, 李青云, 李鑫. 植物类黄酮的生物合成及其抗逆作用机制研究进展[J]. 园艺学报, 2023, 50(1): 209-224. |
[6] | 路涛, 余宏军, 李强, 蒋卫杰. 叶果量调控对番茄生长发育、果实品质和产量的影响[J]. 园艺学报, 2022, 49(6): 1261-1274. |
[7] | 王妍, 孙政, 冯珊, 袁心怡, 仲林林, 曾云流, 傅小鹏, 程运江, 包满珠, 张帆. 香石竹DcERF-1转录因子对切花衰老的负调控作用[J]. 园艺学报, 2022, 49(6): 1313-1326. |
[8] | 张倩雯, 杨希航, 李峰, 邓颖天. miRNA调控园艺作物生长发育研究进展[J]. 园艺学报, 2022, 49(5): 1145-1161. |
[9] | 何静娟, 范燕萍. 观赏植物花色相关的类胡萝卜素组成及代谢调控研究进展[J]. 园艺学报, 2022, 49(5): 1162-1172. |
[10] | 陆晨飞, 高月霞, 黄河, 戴思兰. 植物类胡萝卜素代谢及调控研究进展[J]. 园艺学报, 2022, 49(12): 2559-2578. |
[11] | 李俊璋, 秦源, 肖强, 安昌, 廖静怡, 郑平. 景天酸代谢植物分子生物学研究进展及应用潜力[J]. 园艺学报, 2022, 49(12): 2597-2610. |
[12] | 石彩云, 刘丽, 魏志峰, 高登涛, 刘永忠. 园艺植物质子泵及其对有机酸积累调控的研究进展[J]. 园艺学报, 2022, 49(12): 2611-2621. |
[13] | 王晋, 王新宇, 沈渊博, 张清花, 娄茜棋, 张世杰, 赵攀, 梁燕. 番茄果实叶绿体发育调控及其应用的研究进展[J]. 园艺学报, 2022, 49(12): 2669-2682. |
[14] | 周杰, 师恺, 夏晓剑, 周艳虹, 喻景权. 中国蔬菜栽培科技60年回顾与展望[J]. 园艺学报, 2022, 49(10): 2131-2142. |
[15] | 张婷婷, 薛婉钰, 刘娜, 陈书霞. 几种主要果菜类蔬菜果形遗传及其调控机制研究进展[J]. 园艺学报, 2022, 49(10): 2189-2204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司