园艺学报 ›› 2022, Vol. 49 ›› Issue (8): 1699-1712.doi: 10.16420/j.issn.0513-353x.2021-0604
董桑婕1, 葛诗蓓1, 李岚1, 贺丽群1, 范飞军3, 齐振宇2, 喻景权1, 周艳虹1,*()
收稿日期:
2021-12-09
修回日期:
2022-04-11
出版日期:
2022-08-25
发布日期:
2022-09-05
通讯作者:
周艳虹
E-mail:yanhongzhou@zju.edu.cn
基金资助:
DONG Sangjie1, GE Shibei1, LI Lan1, HE Liqun1, FAN Feijun3, QI Zhenyu2, YU Jingquan1, ZHOU Yanhong1,*()
Received:
2021-12-09
Revised:
2022-04-11
Online:
2022-08-25
Published:
2022-09-05
Contact:
ZHOU Yanhong
E-mail:yanhongzhou@zju.edu.cn
摘要:
以‘博辣红帅’辣椒(Capsicum annuum L.)为材料,探究了幼苗期不同光质补光对其生长、光合特性、碳水化合物积累、丛枝菌根真菌(AMF)定殖以及磷吸收的影响。结果表明:与对照白光(WL)相比,补充红光(R)和蓝光(B)均能显著增加辣椒幼苗生物量和壮苗指数;与补充蓝光相比,补充红光对叶片光饱和光合速率、光合色素积累、根系中总糖含量、蔗糖比重以及独脚金内酯(SL)含量的促进效果更为明显。同时,幼苗期补充红光和蓝光均能显著促进后续白光和缺磷条件下AMF的定殖和辣椒干物质积累,并提高根系SL含量、PT4、PT5基因表达以及植株磷含量,以补充红光效果更为明显。以上结果表明,辣椒幼苗期补充红光有利于幼苗生长以及碳水化合物、SL在根部的积累,进而对后续缺磷条件下AMF的定殖以及幼苗对磷的吸收具有明显的促进作用。
中图分类号:
董桑婕, 葛诗蓓, 李岚, 贺丽群, 范飞军, 齐振宇, 喻景权, 周艳虹. 不同光质补光对辣椒幼苗生长、丛枝菌根共生和磷吸收的影响[J]. 园艺学报, 2022, 49(8): 1699-1712.
DONG Sangjie, GE Shibei, LI Lan, HE Liqun, FAN Feijun, QI Zhenyu, YU Jingquan, ZHOU Yanhong. Effects of Supplemental Lighting on Growth,Root Colonization by Arbuscular Mycorrhizal Fungi and Phosphorus Uptake in Pepper Seedlings[J]. Acta Horticulturae Sinica, 2022, 49(8): 1699-1712.
图1 辣椒幼苗期补光的光谱和补光(21 d)的幼苗表型 WL:白光(对照);WL + R:补充红光;WL + FR:补充远红光;WL + B:补充蓝光。下同。
Fig 1 The spectra of supplemental lighting and its effect on the phenotype of 21 d pepper seedlings WL:White light;WL + R:Supplementary red light;WL + FR:Supplementary far red light;WL + B:Supplementary blue light. The same below.
基因名称 Gene name | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|
UBI-3 | TGTCCATCTGCTCTCTGTTG | CACCCCAAGCACAATAAGAC |
PT4 | CGAAACAGGGCGATACACTG | AATGAAACCCGTGGTGTTGG |
PT5 | AGCCTGAGGCGGATTATGTT | ATCGCGGCTTGTTTAGCATT |
表1 实时荧光定量PCR引物
Table 1 Primers used for real-time quantitative PCR
基因名称 Gene name | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|
UBI-3 | TGTCCATCTGCTCTCTGTTG | CACCCCAAGCACAATAAGAC |
PT4 | CGAAACAGGGCGATACACTG | AATGAAACCCGTGGTGTTGG |
PT5 | AGCCTGAGGCGGATTATGTT | ATCGCGGCTTGTTTAGCATT |
处理 Treatment | 株高/cm Plant height | 茎粗/mm Stem thickness | 第1节间 距/cm First section spacing | 下胚轴长/ cm Hypocotyl length | 叶片数Leaf number | 鲜质量/g Fresh weight | 干质量/g Dry weight | 壮苗 指数 Strong seedling index | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
地上部 Above ground | 地下部 Underground | 总计 Total | 地上部 Above ground | 地下部 Underground | 总计 Total | |||||||
WL | 8.34 c | 2.14 b | 2.84 c | 3.50 b | 5.00 b | 1.63 b | 0.30 b | 1.93 b | 0.264 c | 0.040 b | 0.304 c | 0.124 b |
WL + R | 10.56 b | 2.55 a | 3.40 b | 3.46 b | 6.00 a | 2.64 a | 0.54 a | 3.19 a | 0.376 a | 0.072 a | 0.448 a | 0.194 a |
WL + FR | 13.10 a | 1.62 c | 4.94 a | 5.04 a | 4.60 b | 1.59 b | 0.33 b | 1.92 b | 0.266 c | 0.042 b | 0.309 c | 0.087 c |
WL + B | 9.96 b | 2.22 b | 2.86 c | 3.22 c | 6.00 a | 2.56 a | 0.54 a | 3.10 a | 0.361 b | 0.074 a | 0.435 b | 0.187 a |
表2 不同光质补光(21 d)对辣椒幼苗生物量的影响
Table 2 Effects of supplemental lighting for 21 d on the growth and biomass accumulation in pepper seedlings
处理 Treatment | 株高/cm Plant height | 茎粗/mm Stem thickness | 第1节间 距/cm First section spacing | 下胚轴长/ cm Hypocotyl length | 叶片数Leaf number | 鲜质量/g Fresh weight | 干质量/g Dry weight | 壮苗 指数 Strong seedling index | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
地上部 Above ground | 地下部 Underground | 总计 Total | 地上部 Above ground | 地下部 Underground | 总计 Total | |||||||
WL | 8.34 c | 2.14 b | 2.84 c | 3.50 b | 5.00 b | 1.63 b | 0.30 b | 1.93 b | 0.264 c | 0.040 b | 0.304 c | 0.124 b |
WL + R | 10.56 b | 2.55 a | 3.40 b | 3.46 b | 6.00 a | 2.64 a | 0.54 a | 3.19 a | 0.376 a | 0.072 a | 0.448 a | 0.194 a |
WL + FR | 13.10 a | 1.62 c | 4.94 a | 5.04 a | 4.60 b | 1.59 b | 0.33 b | 1.92 b | 0.266 c | 0.042 b | 0.309 c | 0.087 c |
WL + B | 9.96 b | 2.22 b | 2.86 c | 3.22 c | 6.00 a | 2.56 a | 0.54 a | 3.10 a | 0.361 b | 0.074 a | 0.435 b | 0.187 a |
图2 不同光质补光(21 d)对辣椒幼苗光合速率和色素含量的影响 不同小写字母表示差异显著。下同。
Fig. 2 Effects of supplemental lighting for 21 d on the photosynthetic rate and pigment contents in leaves of pepper seedlings Different small letters indicate significant differences. The same below.
