园艺学报 ›› 2022, Vol. 49 ›› Issue (8): 1650-1662.doi: 10.16420/j.issn.0513-353x.2021-0518
收稿日期:
2022-02-22
修回日期:
2022-05-09
出版日期:
2022-08-25
发布日期:
2022-09-05
作者简介:
*E-mail: 基金资助:
LIU Chaoyang(), LIAO Zhichan, LU Xinxin, HE Yehua
Received:
2022-02-22
Revised:
2022-05-09
Online:
2022-08-25
Published:
2022-09-05
摘要:
从菠萝基因组中鉴定出8个类纤维素合成酶(cellulose synthase-like,Csl)CslD家族基因,其分布于7条染色体及1条Scaffold片段中,外显子数3 ~ 5;依据进化关系将其划分为3个亚组,其中亚组Ⅲ成员数在菠萝中有明显扩增;结合共线性及表达模式分析等预测了家族成员可能的生物学功能。克隆了AcoCslD2a基因cDNA全长序列,亚细胞定位分析表明,其编码蛋白定位于高尔基体。构建ProAtUbq10和ProAtCslD3启动子驱动的AcoCslD2a的植物表达载体,经根癌农杆菌GV3101介导转化至拟南芥atcsld3根毛缺失突变体,不同载体的转基因结果一致,表明AcoCslD2a能够完全恢复突变体根毛数量至野生型水平,可部分恢复突变体的根毛长度。
中图分类号:
刘朝阳, 廖志婵, 路鑫鑫, 何业华. 菠萝类纤维素合成酶CslD家族基因鉴定及AcoCslD2a功能分析[J]. 园艺学报, 2022, 49(8): 1650-1662.
LIU Chaoyang, LIAO Zhichan, LU Xinxin, HE Yehua. Identification of CslD Gene Family in Pineapple and Functional Analysis of AcoCslD2a[J]. Acta Horticulturae Sinica, 2022, 49(8): 1650-1662.
引物用途 Primer use | 引物名称 Primer name | 引物序列(5′-3′) Primer sequence |
---|---|---|
基因ORF克隆 ORF Cloning | AcoCSLD2a-F | ATGGCATCGAACAGCGCGCTT |
AcoCSLD2a-R | TTAAGGGAATGTGAAGGAACC | |
植物表达载体构建 Plant expression vector construction | EcoRⅠ-ProAtUBQ10-F | GAATTCCGACGAGTCAGTAATAAAC |
BamHⅠ-ProAtUBQ10-R | GGATTCTGTTAATCAGAAAAACTCAG | |
EcoRⅠ-ProAtCSLD3-F | GAATTCCACTTGTGTCCTGATACTCTC | |
BamHⅠ-ProAtCSLD3-R | GGATTCTGTCTAATAATAACACTAT | |
PstⅠ-AcoCSLD2a-F | CTGCAGATGGCATCGAACAGCGCGCTT | |
SpeⅠ-AcoCSLD2a-R | ACTAGTTTAAGGGAATGTGAAGGAACC | |
亚细胞定位 载体构建 Subcellular localization vector construction | XbaⅠ-GFP-AcoCSLD2a-F | TCTAGAATGGCATCGAACAGCGCGCTT |
SacⅠ-GFP-AcoCSLD2a-R | GAGCTCAGGGAATGTGAAGGAACC |
表1 本研究中用到的引物序列
Table 1 The primer sequences used in this study
引物用途 Primer use | 引物名称 Primer name | 引物序列(5′-3′) Primer sequence |
---|---|---|
基因ORF克隆 ORF Cloning | AcoCSLD2a-F | ATGGCATCGAACAGCGCGCTT |
AcoCSLD2a-R | TTAAGGGAATGTGAAGGAACC | |
植物表达载体构建 Plant expression vector construction | EcoRⅠ-ProAtUBQ10-F | GAATTCCGACGAGTCAGTAATAAAC |
BamHⅠ-ProAtUBQ10-R | GGATTCTGTTAATCAGAAAAACTCAG | |
EcoRⅠ-ProAtCSLD3-F | GAATTCCACTTGTGTCCTGATACTCTC | |
BamHⅠ-ProAtCSLD3-R | GGATTCTGTCTAATAATAACACTAT | |
PstⅠ-AcoCSLD2a-F | CTGCAGATGGCATCGAACAGCGCGCTT | |
