https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

园艺学报 ›› 2022, Vol. 49 ›› Issue (8): 1815-1832.doi: 10.16420/j.issn.0513-353x.2021-0243

• 综述 • 上一篇    下一篇

葡萄表型组高通量获取及分析方法研究进展

王勇健1, 孔俊花1, 范培格1, 梁振昌1, 金秀良2, 刘布春3, 代占武1,*()   

  1. 1.中国科学院植物研究所,葡萄科学与酿酒技术北京市重点实验室,中国科学院北方资源植物重点实验室,北京 100093
    2.中国农业科学院作物科学研究所,北京 100081
    3.中国农业科学院农业环境与可持续发展研究所,北京 100081
  • 收稿日期:2021-06-10 修回日期:2022-01-29 出版日期:2022-08-25 发布日期:2022-09-05
  • 通讯作者: 代占武 E-mail:zhanwu.dai@ibcas.ac.cn
  • 基金资助:
    国家自然科学基金项目(U20A2041);宁夏农业育种专项(NXNYYZ202101)

Grape Phenome High-throughput Acquisition and Analysis Methods:A Review

WANG Yongjian1, KONG Junhua1, FAN Peige1, LIANG Zhenchang1, JIN Xiuliang2, LIU Buchun3, DAI Zhanwu1,*()   

  1. 1. Beijing Key Laboratory of Grape Sciences and Enology,CAS Key Laboratory of Plant Resources,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China
    2. Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China
    3. Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences,Beijing 100081,China
  • Received:2021-06-10 Revised:2022-01-29 Online:2022-08-25 Published:2022-09-05
  • Contact: DAI Zhanwu E-mail:zhanwu.dai@ibcas.ac.cn

摘要:

表型组学是后基因组学时代的研究热点,植物表型组研究需要高通量表型获取方法支撑。以葡萄为主要对象,围绕面向栽培生产的智慧果园建设和面向育种的精准表型分析两个主题,概述了表型组高通量获取方法,结合当前图像、光谱、点云等数据获取方式及三维重建、机器学习等数据分析方法,从冠层、植株、器官等不同尺度对葡萄产量、品质、生长状态等表型研究进展进行综述,对未来基于功能结构模型的动态表型和三维表型在葡萄栽培及育种中的应用提出展望。

关键词: 葡萄, 表型组, 高通量, 智慧果园, 育种

Abstract:

Phenomics is a research hotspot in the postgenomic era,and needs to be supported by high-throughput phenotypic acquisition and data processing methods. Here we summarized the recent advances in phenotypic high-throughput acquisition and data analysis methods,especially on grapevine (Vitis vinifera L.). Main reviewed methods include image,optical spectrum and point clouds measurements,three-dimensional reconstruction and machine learning analyzing methods etc. These methods can be divided into two main classes based on their objectives:1)construction of smart orchard for precision viticulture and 2)precision phenotypic analysis for grape breeding. Moreover,the phenome studies of grapevine were reviewed from different scales ranging from field scale,individual plant,to individual organs,and from different traits:yield,quality and growth status. The future applications of the dynamic phenotyping and three-dimensional morphological phenotypes,and their integration with functional-structure plant models in viticulture and grapevine breeding were also discussed.

Key words: grape, phonemics, high-throughput, smart orchard, breeding

中图分类号: