园艺学报 ›› 2022, Vol. 49 ›› Issue (8): 1723-1734.doi: 10.16420/j.issn.0513-353x.2021-0508
杨秀伟, 苏江硕, 张飞, 管志勇, 房伟民, 陈发棣*()
收稿日期:
2022-05-28
修回日期:
2022-07-27
出版日期:
2022-08-25
发布日期:
2022-09-05
通讯作者:
陈发棣
E-mail:chenfd@njau.edu.cn
基金资助:
YANG Xiuwei, SU Jiangshuo, ZHANG Fei, GUAN Zhiyong, FANG Weimin, CHEN Fadi*()
Received:
2022-05-28
Revised:
2022-07-27
Online:
2022-08-25
Published:
2022-09-05
Contact:
CHEN Fadi
E-mail:chenfd@njau.edu.cn
摘要:
以203份切花小菊(Chrysanthemum morifolium Ramat.)品种为材料,通过图像处理方法对盛花期花序开放角度进行量化评价,调查叶柄夹角、花序直径等11个花序开放角度相关性状发现,切花小菊花序开放角度变异丰富(变异系数为22.87%),其中‘南农羞风车’花序开放角度最小(62.12°),‘Q1-79’最大(218.29°)。相关性分析表明,花序开放角度与舌状花轮数(0.39)、舌状花宽(0.35)和心花直径(0.31)等呈极显著正相关,与花冠筒长度(-0.46)、花冠筒基部融合程度(-0.45)和舌状花长(-0.21)等呈极显著负相关。通过多元回归分析建立切花小菊花序开放角度的最优回归方程:Y(花序开放角度)= 85.59 + 30.28X4(花序直径)-63.66X7(舌状花长)+ 21.78X8(舌状花宽)+ 21.57X9(花冠筒长度)-62.31X10(花冠筒基部融合程度),决定系数为0.69,可初步用于预测切花小菊花序开放角度。主成分分析将12个性状综合成舌状花相关性状、花序大小、叶部夹角等5个主成分因子,累积贡献率为89.07%。表型聚类将203个切花小菊品种划分为4大类群,不同类群花序开放角度存在显著差异。
中图分类号:
杨秀伟, 苏江硕, 张飞, 管志勇, 房伟民, 陈发棣. 切花小菊花序开放角度的量化评价与变异分析[J]. 园艺学报, 2022, 49(8): 1723-1734.
YANG Xiuwei, SU Jiangshuo, ZHANG Fei, GUAN Zhiyong, FANG Weimin, CHEN Fadi. Quantitative Evaluation and Genetic Variation of Flower Opening Angles in Spray Cut Chrysanthemums[J]. Acta Horticulturae Sinica, 2022, 49(8): 1723-1734.
性状 Trait | 测量方法 Measuring method |
---|---|
花序开放角度 Flower opening angle(FOA) | 花序最外轮两侧舌状花基部和花托底部围成的角度( The angle formed between the outline of ray florets and the bottom of receptacle ( |
叶柄夹角Leaf petiole angle(LPA) | 叶柄朝向与茎秆的夹角The angle between the leaf petiole and stem |
叶片夹角Leaf tip angle(LTA) | 叶片朝向与茎秆的夹角The angle between the leaf tip and stem |
心花直径 Center disc flower diameter(CDFD) | 头状花序中心所有管状花最大横向直径 The maximal transverse diameter of the center disc florets |
花序直径Inflorescence diameter(ID) | 盛花期花序自然状态最大横向直径 The maximal transverse diameter of the capitulum in nature at full-bloom stage |
舌状花轮数 Number of whorls of ray florets(NWRF) | 头状花序的舌状花轮数 The number of whorls of ray florets for the capitulum |
舌状花数Number of ray florets(NRF) | 头状花序的舌状花数The number of ray florets for the capitulum |
舌状花长Ray floret length(RFL) | 舌状小花最大纵向长度The maximal length of ray florets |
舌状花宽Ray floret width(RFW) | 平瓣和匙瓣类花冠筒开裂处最大宽度,管瓣类花冠筒的最大周长 The width of maximal corolla splitting (flat and spoon types) or the perimeter of coalescent corolla (tubular type) |
花冠筒长度The corolla tube length(CTL) | 舌状花花冠筒顶端到基部的距离The distance from tip of corolla tube to the bottom of ray florets |
花冠筒基部融合程度 The corolla tube merged degree(CTMD) | 舌状花花冠筒长度与舌状花长的比值 The ratio of corolla tube length and ray floret length |
心花直径/花序直径Center disc flower diameter/Inflorescence diameter(CDFD/ID) | 心花直径和花序直径的比值 The ratio of the center disc flower diameter and inflorescence diameter |