图3 不同光质补光(21 d)对辣椒幼苗叶片和根系中碳水化合物含量的影响
Fig. 3 Effects of supplemental lighting for 21 d on the carbohydrate content in leaves and roots of pepper seedlings
处理 Treatment | 蔗糖占比 Proportion of sucrose content | 总糖占比 Proportion of sucrose content | ||||
---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | |
WL | 8 b | 45 c | 47 a | 12 c | 38 b | 50 a |
WL + R | 10 a | 51 b | 39 c | 17 a | 35 c | 48 a |
WL + FR | 6 c | 59 a | 35 d | 9 d | 44 a | 47 a |
WL + B | 9 a | 48 bc | 43 b | 14 b | 36 bc | 50 a |
表3 不同光质补光(21 d)对辣椒幼苗根、茎和叶片中碳水化合物比重的影响
Table 3 Effects of supplemental lighting for 21 d on the proportion of carbohydrate in pepper seedling leaves and roots %
处理 Treatment | 蔗糖占比 Proportion of sucrose content | 总糖占比 Proportion of sucrose content | ||||
---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | |
WL | 8 b | 45 c | 47 a | 12 c | 38 b | 50 a |
WL + R | 10 a | 51 b | 39 c | 17 a | 35 c | 48 a |
WL + FR | 6 c | 59 a | 35 d | 9 d | 44 a | 47 a |
WL + B | 9 a | 48 bc | 43 b | 14 b | 36 bc | 50 a |
图5 辣椒幼苗期不同光质补光(21 d)对接种AMF后(10 d)根系中SL含量的影响
Fig. 5 Effects of supplemental lighting on the content of SL in pepper roots for 20 d after inoculation with arbuscular mycorrhizal fungi for 10 d
图7 辣椒幼苗期不同光质补光(21 d)对接种AMF后(20 d)定殖率的影响
Fig. 7 Effects of supplemental lighting on the root colonization rate by arbuscular mycorrhizal fungi for 20 d in pepper roots at the seedling stage
图8 辣椒幼苗期不同光质补光(21 d)对接种AMF后(30 d)辣椒磷吸收的影响
Fig. 8 Effects of supplemental lighting on phosphorus absorption in pepper during seedling stage after inoculation with arbuscular mycorrhizal fungi for 21 d
[1] |
Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D. 2010. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal, 64 (6):1002-1017.
doi: 10.1111/j.1365-313X.2010.04385.x URL |
[2] |
Brundrett M C, Tedersoo L. 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 220 (4):1108-1115.
doi: 10.1111/nph.14976 pmid: 29355963 |
[3] | Cao Gang, Zhang Guo-bin, Yu Ji-hua, Ma Yan-xia. 2013. Effects of different LED light qualities on cucumber seedling growth and chlorophyll fluorescence parameters. Scientia Agricultra Sinica, 46 (6):1297-1304. (in Chinese) |
曹刚, 张国斌, 郁继华, 马彦霞. 2013. 不同光质LED光源对黄瓜苗期生长及叶绿素荧光参数的影响. 中国农业科学, 46 (6):1297-1304. | |
[4] |
D'Incecco P, Ong L, Gras S, Pellegrino L. 2018. A fluorescence in situ staining method for investigating spores and vegetative cells of Clostridia by confocal laser scanning microscopy and structured illuminated microscopy. Micron, 110:1-9.
doi: S0968-4328(18)30087-8 pmid: 29689432 |
[5] | Dong F, Wang C, Sun X, Bao Z, Liu S. 2019. Sugar metabolic changes in protein expression associated with different light quality combinations in tomato fruit. Plant Growth Regulation, 88 (3):754-760. |
[6] | Drigo B, Pijl A S, Duyts H, Kielak A, Gamper H A, Houtekamer M J, Boschker H T, Bodelier P L, Whiteley A S, van Veen J A, Kowalchuk G A. 2010. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 107 (24):10938-10942. |
[7] | Ge Shibei, Jiang Xiaochun, Wang Lingyu, Yu Jingquan, Zhou Yanhong. 2020. Recent advances in the role and mechanism of arbuscular mycorrhiza- induced improvement of abiotic stress tolerance in horticultural plants. Acta Horticulturae Sinica, 47 (9):1752-1776. (in Chinese) |
葛诗蓓, 姜小春, 王羚羽, 喻景权, 周艳虹. 2020. 园艺植物丛枝菌根抗非生物胁迫的作用机制研究进展. 园艺学报, 47 (9):1752-1776. | |
[8] |
Ho I, Trappe J M. 1973. Translocation of 14C from festuca plants to their endomycorrhizal fungi. Nature New Biology, 244 (131):30-31.
doi: 10.1038/newbio244030a0 URL |
[9] |
Jia K P, Baz L, Al-Babili S. 2018. From carotenoids to strigolactones. Journal of Experimental Botany, 69 (9):2189-2204.
doi: 10.1093/jxb/erx476 URL |
[10] |
Jiang C F, Gao X H, Liao L L, Nicholas P H, Fu X D. 2007. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiology, 145:1460-1470.
doi: 10.1104/pp.107.103788 URL |
[11] |
Jiang X C, Xu J, Lin R, Song J N, Shao S J, Yu J Q, Zhou Y H. 2020. Light-induced HY 5 functions as a systemic signal to coordinate the photoprotective response to light fluctuation. Plant Physiology, 184 (2):1181-1193.
doi: 10.1104/pp.20.00294 URL |
[12] |
Lanfranco L, Fiorilli V, Gutjahr C. 2018. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 220 (4):1031-1046.
doi: 10.1111/nph.15230 pmid: 29806959 |
[13] |
Li Y, Xin G, Wei M, Shi Q, Yang F, Wang X. 2017. Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities. Scientia Horticulturae, 225:490-497.
doi: 10.1016/j.scienta.2017.07.053 URL |
[14] | Ling Dan-dan, Luo Jia-ming, Liu Xiao-ying, Chu Jing-yu, Xu Zhi-gang, Fan Xiao-xue. 2021. Effects of different light quality combinations on carbon and nitrogen eetabolism and enzyme activities of tomato in early flowering period. Journal of Nanjing Agricultural University, 44 (4):622-627. (in Chinese) |
凌丹丹, 雒佳铭, 刘晓英, 储靖宇, 徐志刚, 樊小雪. 2021. 不同光质及组合对番茄开花初期碳氮代谢及其关键酶活性的影响. 南京农业大学学报, 44 (4):622-627. | |
[15] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25 (4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[16] |
Ma Y, Xu A, Cheng Z M. 2021. Effects of light emitting diode lights on plant growth,development and traits a meta-analysis. Horticultural Plant Journal, 7 (6):552-564.
doi: 10.1016/j.hpj.2020.05.007 URL |
[17] | Manck-Gotzenberger J, Requena N. 2016. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Frontiers in Plant Science, 7:14-23. |
[18] |
Mori N, Nishiuma K, Sugiyama T, Hayashi H, Akiyama K. 2016. Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi. Phytochemistry, 130:90-98.
doi: 10.1016/j.phytochem.2016.05.012 URL |
[19] |
Mostofa M G, Li W, Nguyen K H, Fujita M, Lam-Son P T. 2018. Strigolactones in plant adaptation to abiotic stresses:an emerging avenue of plant research. Plant Cell and Environment, 41 (10):2227-2243.
doi: 10.1111/pce.13364 URL |
[20] | Nagata M, Yamamoto N, Miyamoto T, Shimomura A, Arima S, Hirsch A M, Suzuki A. 2016. Enhanced hyphal growth of arbuscular mycorrhizae by root exudates derived from high R/FR treated Lotus japonicus. Plant Signaling and Behavior, 11 (6):3-13. |
[21] |
Nagata M, Yamamoto N, Shigeyama T, Terasawa Y, Anai T, Sakai T, Inada S, Arima S, Hashiguchi M, Akashi R, Nakayama H, Ueno D, Hirsch A M, Suzuki A. 2015. Red/far red light controls arbuscular mycorrhizal colonization via jasmonic acid and strigolactone signaling. Plant and Cell Physiology, 56 (11):2100-2109.
doi: 10.1093/pcp/pcv135 pmid: 26412782 |
[22] |
Ning Yu,Ai Xi-zhen,Li Qing-ming,Bi Huan-gai. 2019. Effects of light quality on carbon-nitrogen metabolism,growth,and quality of Chinese chives. Chinese Journal of Applied Ecology, 30 (1):251-258. (in Chinese)
doi: 10.13287/j.1001-9332.201901.032 |
宁宇, 艾希珍, 李清明, 毕焕改. 2019. 光质对韭菜碳氮代谢、生长和品质的影响. 应用生态学报, 30 (1):251-258.
doi: 10.13287/j.1001-9332.201901.032 |
|
[23] | Qin Yong-mei, Han Feng-ying, Yang Hui, Liu Min. 2020. Effects of light quality on morphogenesis and carbon and nitrogen metabolism of bitter gourd seedlings. China Cucurbits and Vegetables, 33 (7):24-27. (in Chinese) |
秦永梅, 韩凤英, 杨慧, 刘敏. 2020. 光质对苦瓜幼苗形态建成及碳氮代谢的影响. 中国瓜菜, 33 (7):24-27. | |
[24] |
Redecker D, Kodner R, Graham L E. 2000. Glomalean fungi from the Ordovician. Science, 289 (5486):1920-1921.
pmid: 10988069 |
[25] |
Smith S E, Smith F A. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth:new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62:227-250.
doi: 10.1146/annurev-arplant-042110-103846 URL |
[26] |
Smith S E, Smith F A, Jakobsen I. 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 133 (1):16-20.
doi: 10.1104/pp.103.024380 URL |
[27] |
Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P. 2010. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nature Chemical Biology, 6 (10):741-749.
doi: 10.1038/nchembio.435 URL |
[28] | Wang Jia-qi. 2020. Study on the effect of different light quality LED supplementary light on the growth and development of blueberry in greenhouse[M. D. Dissertation]. Jinhua: Zhejiang Normal University. (in Chinese) |
王佳淇. 2020. 不同光质LED补光对大棚蓝莓生长发育的影响研究[硕士论文]. 金华: 浙江师范大学. | |
[29] |
Wang S B, Liu K W, Diao W P, Zhi L, Ge W, Liu J B, Pan B G, Wan H J, Chen J F. 2012. Evaluation of appropriate reference genes for gene expression studies in pepper by quantitative real-time PCR. Molecular Breeding, 30 (3):1393-1400.
doi: 10.1007/s11032-012-9726-7 URL |
[30] | Wen Lian-lian, Li Yan, Qin Li-jie, Zhou Xin, Ni Xiu-nan, Liu Shu-xia, Jiao Juan, Wei Min. 2018. Effects of proportions of white,red and blue light qualities on the strong plants and photosynthetic characteristcs in tomato seedlings. Plant Physiology Journal, 54 (7):1223-1232. (in Chinese) |
文莲莲, 李岩, 秦利杰, 周鑫, 倪秀男, 刘淑侠, 焦娟, 魏珉. 2018. 白光与红蓝光比例对番茄壮苗及光合特性的影响. 植物生理学报, 54 (7):1223-1232. | |
[31] |
Xie Y R, Liu Y, Ma M D, Zhou Q, Zhao Y P, Zhao B B, Wang B B, Wei H B, Wang H Y. 2020. Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching. Nature Communications, 11 (1):1-13.
doi: 10.1038/s41467-019-13993-7 URL |
[32] |
Xu J, Guo Z, Jiang X, Ahammed G J, Zhou Y. 2021. Light regulation of horticultural crop nutrient uptake and utilization. Horticultural Plant Journal, 7 (5):367-379.
doi: 10.1016/j.hpj.2021.01.005 URL |
[33] | Yang Z C, He W, Mou S T, Wang X X, Chen D Y, Hu X T, Chen L H, Bai J Y. 2017. Plant growth and development of pepper seedlings under different photoperiods and photon flux ratios of red and blue LEDs. Transactions of the Chinese Society of Agricultural Engineering, 33 (17):173-180. |
[34] | Yu Yi, Yang Qi-zhang, Liu Wen-ke. 2014. Effects of LED red and blue light component on growth and photosynthetic pigment contents of two leaf-color lettuce cultivars. Agricultural Engineering, 4 (S1):1-3. (in Chinese) |
余意, 杨其长, 刘文科. 2014. LED红蓝光质对两种叶色生菜产量和光合色素含量的影响. 农业工程, 4 (S1):1-3. | |
[35] |
Zhou Y H, Ge S B, Jin L J, Yao K Q, Wang Y, Wu X D, Zhou J, Xia X J, Shi K, Foyer C H, Yu J Q. 2019. A novel CO2-responsive systemic signaling pathway controlling plant mycorrhizal symbiosis. New Phytologist, 224 (1):106-116.
doi: 10.1111/nph.15917 URL |
[1] | 罗海林, 袁雷, 翁华, 闫佳会, 郭青云, 王文清, 马新明. 蚕豆萎蔫病毒2号青海辣椒分离物的鉴定与全基因组序列克隆[J]. 园艺学报, 2023, 50(1): 161-169. |
[2] | 曹亚从, 张正海, 于海龙, 冯锡刚, 张宝玺, 王立浩. 螺丝椒新品种‘中椒409号’[J]. 园艺学报, 2022, 49(S2): 111-112. |
[3] | 曹亚从, 张正海, 于海龙, 冯锡刚, 张宝玺, 王立浩. 螺丝椒抗病新品种‘中椒209号’[J]. 园艺学报, 2022, 49(S2): 113-114. |
[4] | 王永平, 胡明文, 朱文超, 廖芳芳, 白立伟, 高 刚. 辣椒新品种‘红辣3号’[J]. 园艺学报, 2022, 49(S2): 115-116. |
[5] | 刘术均, 惠成章, 赵丽丽, 孙永生, 刘爱群. 中早熟辣椒新品种‘美罗卡’[J]. 园艺学报, 2022, 49(S2): 117-118. |
[6] | 王 飞, 李 宁, 尹延旭, 高升华, 徐 凯, 姚明华. 辣椒新品种‘鄂椒红元帅’[J]. 园艺学报, 2022, 49(S2): 119-120. |
[7] | 李 宁, 尹延旭, 高升华, 徐 凯, 王 飞, 姚明华. 辣椒新品种‘锦绣红117’[J]. 园艺学报, 2022, 49(S2): 121-122. |
[8] | 方 荣, 陈学军, 周坤华, 袁欣捷, 雷 刚, 黄月琴. 辣椒新品种‘赣椒18号’[J]. 园艺学报, 2022, 49(S1): 75-76. |
[9] | 李颖, 王恒明, 徐小万, 徐晓美, 黄智文. 辣椒新品种‘粤椒8号’[J]. 园艺学报, 2022, 49(8): 1837-1838. |
[10] | 李平平, 张祥, 刘雨婷, 谢志和, 张芮豪, 赵凯, 吕俊恒, 王梓然, 文锦芬, 邹学校, 邓明华. 辣椒63份种质果皮颜色与呈色物质的关系[J]. 园艺学报, 2022, 49(7): 1589-1601. |
[11] | 邹学校, 朱凡. 辣椒的起源、进化与栽培历史[J]. 园艺学报, 2022, 49(6): 1371-1381. |
[12] | 傅鸿妃, 聂智星, 陈建瑛. 辣椒新品种‘杭椒12’[J]. 园艺学报, 2022, 49(6): 1395-1396. |
[13] | 龚明霞, 赵虎, 王萌, 吴星, 赵曾菁, 何志, 黄金梅, 孟生德, 王日升. 广西辣椒病毒的sRNA深度测序和RT-PCR鉴定[J]. 园艺学报, 2022, 49(5): 1060-1072. |
[14] | 张世才, 李怡斐, 王春萍, 杨小苗, 黄启中, 黄任中. 辣椒种质尖孢炭疽菌抗性鉴定与评价[J]. 园艺学报, 2022, 49(4): 885-892. |
[15] | 宋放, 李子璇, 王策, 王志静, 何利刚, 蒋迎春, 吴黎明, 白福玺. 柑橘菌根信号受体蛋白基因LYK2的克隆及功能分析[J]. 园艺学报, 2022, 49(2): 281-292. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司