园艺学报 ›› 2022, Vol. 49 ›› Issue (9): 1922-1934.doi: 10.16420/j.issn.0513-353x.2021-0622
收稿日期:
2022-03-10
修回日期:
2022-05-06
出版日期:
2022-09-25
发布日期:
2022-10-08
通讯作者:
张金霞
E-mail:zhangjinxia@caas.cn
基金资助:
HOU Ludan, ZHAO Mengran, HUANG Chenyang, ZHANG Jinxia*()
Received:
2022-03-10
Revised:
2022-05-06
Online:
2022-09-25
Published:
2022-10-08
Contact:
ZHANG Jinxia
E-mail:zhangjinxia@caas.cn
摘要:
为探索交替氧化酶(Alternative oxidase,aox)基因在大型真菌高温胁迫响应中的功能,以糙皮侧耳(Pleurotus ostreatus)CCMSSC00389菌株为出发菌株,克隆得到1个aox基因,其gDNA全长1 845 bp,cDNA全长1 152 bp,编码383个氨基酸,具2个跨膜螺旋区,蛋白分子量43.53 kD。以野生型和aox转化菌株为材料,验证了aox在高温胁迫下的功能及调控通路。结果表明,32 ℃高温胁迫下,菌丝生长速率下降了42.27%。aox基因转录水平的升高可能通过介导逆行信号通路影响抗氧化酶基因的表达,从而促进活性氧的清除,提高高温胁迫下菌丝生长速率,揭示aox在提高糙皮侧耳菌丝高温耐受性方面发挥正调控作用。
中图分类号:
侯潞丹, 赵梦然, 黄晨阳, 张金霞. 交替氧化酶增强糙皮侧耳高温耐受性的分子机制[J]. 园艺学报, 2022, 49(9): 1922-1934.
HOU Ludan, ZHAO Mengran, HUANG Chenyang, ZHANG Jinxia. The Molecular Mechanism of Alternative Oxidase Enhancing High Temperature Tolerance of Pleurotus ostreatus[J]. Acta Horticulturae Sinica, 2022, 49(9): 1922-1934.
引物 | 正向序列(5′-3′) | 反向序列(5′-3′) |
---|---|---|
Primer | Forward sequence | Reverse sequence |
qPCR_aox | ATGCTTCGCGCGCAACTC | TCAATTACTACCTTTCTGCTTCTCT |
qPCR_cat1 | TGTGCATTGGTTGAGAGAGG | TACGACGCTACAACTTCCG |
qPCR_cat2 | CGGACTTTCTTGCCCACAG | GACTTGCTCGCCCATTTCG |
qPCR_gsh-px | AAGGTCTTCAGGCATTGTAT | GTGGTTACGCTCACAGAA |
qPCR_trxr | GACGGCTACATCATCACC | AATGAGCTTCTCGACCTC |
qPCR_sod1 | CCTCATCTTCAACTACGCAAGT | GCAGACGAACCACAGGAATC |
qPCR_sod2 | ACACGAAGCATCATCAGACCTA | GAAGAGCGAGTGGTTGATATGG |
qPCR_sod3 | GTTCTCCTAGCAGCGAAGA | CATTCCCCGTTTTAAGTGAC |
qPCR_sod4 | TTGAACGAGACTTTGGCACC | ATGATCGGCGCGTGAGTTATC |
β-actin | AGTCGGTGCCTTGGTTAT | ATACCGACCATCACACCT |
tubulin | AGGCTTTCTTGCATTGGTACACGC | TATTCGCCTTCTTCCTCATCGGCA |
表1 荧光定量PCR引物
Table 1 Primers list for qPCR
引物 | 正向序列(5′-3′) | 反向序列(5′-3′) |
---|---|---|
Primer | Forward sequence | Reverse sequence |
qPCR_aox | ATGCTTCGCGCGCAACTC | TCAATTACTACCTTTCTGCTTCTCT |
qPCR_cat1 | TGTGCATTGGTTGAGAGAGG | TACGACGCTACAACTTCCG |
qPCR_cat2 | CGGACTTTCTTGCCCACAG | GACTTGCTCGCCCATTTCG |
qPCR_gsh-px | AAGGTCTTCAGGCATTGTAT | GTGGTTACGCTCACAGAA |
qPCR_trxr | GACGGCTACATCATCACC | AATGAGCTTCTCGACCTC |
qPCR_sod1 | CCTCATCTTCAACTACGCAAGT | GCAGACGAACCACAGGAATC |
qPCR_sod2 | ACACGAAGCATCATCAGACCTA | GAAGAGCGAGTGGTTGATATGG |
qPCR_sod3 | GTTCTCCTAGCAGCGAAGA | CATTCCCCGTTTTAAGTGAC |
qPCR_sod4 | TTGAACGAGACTTTGGCACC | ATGATCGGCGCGTGAGTTATC |
β-actin | AGTCGGTGCCTTGGTTAT | ATACCGACCATCACACCT |
tubulin | AGGCTTTCTTGCATTGGTACACGC | TATTCGCCTTCTTCCTCATCGGCA |
图2 糙皮侧耳CCMSSC00389菌株AOX蛋白序列的生物信息 A:3D结构;B:跨膜预测;C:跨膜结构预测;D:保守结构域预测。
Fig. 2 Bioinformatics of AOX protein sequence of Pleurotus ostreatus CCMSSC00389 strain A:3D structure;B:Transmembrane prediction;C:Prediction of transmembrane structure;D:Prediction of conserved domain.