表1 花序开放角度相关性状及其测量方法
Table 1 Flower opening angle related traits and measuring methods
性状 Trait | 测量方法 Measuring method |
---|---|
花序开放角度 Flower opening angle(FOA) | 花序最外轮两侧舌状花基部和花托底部围成的角度( The angle formed between the outline of ray florets and the bottom of receptacle ( |
叶柄夹角Leaf petiole angle(LPA) | 叶柄朝向与茎秆的夹角The angle between the leaf petiole and stem |
叶片夹角Leaf tip angle(LTA) | 叶片朝向与茎秆的夹角The angle between the leaf tip and stem |
心花直径 Center disc flower diameter(CDFD) | 头状花序中心所有管状花最大横向直径 The maximal transverse diameter of the center disc florets |
花序直径Inflorescence diameter(ID) | 盛花期花序自然状态最大横向直径 The maximal transverse diameter of the capitulum in nature at full-bloom stage |
舌状花轮数 Number of whorls of ray florets(NWRF) | 头状花序的舌状花轮数 The number of whorls of ray florets for the capitulum |
舌状花数Number of ray florets(NRF) | 头状花序的舌状花数The number of ray florets for the capitulum |
舌状花长Ray floret length(RFL) | 舌状小花最大纵向长度The maximal length of ray florets |
舌状花宽Ray floret width(RFW) | 平瓣和匙瓣类花冠筒开裂处最大宽度,管瓣类花冠筒的最大周长 The width of maximal corolla splitting (flat and spoon types) or the perimeter of coalescent corolla (tubular type) |
花冠筒长度The corolla tube length(CTL) | 舌状花花冠筒顶端到基部的距离The distance from tip of corolla tube to the bottom of ray florets |
花冠筒基部融合程度 The corolla tube merged degree(CTMD) | 舌状花花冠筒长度与舌状花长的比值 The ratio of corolla tube length and ray floret length |
心花直径/花序直径Center disc flower diameter/Inflorescence diameter(CDFD/ID) | 心花直径和花序直径的比值 The ratio of the center disc flower diameter and inflorescence diameter |
性状 | 最小值 | 最大值 | 均值 | 标准差 | 变异系数 | 偏度 | 峰度 |
---|---|---|---|---|---|---|---|
Trait | Min. | Max. | Mean | SD | CV/% | Skew. | Kurt. |
花序开放角度/°FOA | 62.12 | 218.29 | 137.20 | 31.38 | 22.87 | 0.45 | -0.09 |
叶柄夹角/°LPA | 38.13 | 84.97 | 61.16 | 10.25 | 16.77 | 0.14 | -0.41 |
叶片夹角/°LTA | 42.45 | 126.28 | 83.63 | 14.66 | 17.53 | 0.03 | 0.20 |
心花直径/cm CDFD | 0.87 | 3.75 | 1.86 | 0.64 | 34.26 | 0.96 | 0.14 |
花序直径/cm ID | 2.42 | 8.95 | 5.05 | 1.19 | 23.49 | 0.31 | 0.03 |
舌状花轮数NWRF | 1.00 | 3.00 | 1.74 | 0.61 | 35.15 | 0.24 | -0.63 |
舌状花数NRF | 14.67 | 65.00 | 29.91 | 10.18 | 34.05 | 1.22 | 1.14 |
舌状花长/cm RFL | 1.26 | 3.91 | 2.57 | 0.63 | 24.52 | 0.12 | -0.76 |
舌状花宽/cm RFW | 0.15 | 1.52 | 0.82 | 0.25 | 30.95 | -0.07 | 0.17 |
花冠筒长度/cm CTL | 0 | 3.46 | 0.31 | 0.79 | 253.53 | 2.51 | 5.16 |
花冠筒基部融合程度CTMD | 0 | 1.00 | 0.11 | 0.26 | 245.78 | 2.30 | 3.82 |
心花直径/花序直径CDFD/ID | 0.20 | 0.76 | 0.38 | 0.13 | 33.29 | 0.80 | -0.39 |
表2 203个切花小菊品种开放角度相关性状的描述性统计
Table 2 Descriptive statistics of flower opening angle related traits of 203 spray cut chrysanthemums
性状 | 最小值 | 最大值 | 均值 | 标准差 | 变异系数 | 偏度 | 峰度 |