图3 糙皮侧耳CCMSSC00389与其他物种的AOX氨基酸序列同源性比较 序列中保守氨基酸残基的位置下面用圆点表示。
Fig. 3 Homology of AOX amino acid sequence of Pleurotus ostreatus CCMSSC00389 with other species Positions with identical amino acid residues are indicated by circles below the sequence.
图4 高温32 ℃胁迫6 d对糙皮侧耳菌丝生长、H2O2含量和aox表达量的影响
Fig. 4 Effects of high temperature stress at 32 ℃ for 6 d on mycelial growth,H2O2 content and aox expression of Pleurotus ostreatus
图5 糙皮侧耳野生型(WT)aox过表达(OE-aox)和RNA干扰(RNAi-aox)菌株在32 ℃高温胁迫下的表型 红色直线表示菌落半径。
Fig. 5 The growth phenotype of wild-type(WT),aox overexpression(OE-aox)and RNA interference(RNAi-aox)strains of Pleurotus ostreatus under high temperature stress at 32 ℃ The red line indicates the colony radius.
图6 糙皮侧耳野生型(WT)、aox过表达(OE-aox)和干扰(RNAi-aox)菌株32 ℃高温胁迫下抗氧化酶基因的表达
Fig. 6 The expression of antioxidant enzyme genes of Pleurotus ostreatus wild type(WT),aox overexpression(OE-aox)and interference(RNAi-aox)strains under 32 ℃ high temperature stress
图9 aox参与糙皮侧耳菌丝对32 ℃高温胁迫响应调控途径示意图
Fig. 9 The regulatory pathway of aox involved in the response of Pleurotus ostreatus mycelia to 32 ℃ high temperature stress
[1] | Chang Ting-ting, Zhao Yan, Yang Huan-ling, Song Xiao-xia, Yu Chang-xia, Zha Lei, Dong Qin, Chen Ming-jie. 2021. Research progress on heat stress response in edible and medicinal fungi. Acta Edulis Fungi, 28 (1):124-134. (in Chinese) |
常婷婷, 赵妍, 杨焕玲, 宋晓霞, 余昌霞, 查磊, 董沁, 陈明杰. 2021. 食药用菌高温胁迫应答研究进展. 食用菌学报, 28 (1):124-134. | |
[2] |
Clifton R, Millar A H, Whelan J. 2006. Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochim Biophys Acta, 1757 (7):730-741.
pmid: 16859634 |
[3] |
Costa J H, Melo D F D, Gouveia Z, Cardoso H G, Peixe A, Arnholdt-Schmitt B. 2009. The alternative oxidase family of Vitis vinifera reveals an attractive model to study the importance of genomic design. Physiologia Plantarum, 137 (4):553-565.
doi: 10.1111/j.1399-3054.2009.01267.x URL |
[4] |
Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M, Kulkarni R, Xu J R, Pan H, Read N D, Lee Y H, Carbone I, Brown D, Oh Y Y, Donofrio N, Jeong J S, Soanes D M, Djonovic S, Kolomiets E, Rehmeyer C, Li W X, Harding M, Kim S, Lebrun M, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L, Nicol R, Purcell S, Nusbaum C, Galagan J E, Birren B W. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434 (7036):980-986.
doi: 10.1038/nature03449 URL |
[5] |
Del-Saz N F, Ribas-Carbo M, Mcdonald A E, Lambers H, Fernie A R, Florez-Sarasa I. 2017. An in vivo perspective of the role(s) of the alternative oxidase pathway. Trends in Plant Science, 23 (3):206-219.
doi: 10.1016/j.tplants.2017.11.006 URL |
[6] |
Hou L D, Zhao M R, Huang C Y, He Q, Zhang L J, Zhang J X. 2021. Alternative oxidase gene induced by nitric oxide is involved in the regulation of ROS and enhances the resistance of Pleurotus ostreatus to heat stress. Microbial Cell Factories, 20:137.
doi: 10.1186/s12934-021-01626-y URL |
[7] | Hou L D, Zhao M R, Huang C Y, Wu X L, Zhang J X. 2020. Nitric oxide improves the tolerance of Pleurotus ostreatus to heat stress by inhibiting mitochondrial aconitase. Applied and Environmental Microbiology, 86 (5):e02303-02319. |
[8] | Hou Zhi-hao, Zhao Meng-ran, Chen Qiang, Zhang Yan, Huang Chen-yang, Wu Xiang-li. 2019. Selection of reference genes for real-time quantitative PCR of Pleurotus ostreatus under heat stress. Acta Edulis Fungi, 26 (3):15-22,161. (in Chinese) |
侯志浩, 赵梦然, 陈强, 张妍, 黄晨阳, 邬向丽. 2019. 热胁迫下糙皮侧耳实时荧光定量PCR内参基因的选择. 食用菌学报, 26 (3):15-22,161 | |
[9] |
Karaffa L, Váczy K, Sándor E, Biró S, Szentirmai A, Pócsi I. 2001. Cyanide-resistant alternative respiration is strictly correlated to intracellular peroxide levels in Acremonium Chrysogenum. Free Radical Research, 34 (4):405-416.
pmid: 11328676 |
[10] | Li Xia. 2019. Mechanism of progesterone regulating alternative oxidase(AOX)to mprove cold resistance of sweet potato[M. D. Dissertation]. Zhejiang: Zhejiang A & F University. (in Chinese) |
李霞. 黄体酮调控交替氧化酶(AOX)提高甘薯抗冷性的机理研究[硕士论文]. 浙江: 浙江农林大学. | |
[11] |
Li Y M, Sun S R, Xu J Z, Song J L, Zhu L. 2018. The alternative oxidase pathway is involved in the BR-induced salt resistance in mustard. Acta Physiologiae Plantarum, 40 (9):171.
doi: 10.1007/s11738-018-2749-x URL |
[12] |
Luévano-Martínez L A, Caldeira da Silva C C, Nicastro G G, Schumacher R I, Kowaltowski A J, Gomes S L. 2019. Mitochondrial alternative oxidase is determinant for growth and sporulation in the early diverging fungus Blastocladiella emersonii. Fungal Biology, 123 (1):59-65.
doi: S1878-6146(18)30129-6 pmid: 30654958 |
[13] |
Magnani T, Soriani F M, Martins V, Policarpo A, Sorgi C A, Faccioli L H, Curti C, Uyemura S A. 2008. Silencing of mitochondrial alternative oxidase gene of Aspergillus fumigatus enhances reactive oxygen species production and killing of the fungus by macrophages. Journal of Bioenergetics and Biomembranes, 40 (6):631-636.
doi: 10.1007/s10863-008-9191-5 pmid: 19148712 |
[14] |
Martin F, Aerts A, Ahrén D, Brun A, Danchin E G J, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro H J, Wuyts J, Blaudez D, Buée M, Brokstein P, Canbäck B, Cohen D, Courty P E, Coutinho P M, Delaruelle C, Detter J C, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger P J, Jain P, Kilaru S, Labbé J, Lin Y C, Legué V, Le-Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq M P, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Ku¨es U, Lucas S, Van-de-Peer Y, Podila G. K, Polle A, Pukkila P J, Richardson P M, Rouze´ P, Sanders I R, Stajich J E, Tunlid A, Tuskan G, Grigoriev I V. 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature, 452 (7183):88-92.
doi: 10.1038/nature06556 URL |
[15] | Polidoros A N, Mylona P V, Arnholdt-Schmitt B. 2009. Aox gene structure, transcript variation and expression in plants. Physiologia Plantarum, 137 (4):342-353. |
[16] |
Popov V N. 2003. Possible role of free oxidation processes in the regulation of reactive oxygen species production in plant mitochondria. Biochemical Society Transactions, 31 (6):1316-1317.
doi: 10.1042/bst0311316 URL |
[17] | Qu J B, Zhao M R, Hsiang T, Feng X X, Zhang J X, Huang C Y. 2016. Identification and characterization of small noncoding RNAs in genome sequences of the edible fungus Pleurotus ostreatus. Biomed Research International,2503023. |
[18] | Rasmussona A G, Fernieb A R, Dongenb J T V. 2009. Alternative oxidase: a defence against metabolic fluctuations? Physiologia Plantarum, 137:371-382. |
[19] |
Rhoads D M, Subbaiah C C. 2007. Mitochondrial retrograde regulation in plants. Mitochondrion, 7 (3):177-194.
pmid: 17320492 |
[20] | Saha B, Borovskii G, Panda S K. 2016. Alternative oxidase and plant stress tolerance. Plant Signaling & Behavior, 11(12):e1256530. |
[21] | Shen Jin-wen, Liu Chao, Zhang Qian, Li Jian-li, Qi Yuan-cheng, Qiu Li-you, Gao Yu-qian, Wen Qing. 2016. Effect of five different cultivation substrates on nutrients in fruiting body of Pleurotus ostreatus. Journal of Henan Agricultural Sciences, 45 (10):103-106. (in Chinese) |
申进文, 刘超, 张倩, 李建立, 戚元成, 邱立友, 高玉千, 文晴. 2016. 5种培养料对平菇营养成分的影响. 河南农业科学, 45 (10):103-106. | |
[22] |
Shi D K, Zhu J, Sun Z H, Zhang G, Liu R, Zhang T J, Wang S L, Ren A, Zhao M W. 2017. Alternative oxidase impacts ganoderic acid biosynthesis by regulating intracellular ROS levels in Ganoderma lucidum. Microbiology, 163 (10):1466-1476.
doi: 10.1099/mic.0.000527 URL |
[23] |
Thirkettle-Watts D, McCabe T C, Clifton R, Moore C, Finnegan P M, Day D A, Whelan J. 2003. Analysis of the alternative oxidase promoters from soybean. Plant Physiology, 133 (3):1158-1169.
pmid: 14551329 |
[24] |
Ünlü E S,Ünüvar Ö C,Aydın M. 2019. Identification of alternative oxidase encoding genes in Caulerpa cylindracea by de novo RNA-Seq assembly analysis. Marine Genomics, 46:41-48.
doi: 10.1016/j.margen.2019.03.004 URL |
[25] |
Vanlerberghe G C. 2013. Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. International Journal of Molecular Sciences, 14 (4):6805-6847.
doi: 10.3390/ijms14046805 pmid: 23531539 |
[26] | Wen Qing, Zhu Lin, Yu Hai-you, Chen Hong-ge, Li Jian-hua, Shen Jin-wen. 2021. Effects of spent mushroom substrate of factory-cultivated Flammulina velutipes on the sterilized raw material cultivation and nutritional component of Pleurotus ostreatus. Northern Hourticulure,(2):124-134. (in Chinese) |
文晴, 朱琳, 余海尤, 陈红歌, 李建华, 申进文. 2021. 工厂化金针菇菌糠对平菇熟料栽培和营养成分的影响. 北方园艺,(2):124-134. | |
[27] |
Wu G C, Li S, Li X C, Liu Y H, Zhao S S, Liu B H, Zhou H P, Lin H H. 2019. A functional alternative oxidase modulates plant salt tolerance in Physcomitrella patens. Plant Cell Physiology, 60 (8):1829-1841.
doi: 10.1093/pcp/pcz099 URL |
[28] |
Xu T, Yao F, Liang W S, Li Y H, Li D R, Wang H, Wang Z Y. 2012. Involvement of alternative oxidase in the regulation of growth, development, and resistance to oxidative stress of Sclerotinia sclerotiorum. The Journal of Microbiology, 50 (4):594-602.