---|---|---|---|---|---|---|---|
Trait | Min. | Max. | Mean | SD | CV/% | Skew. | Kurt. |
花序开放角度/°FOA | 62.12 | 218.29 | 137.20 | 31.38 | 22.87 | 0.45 | -0.09 |
叶柄夹角/°LPA | 38.13 | 84.97 | 61.16 | 10.25 | 16.77 | 0.14 | -0.41 |
叶片夹角/°LTA | 42.45 | 126.28 | 83.63 | 14.66 | 17.53 | 0.03 | 0.20 |
心花直径/cm CDFD | 0.87 | 3.75 | 1.86 | 0.64 | 34.26 | 0.96 | 0.14 |
花序直径/cm ID | 2.42 | 8.95 | 5.05 | 1.19 | 23.49 | 0.31 | 0.03 |
舌状花轮数NWRF | 1.00 | 3.00 | 1.74 | 0.61 | 35.15 | 0.24 | -0.63 |
舌状花数NRF | 14.67 | 65.00 | 29.91 | 10.18 | 34.05 | 1.22 | 1.14 |
舌状花长/cm RFL | 1.26 | 3.91 | 2.57 | 0.63 | 24.52 | 0.12 | -0.76 |
舌状花宽/cm RFW | 0.15 | 1.52 | 0.82 | 0.25 | 30.95 | -0.07 | 0.17 |
花冠筒长度/cm CTL | 0 | 3.46 | 0.31 | 0.79 | 253.53 | 2.51 | 5.16 |
花冠筒基部融合程度CTMD | 0 | 1.00 | 0.11 | 0.26 | 245.78 | 2.30 | 3.82 |
心花直径/花序直径CDFD/ID | 0.20 | 0.76 | 0.38 | 0.13 | 33.29 | 0.80 | -0.39 |
图4 不同花型(A)和瓣型(B)切花小菊花序开放角度的箱式图
Fig. 4 Box plots indicating the variation of flower opening angle among different inflorescence types(A)and ray floret types(B)of spray cut chrysanthemums
性状Trait | FOA | LPA | LTA | CDFD | ID | NWRF | NRF | RFL | RFW | CTL | CTMD | CDFD/NID |
---|---|---|---|---|---|---|---|---|---|---|---|---|
花序开放角度FOA | 1.00 | |||||||||||
叶柄夹角LPA | 0.09 | 1.00 | ||||||||||
叶片夹角LTA | 0.24** | 0.65** | 1.00 | |||||||||
心花直径CDFD | 0.31** | -0.05 | 0.15* | 1.00 | ||||||||
花序直径ID | 0.20** | 0.01 | 0.17* | 0.32** | 1.00 | |||||||
舌状花轮数NWRF | 0.39** | 0.15* | 0.16* | -0.18* | 0.07 | 1.00 | ||||||
舌状花数NRF | 0.31** | 0.10 | 0.14 | 0.24** | 0.11 | 0.59** | 1.00 | |||||
舌状花长RFL | -0.21** | -0.04 | 0.07 | 0.19** | 0.86** | -0.10 | -0.01 | 1.00 | ||||
舌状花宽RFW | 0.35** | 0.06 | 0.11 | -0.19** | 0.49** | 0.44** | -0.07 | 0.29** | 1.00 | |||
花冠筒长度CTL | -0.46** | -0.07 | -0.11 | 0.16* | 0.00 | -0.36** | 0.07 | 0.30** | -0.56** | 1.00 | ||
花冠筒基部融合程度CTMD | -0.45** | -0.09 | -0.13 | 0.15* | -0.04 | -0.36** | 0.05 | 0.23** | -0.58** | 0.98** | 1.00 | |
心花直径/花序直径CDFD/ID | 0.20** | -0.06 | 0.03 | 0.77** | -0.34** | -0.23** | 0.15* | -0.39** | -0.50** | 0.12 | -0.09 | 1.00 |
表4 切花小菊12个花序开放角度相关性状的相关性分析
Table 4 Correlation analysis of the 12 flower opening angle related traits of spray cut chrysanthemums
性状Trait | FOA | LPA | LTA | CDFD | ID | NWRF | NRF | RFL | RFW | CTL | CTMD | CDFD/NID |
---|---|---|---|---|---|---|---|---|---|---|---|---|
花序开放角度FOA | 1.00 | |||||||||||
叶柄夹角LPA | 0.09 | 1.00 | ||||||||||
叶片夹角LTA | 0.24** | 0.65** | 1.00 | |||||||||
心花直径CDFD | 0.31** | -0.05 | 0.15* | 1.00 | ||||||||
花序直径ID | 0.20** | 0.01 | 0.17* | 0.32** | 1.00 | |||||||
舌状花轮数NWRF | 0.39** | 0.15* | 0.16* | -0.18* | 0.07 | 1.00 | ||||||
舌状花数NRF | 0.31** | 0.10 | 0.14 | 0.24** | 0.11 | 0.59** | 1.00 | |||||
舌状花长RFL | -0.21** | -0.04 | 0.07 | 0.19** | 0.86** | -0.10 | -0.01 | 1.00 | ||||
舌状花宽RFW | 0.35** | 0.06 | 0.11 | -0.19** | 0.49** | 0.44** | -0.07 | 0.29** | 1.00 | |||
花冠筒长度CTL | -0.46** | -0.07 | -0.11 | 0.16* | 0.00 | -0.36** | 0.07 | 0.30** | -0.56** | 1.00 | ||
花冠筒基部融合程度CTMD | -0.45** | -0.09 | -0.13 | 0.15* | -0.04 | -0.36** | 0.05 | 0.23** | -0.58** | 0.98** | 1.00 | |
心花直径/花序直径CDFD/ID | 0.20** | -0.06 | 0.03 | 0.77** | -0.34** | -0.23** | 0.15* | -0.39** | -0.50** | 0.12 | -0.09 | 1.00 |
性状 Trait | 未标准化系数 Non-standardized coefficient | 回归系数检测 t值 | 显著性 Significance | |
---|---|---|---|---|
B | SE | |||
(常量) | 85.59 | 24.27 | 3.53 | 0 |
X1叶柄夹角 LPA | -0.17 | 0.17 | -1.02 | 0.31 |
X2叶片夹角 LTA | 0.20 | 0.12 | 1.64 | 0.10 |
X3心花直径 CDFD | 7.47 | 10.59 | 0.71 | 0.48 |
X4花序直径ID | 30.28 | 4.48 | 6.77 | 0.00 |
X5舌状花轮数 NWRF | 7.04 | 3.78 | 1.86 | 0.06 |
X6舌状花数NRF | 0.12 | 0.21 | 0.60 | 0.55 |
X7舌状花长RFL | -63.66 | 5.72 | -11.14 | 0 |
X8舌状花宽 RFW | 21.78 | 9.49 | 2.29 | 0.02 |
X9花冠筒长度 CTL | 21.57 | 8.97 | 2.40 | 0.02 |
X10花冠筒基部融合程度CTMD | -62.31 | 25.36 | -2.46 | 0.02 |
X11心花直径/花序直径 CDFD/ID | 21.99 | 54.15 | 0.41 | 0.69 |
表5 切花小菊花序开放角度与其相关性状的回归分析
Table 5 Regression analysis of flower opening angle and related traits of spray cut chrysanthemums
性状 Trait | 未标准化系数 Non-standardized coefficient | 回归系数检测 t值 | 显著性 Significance | |
---|---|---|---|---|
B | SE | |||
(常量) | 85.59 | 24.27 | 3.53 | 0 |
X1叶柄夹角 LPA | -0.17 | 0.17 | -1.02 | 0.31 |
X2叶片夹角 LTA | 0.20 | 0.12 | 1.64 | 0.10 |
X3心花直径 CDFD | 7.47 | 10.59 | 0.71 | 0.48 |
X4花序直径ID | 30.28 | 4.48 | 6.77 | 0.00 |
X5舌状花轮数 NWRF | 7.04 | 3.78 | 1.86 | 0.06 |
X6舌状花数NRF | 0.12 | 0.21 | 0.60 | 0.55 |
X7舌状花长RFL | -63.66 | 5.72 | -11.14 | 0 |
X8舌状花宽 RFW | 21.78 | 9.49 | 2.29 | 0.02 |
X9花冠筒长度 CTL | 21.57 | 8.97 | 2.40 | 0.02 |
X10花冠筒基部融合程度CTMD | -62.31 | 25.36 | -2.46 | 0.02 |
X11心花直径/花序直径 CDFD/ID | 21.99 | 54.15 | 0.41 | 0.69 |
图5 切花小菊花序开放角度测量值FOA与预测值Y的线性回归分析
Fig. 5 The linear regression analysis between flower opening angle measured values FOA and predictive values Y of spray cut chrysanthemums
性状 | 主成分Principal component | |||||
---|---|---|---|---|---|---|
Trait | 1 | 2 | 3 | 4 | 5 | |
花序开放角度FOA | 0.59 | -0.40 | 0.38 | -0.25 | -0.01 | |
叶柄角LPA | 0.26 | -0.10 | 0.25 | 0.79 | -0.29 | |
叶尖角LTA | 0.32 | -0.09 | 0.47 | 0.62 | -0.37 | |
心花直径CDFD | -0.21 | -0.27 | 0.80 | -0.40 | -0.23 | |
花序直径ID | 0.32 | 0.69 | 0.57 | -0.23 | -0.08 | |
舌状花轮数NWRF | 0.66 | -0.16 | 0.12 | 0.16 | 0.62 | |
舌状花数NRF | 0.17 | -0.27 | 0.53 | 0.12 | 0.70 | |
舌状花长RFL | -0.01 | 0.87 | 0.43 | -0.10 | -0.04 | |
舌状花宽RFW | 0.81 | 0.37 | -0.04 | -0.17 | -0.05 | |
花冠筒长度CTL | -0.83 | 0.28 | 0.27 | 0.21 | 0.23 | |
花冠筒基部融合程度CTMD | -0.84 | 0.23 | 0.24 | 0.21 | 0.24 | |
心花直径/花序直径CDFD/ID | -0.40 | -0.73 | 0.40 | -0.25 | -0.20 | |
特征值Eigenvalue | 3.32 | 2.38 | 2.16 | 1.52 | 1.31 | |
贡献率(%)Contribution rate(%) | 27.67 | 19.86 | 17.99 | 12.64 | 10.91 | |
累计贡献率(%)Cumulative contribution rate(%) | 27.67 | 47.53 | 65.52 | 78.16 | 89.07 |
表6 切花小菊12个花序开放角度相关性状主成分矩阵的基本信息
Table 6 Basic information of principal component matrix of 12 flower opening angle related traits
性状 | 主成分Principal component | |||||
---|---|---|---|---|---|---|
Trait | 1 | 2 | 3 | 4 | 5 | |
花序开放角度FOA | 0.59 | -0.40 | 0.38 | -0.25 | -0.01 | |
叶柄角LPA | 0.26 | -0.10 | 0.25 | 0.79 | -0.29 | |
叶尖角LTA | 0.32 | -0.09 | 0.47 | 0.62 | -0.37 | |
心花直径CDFD | -0.21 | -0.27 | 0.80 | -0.40 | -0.23 | |
花序直径ID | 0.32 | 0.69 | 0.57 | -0.23 | -0.08 | |
舌状花轮数NWRF | 0.66 | -0.16 | 0.12 | 0.16 | 0.62 | |
舌状花数NRF | 0.17 | -0.27 | 0.53 | 0.12 | 0.70 | |
舌状花长RFL | -0.01 | 0.87 | 0.43 | -0.10 | -0.04 | |
舌状花宽RFW | 0.81 | 0.37 | -0.04 | -0.17 | -0.05 | |
花冠筒长度CTL | -0.83 | 0.28 | 0.27 | 0.21 | 0.23 | |
花冠筒基部融合程度CTMD | -0.84 | 0.23 | 0.24 | 0.21 | 0.24 | |
心花直径/花序直径CDFD/ID | -0.40 | -0.73 | 0.40 | -0.25 | -0.20 | |
特征值Eigenvalue | 3.32 | 2.38 | 2.16 | 1.52 | 1.31 | |
贡献率(%)Contribution rate(%) | 27.67 | 19.86 | 17.99 | 12.64 | 10.91 | |
累计贡献率(%)Cumulative contribution rate(%) | 27.67 | 47.53 | 65.52 | 78.16 | 89.07 |
[1] |
Baek J H, Lee E Y, Kim N H, Kim S L, Choi I C, Ji H, Chung Y S, Choi M S, Moon J K, Kim K H. 2020. High throughput phenotyping for various traits on soybean seeds using image analysis. Sensors, 20 (1):1-9.
doi: 10.3390/s20010001 URL |
[2] | Chen Jiayue. 2017. Research on wheat canopy image processing and image evaluation index of N status[M. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese) |
陈佳悦. 2017. 小麦冠层图像处理及氮素图像评价指标研究[硕士论文]. 南京: 南京农业大学. | |
[3] | Cheng Hao, Xu Yufeng, Wang Wenxiao, Zhu Jun, Jia Ruidong, Yang Shuhua, Zhao Xin, Ge Hong. 2020. Phenotypic diversity of paphiopedilum micranthum populations from main distribution areas in china. Acta Horticulturae Sinica, 47 (6):1098-1110. (in Chinese) |
程浩, 徐玉凤, 王文晓, 朱俊, 贾瑞冬, 杨树华, 赵鑫, 葛红. 2020. 中国硬叶兜兰主要分布区居群表型多样性分析. 园艺学报, 47 (6):1098-1110. | |
[4] | Chong H, Chen L J, Shen H, Wang F M. 2020. Study on the measurement and evaluation of cotton color using image analysis. Materials Research Express, 7 (7):1-11 |
[5] | Dai Xigang, Liu Kexiong, Zhang Zhen, Zeng Changli. 2017. Genetic diversity analysis in spray cut chrysanthemum based on quality character. Journal of Henan Agricultural University, 51 (4):508-512. (in Chinese) |
戴希刚, 刘科雄, 张振, 曾长立. 2017. 多头切花菊品质性状遗传多样性分析. 河南农业大学学报, 51 (4):508-512. | |
[6] |
David W. 2000. Image analysis in chrysanthemum DUS testing. Computers and Electronics in Agriculture, 25 (3):213-220.
doi: 10.1016/S0168-1699(99)00069-1 URL |
[7] | Feng Qingyun. 2015. Analysis on morphological diversity and pre-core collection construction in cut chrysanthemum[M. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese) |
冯晴云. 2015. 切花菊表型性状遗传多样性分析及初选核心种质构建[硕士论文]. 南京: 南京农业大学. | |
[8] | Feng Xin, Dengba Daji, Kong Sixin, Li Haikui, Shuya K, Zhong Gejia. 2020. Forecasting the seed yield of tibetan herb medicine Herpetospermum pedunculosum Baill. and analyzing for its influencing factors based on linear regression analysis model. Modern Chinese Medicine, 22 (3):409-426. (in Chinese) |
冯欣, 登巴达吉, 孔四新, 李海奎, Shuya K, 仲格嘉. 2020. 基于线性回归分析模型的藏药波棱瓜子产量预测及其影响因子解析. 中国现代中药, 22 (3):409-426. | |
[9] | Jin Shiyuan. 2015. Breeding of green chrysanthemum[M. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese) |
金诗媛. 2015. 绿色切花菊新品种选育[硕士论文]. 南京: 南京农业大学. | |
[10] |
Li B Q, Chen L, Sun W N, Wu D, Wang M J, Yu Y, Chen G X, Yang W N, Lin Z G, Zhang X L, Duan L F, Yang X Y. 2020. Phenomics‐based GWAS analysis reveals the genetic architecture for drought resistance in cotton. Plant Biotechnology Journal, 18 (12):2533-2544.
doi: 10.1111/pbi.13431 URL |
[11] | Li D L, Quan C Q, Song Z Y, Li X, Yu G H, Li C, Muhammad A. 2021. High-throughput plant phenotyping platform(HT3P)as a novel tool for estimating agronomic traits from the lab to the field. Frontiers in Bioengineering and Biotechnology, 9 (8):1-24. |
[12] | Li Hongjian, Shao Jianwen. 1990. Investigation,collection and classification of chrysanthemum cultivars in China. Journal of Nanjing Agricultural University, 35 (1):30-36. (in Chinese) |
李鸿渐, 邵健文. 1990. 中国菊花品种资源的调查收集与分类. 南京农业大学学报, 35 (1):30-36. | |
[13] | Li Yanli, Ma Yahua, Hu Xiaohang. 2020. Correlation and path analysis of main agronomic characters and yield of different maize varieties. Sugar Crops of China, 42 (4):30-35. (in Chinese) |
李彦丽, 马亚怀, 胡晓航. 2020. 不同玉米品种主要农艺性状与产量的相关和通径分析. 中国糖料, 42 (4):30-35. | |
[14] | Liu Changqing, Chen Bingqi. 2014. Method of image detection for ear of corn based on computer vision. Transactions of the Chinese Society of Agricultural Engineering, 30 (6):131-138. (in Chinese) |
刘长青, 陈兵旗. 2014. 基于机器视觉的玉米果穗参数的图像测量方法. 农业工程学报, 30 (6):131-138. | |
[15] | Luo Xinyan. 2009. Genetic diversity of large-flowered chrysanthemum[Ph. D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese) |
雒新艳. 2009. 大菊品种资源遗传多样性研究[博士论文]. 北京: 北京林业大学. | |
[16] | Ministry of Agriculture of the People’s Republic of China. 2013. NY/T 2228-2012. Guidelines for the conduct of tests for distinctness,uniformity and stability-chrysanthemum. Beijing: China Agriculture Press. (in Chinese) |
中华人民共和国农业部. 2013. NY/T 2228-2012. 植物新品种特异性、一致性和稳定性测试指南——菊花. 北京: 中国农业出版社. | |
[17] | Noel N. 2020. Application of genomics and phenomics in plant breeding for climate resilience. Asian Plant Research Journal, 133 (5):1503-1520. |
[18] | Shen Yao, Wang Hanxuan, Hou Haixian, Wu Zhiming, Zhou Hougao. 2020. Genetic Diversity analysis of the potted chrysanthemum based on phenotype and SRAP marker. Chinese Journal of Tropical Crops, 41 (11):2156-2164. (in Chinese) |
沈瑶, 王晗璇, 侯海娴, 吴智明, 周厚高. 2020. 基于表型和SRAP标记的盆栽菊遗传多样性分析. 热带作物学报, 41 (11):2156-2164. | |
[19] | Song Xuebin. 2018. Quantitative definition and genetic analysis of the morphological traits of chrysanthemum(Chrysanthemum × morifolium Ramat.) [Ph. D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese) |
宋雪彬. 2018. 菊花品种表型性状的数量化定义及其遗传分析[博士论文]. 北京: 北京林业大学. | |
[20] | Song Xuebin, Gao Kang, Huang He, Liu Zhilan, Dai Silan, Ji Yu. 2021. Quantitative definition and classification of leaves in large-flowered chinese chrysanthemum based on the morphological traits. Chinese Bulletin of Botany, 56 (1):10-24. (in Chinese) |
宋雪彬, 高康, 黄河, 刘芷兰, 戴思兰, 嵇彧. 2021. 中国传统大菊叶片形态的数量化定义与分类. 植物学报, 56 (1):10-24. | |
[21] | Sun Ruilin, Sun Quan, Sun Chengming, Liu Tao, Li Dongshuang, Wu Fengfeng. 2021. Recent advances in remote sensing monitoring on wheat pests and diseases based on different platforms. Journal of Chinese Agricultural Mechanization, 42 (3):142-150. (in Chinese) |
孙瑞琳, 孙全, 孙成明, 刘涛, 李冬双, 吴峰峰. 2021. 基于不同平台的小麦病虫害遥感监测研究进展. 中国农机化学报, 42 (3):142-150.
doi: 10.13733/j.jcam.issn.2095-5553.2021.03.020 |
|
[22] |
Vakeel S, Gill K K, Kavita B. 2018. Predicting chickpea(Cicer arietinum L.)yield through different regression models in central Punjab under climate change scenario. Agricultural Research Journal, 55 (4):669-676.
doi: 10.5958/2395-146X.2018.00122.9 URL |
[23] | Wang Wenxiang, Hu Qiong, Mei Desheng, Li Yunchang, Wang Hui, Wang Jun, Fu Li, Liu Jia. 2015. Evaluation of branch and pod angle measurement based on digital images from Brassica napus L. Chinese Journal of Oil Crop Sciences, 37 (4):566-570. (in Chinese) |
汪文祥, 胡琼, 梅德圣, 李云昌, 王会, 王军, 付丽, 刘佳. 2015. 基于图像处理的油菜分枝及角果着生角度测量方法. 中国油料作物学报, 37 (4):566-570. | |
[24] | Wu Di. 2019. Nondestructive extraction of rice tiller traits based on Micro-CT[Ph. D. Dissertation]. Wuhan: Huazhong Agricultural University. (in Chinese) |
吴迪. 2019. 基于Micro-CT的水稻茎部性状无损提取关键技术研究[博士论文]. 武汉: 华中农业大学. | |
[25] | Wu Fangfang, Yuan Xin, Su Shaowen, He Dan, Liu Yiping, Kong Dezheng. 2020. Analysis on flower organ phenotypic traits and flower color diversity of lotus cultivars. Journal of Henan Agricultural University, 54 (1):24-29. (in Chinese) |
吴芳芳, 原鑫, 苏少文, 贺丹, 刘艺平, 孔德政. 2020. 荷花品种的花器官表型性状及花色多样性分析. 河南农业大学学报, 54 (1):24-29. | |
[26] |
Wu W, Liu T, Zhou P, Yang T L, Li C Y, Zhong X C, Sun C M, Liu S P, Guo W S. 2019. Image analysis-based recognition and quantification of grain number per panicle in rice. Plant Methods, 15 (15):1-14.
doi: 10.1186/s13007-018-0385-5 URL |
[27] | Yang Wanli, Duan Lingfeng, Yang Wanneng. 2021. Deep learning-based extraction of rice phenotypic characteristics and prediction of rice panicle weight. Journal of Huazhong Agricultural University, 40 (1):227-235. (in Chinese) |
杨万里, 段凌凤, 杨万能. 2021. 基于深度学习的水稻表型特征提取和穗质量预测研究. 华中农业大学学报, 40 (1):227-235. | |
[28] | Zhao B, Zhang Y H, Duan A W, Liu Z D, Xiao J F, Liu Z G, Qin A Z, Ning D F, Li S, Tahir A K S. 2021. Estimating the growth indices and nitrogen status based on color digital image analysis during early growth period of winter wheat. Frontiers in Plant Science, 12 (12):1-16. |
[29] | Zhang Dongju. 2013. Genetic diversity and cross breeding for cultivars of cut chrysanthemum[M. D. Dissertation]. Wuhan: Huazhong Agricultural University. (in Chinese) |
张冬菊. 2013. 切花菊品种遗传多样性研究与杂交育种[硕士论文]. 武汉: 华中农业大学. | |
[30] | Zhang Dongju, Li Shichao, Wu Pengfu, Zhang Xiao, Li Qiuxiang, Yang Shuhua, Jia Ruidong, Ge Hong. 2014. Genetic diversity analysis in cut chrysanthemum cultivars based on morphology and SRAP markers. Acta Horticulturae Sinica, 41 (1):118-130. (in Chinese) |
张冬菊, 李世超, 吴鹏夫, 张晓, 李秋香, 杨树华, 贾瑞冬, 葛红. 2014. 基于表型和SRAP标记的切花菊品种遗传多样性分析. 园艺学报, 41 (1):118-130. | |
[31] | Zhang Lei. 2019. Detection of nitrogen content in apple tree leaves based on digital image processing techniques[M. D. Dissertation] Tai’an: Shandong Agricultural University. (in Chinese) |
张磊. 2019. 基于数字图像处理技术的苹果树叶片氮含量检测研究[硕士论文]. 泰安: 山东农业大学. | |
[32] | Zhang Ye, Ye Beilei, Wu Jing, Liu Le,Li Weishi,Hao Daicheng,Chen Yufeng,Xie Shangqian,Ling Peng. 2021. Analysis of genetic diversity of phenotypic traits of 77 oncidium germplasm resources. Chinese Journal of Tropical Crops, 42 (4):1-11. (in Chinese) |
张叶, 叶蓓蕾, 邬静, 刘乐, 黎维诗, 郝代成, 陈玉凤, 谢尚潜, 凌鹏. 2021. 77份文心兰种质资源表型性状遗传多样性分析. 热带作物学报, 42 (4):1-11. | |
[33] | Zhang Yuan. 2014. Studies on the identification and classification of Chinese traditional chrysanthemum cultivars based on three types of markers [Ph. D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese) |
张辕. 2014. 基于三种标记的中国传统菊花品种鉴定及分类研究[博士论文]. 北京: 北京林业大学. | |
[34] |
Zhou S, Chai X J, Yang Z X, Wang H W, Yang C X, Sun T. 2021. Maize-IAS:a maize image analysis software using deep learning for high-throughput plant phenotyping. Plant Methods, 17 (1):1-17.
doi: 10.1186/s13007-020-00700-7 URL |
[1] | 贡长怡, 刘姣姣, 邓强, 张立新. 茶树炭疽病病原菌鉴定及其致病性分析[J]. 园艺学报, 2022, 49(5): 1092-1101. |
[2] | 李超, 杨英, 陈伟, 郑贺云, 廖新福, 孙玉萍. 西州密系列甜瓜SSR指纹图谱构建及聚类分析[J]. 园艺学报, 2022, 49(3): 622-632. |
[3] | 郭鑫, 成仿云, 钟原, 成信云, 陶熙文. 紫斑牡丹花色表型数量分类研究[J]. 园艺学报, 2022, 49(1): 86-99. |
[4] | 李艳红, 聂俊, 郑锦荣, 谭德龙, 张长远, 史亮亮, 谢玉明. 华南地区樱桃番茄表型性状遗传多样性分析及综合评价[J]. 园艺学报, 2021, 48(9): 1717-1730. |
[5] | 聂洧洁, 王晨赫, 马婉茹, 苏江硕, 张飞, 房伟民, 陈素梅, 陈发棣, 管志勇. 切花小菊品种花枝性状综合评价[J]. 园艺学报, 2021, 48(6): 1150-1162. |
[6] | 董艺, 冯羽飞, 许忠民, 王世民, 唐鸿吕, 黄炜. SSR标记遗传距离与结球甘蓝杂种优势的关系分析[J]. 园艺学报, 2021, 48(5): 934-946. |
[7] | 王振江, 罗国庆, 戴凡炜, 肖更生, 林森, 李智毅, 唐翠明. 基于8个农艺性状的569份果桑种质遗传多样性分析[J]. 园艺学报, 2021, 48(12): 2375-2384. |
[8] | 汤肖玮, 苏江硕, 管志勇, 房伟民, 陈发棣, 张飞. 茶用菊苗期抗旱性和耐涝性的综合评价[J]. 园艺学报, 2021, 48(12): 2443-2457. |
[9] | 殷涵泰, 尹俊梅, 廖易, 陆顺教, 李崇晖. 基于秋石斛花朵颜色、色素分布及表皮细胞形态的表型分类[J]. 园艺学报, 2021, 48(10): 1907-1920. |
[10] | 成晓丹, 魏宇昆, 黄艳波, 史春羽, 慈惠婷, 王顺利, 张秀新, . 鼠尾草属品种DUS测试指南的研制[J]. 园艺学报, 2020, 47(S2): 3153-3162. |
[11] | 郭 俊1,2,朱 婕1,2,谢尚潜1,3,张 叶1,2,叶蓓蕾1,2,郑丽燕2,凌 鹏1,3,*. 油梨转录组SSR分子标记开发与种质资源亲缘关系分析[J]. 园艺学报, 2020, 47(8): 1552-1564. |
[12] | 王 丽1,2,王万兴3,索海翠2,胡新喜1,秦玉芝1,曾 璐1,李小波2,*,熊兴耀1,3,*. 马铃薯块茎酶促褐变及与相关生理指标的关系[J]. 园艺学报, 2019, 46(8): 1519-1530. |
[13] | 杨亚蒙1,焦 健2,樊秀彩1,张 颖1,姜建福1,李 民1,刘崇怀1,*. 桑叶葡萄叶绿体基因组及其特征分析[J]. 园艺学报, 2019, 46(4): 635-648. |
[14] | 孙 炜,于瑞宁,张 飞,蒋甲福,陈发棣,房伟民*. 菊花扦插生根能力的量化评价[J]. 园艺学报, 2019, 46(3): 540-548. |
[15] | 姚晨阳1,2,葛 红2,吴 华3,贾瑞冬2,赵 鑫2,吕英民1,*,杨树华2,*. 玫瑰不同品种花瓣挥发性成分分析[J]. 园艺学报, 2019, 46(2): 375-384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司