doi: 10.1007/s12275-012-2015-7 URL |
[29] | Zhang Jin-xia, Zhao Yong-chang, Ma Lu, Ma Yin-peng, Wang Bo, Wang Ze-sheng, Qu Ji-bin, Li Yu, Li Hui, Li Chang-tian, Song Chun-yan, Zhang Xiao-lei, Chen Qiang, Chen Wei-min, Chen Ming-jie, Lin Yan-quan, Zhou Hui-ming, Zhao Yan, Zhao Meng-ran, Yao Fang-jie, Chai Hong-mei, Gao Wei, Huang Chen-yang, Xie Bao-gui, Cai Wei-ming, Cai Zhi-xin, Liao Jian-hua. 2016. Germplasm reources of edible mushroom. Beijing: Science Press. (in Chinese) |
张金霞, 赵永昌, 马璐, 马银鹏, 王波, 王泽生, 曲积彬, 李玉, 李慧, 李长田, 宋春燕, 张小雷, 陈强, 陈卫民, 陈明杰, 陈美元, 林衍铨, 周会明, 赵妍, 赵梦然, 姚方杰, 柴红梅, 高巍, 黄晨阳, 谢宝贵, 蔡为明, 蔡志欣, 廖剑华. 2016. 食用菌种质资源学. 北京: 科学出版社. | |
[30] | Zhao Xiao-yu, Sun Li-jiao, Lang Shao-yu, Wang Fang, Song Xing-shun. 2020. Research progress on aox playing a key gene of plant respiration. Northern Horticulture,(14):144-150. (in Chinese) |
赵晓宇, 孙立娇, 郎绍裕, 王芳, 宋兴舜. 2020. 植物呼吸作用关键基因交替氧化酶的研究进展. 北方园艺,(14):144-150. |
[1] | 刘尚佳, 吕尧, 曹逼力, 陈子敬, 高松, 徐坤. 高温渍涝胁迫对姜叶片光合作用和氮代谢的影响[J]. 园艺学报, 2022, 49(5): 1073-1080. |
[2] | 向妙莲, 吴帆, 李树成, 马巧利, 王印宝, 肖刘华, 陈金印, 陈明. 外源褪黑素调控活性氧代谢诱导梨果实抗采后黑斑病[J]. 园艺学报, 2022, 49(5): 1102-1110. |
[3] | 姜宛岑, 王晨露, 朱正州, 赵英明, 王蒴, 范文丽, 李天来. 蛹虫草继代中菌株退化早期外部识别标志研究[J]. 园艺学报, 2022, 49(4): 851-860. |
[4] | 赵晖, 耿兴敏, 王露露, 许世达. 乙烯在杜鹃花耐热机制中的作用研究[J]. 园艺学报, 2022, 49(3): 561-570. |
[5] | 龙 琴,谢 宇,许兰珍,何永睿,邹修平*,陈善春*. 溃疡病菌侵染早期柑橘细胞程序性死亡的响应特征及机制[J]. 园艺学报, 2020, 47(6): 1047-1058. |
[6] | 颜爽爽, 邱正坤, 余炳伟, 明方艳, 陈长明, 雷建军, 曹必好. 植物生长素响应高温胁迫研究进展[J]. 园艺学报, 2020, 47(11): 2238-2246. |
[7] | 邓娇燕,黄 斌,吕立军,王 君,于贤昌,贺超兴,闫 妍,李衍素*. 叶面喷施1-MCP缓解辣椒幼苗高温伤害的机理研究[J]. 园艺学报, 2019, 46(5): 891-900. |
[8] | 孔令接,陈言博,王亚琴*. 不同夏菊品种的耐热性研究[J]. 园艺学报, 2019, 46(12): 2437-2448. |
[9] | 梁春辉1,2,陈惠敏1,李 娟3,贺世雄1,陈杰忠1,*,姚 青1. 环割对柑橘叶片衰老的影响[J]. 园艺学报, 2018, 45(6): 1204-1212. |
[10] | 赵 滢,王振兴,许培磊,杨义明,刘迎雪,刘海双,艾 军*. 山葡萄‘双丰’和‘左优红’叶绿素荧光特性及活性氧代谢与低温伤害的关系[J]. 园艺学报, 2018, 45(4): 650-658. |
[11] | 李丹丹,张晓伟,刘丰娇,潘东云,艾希珍*. H2S与ABA缓解低温胁迫对黄瓜幼苗氧化损伤的交互效应[J]. 园艺学报, 2018, 45(12): 2395-2406. |
[12] | 付晴晴,谭雅中,翟 衡,杜远鹏*. NaCl胁迫对耐盐性不同葡萄株系叶片活性氧代谢及清除系统的影响[J]. 园艺学报, 2018, 45(1): 30-40. |
[13] | 吴雯雯,安玉艳,汪良驹*. 5–氨基乙酰丙酸缓解‘红颜’草莓盐胁迫伤害的时间效应研究[J]. 园艺学报, 2017, 44(6): 1038-1048. |
[14] | 庞强强1,2,3,李植良1,罗少波1,陈日远2,金庆敏1,黎振兴1,李德明3,孙保娟1,*,孙光闻2,*. 高温胁迫下茄子qRT-PCR内参基因筛选及稳定性分析[J]. 园艺学报, 2017, 44(3): 475-486. |
[15] | 郭丽丽1,席飞飞2,余义和2,王震光2,张国海2,郭大龙2,*. 核黄素处理促进‘巨峰’葡萄提早成熟的研究[J]. 园艺学报, 2017, 44(10): 1861-1870. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司