SpeⅠ-AcoCSLD2a-R | ACTAGTTTAAGGGAATGTGAAGGAACC | |
亚细胞定位 载体构建 Subcellular localization vector construction | XbaⅠ-GFP-AcoCSLD2a-F | TCTAGAATGGCATCGAACAGCGCGCTT |
SacⅠ-GFP-AcoCSLD2a-R | GAGCTCAGGGAATGTGAAGGAACC |
图2 菠萝及其他10个物种中CslD蛋白的系统进化树 At:拟南芥;Os:水稻;Zm:玉米;Sb:高粱;Bd:二穗短柄草;Ma:香蕉;Gr:棉花;Prupe:桃;Solyc:番茄;Ptr:杨树。
Fig. 2 Phylogenetic tree of CslD proteins in pineapple and other ten species At:Arabidopsis thaliana;Os:Oryza sativa;Zm:Zea mays;Sb:Sorghum bicolor;Bd:Brachypodium distachyon;Ma:Musa acuminate;Gr:Gossypium raimondii;Prupe:Prunus persica;Solyc:Solanum lycopersicum;Ptr:Populus trichocarpa.
图3 菠萝CslD基因的染色体定位及共线性 红色线条代表片段复制的CslD基因对。
Fig. 3 The chromosomal localization and synteny analysis of pineapple CslD genes The red lines indicate the segmental duplicated CslD gene pairs.
图4 菠萝、二穗短柄草和水稻(A),菠萝、香蕉、玉米和拟南芥(B)CslD家族基因的共线性 不同颜色的线条代表菠萝与其他各物种中的共线性CslD基因对。Ac:菠萝;Bd:二穗短柄草;Os:水稻;Ma:香蕉; Zm:玉米;At:拟南芥。
Fig. 4 Synteny analysis of CslD genes from pineapple,Brachypodium distachyon and rice(A)and synteny analysis of CslD genes from pineapple,banana,maize and Arabidopsis(B) Lines with different colors indicated the syntenic CslD gene pairs between pineapple and other species. Ac:Ananas comosus;Bd:Brachypodium distachyon;Os:Oryza sativa;Ma:Musa acuminata;Zm:Zea mays;At:Arabidopsis thaliana.
图5 菠萝CslD基因在菠萝不同组织部位不同发育时期的表达量热图 M:雄蕊;T:花柱;P:花瓣;L:叶;S:茎;R:根;S1 ~ S5分别代表菠萝花及果实的不同发育阶段。
Fig. 5 Heat map of pineapple CslD gene expression in various pineapple tissues during different developmental stages M:Stamen;T:Style;P:Petal;L:Leaf;S:Stem;R:Root;S1-S5 indicate different development stages for flower and fruit of pineapple,respectively.
图6 AcoCslD2a基因cDNA全长的克隆(A)、蛋白结构预测(B)及在菠萝各组织部位的表达特征(C)
Fig. 6 The cDNA full length cloning(A),protein structure prediction(B)and expression features in different pineapple tissues(C)of AcoCslD2a gene
图9 拟南芥AcoCslD2a转基因株系(培养7 d)的平均根毛长度和根毛数量
Fig. 9 The average root hair length and root hair number for the transgenic lines(culture for 7 days)of AcoCslD2a gene
[1] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools:an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13 (8):1194-1202.
doi: 10.1016/j.molp.2020.06.009 URL |
[2] |
Doblin M S, Pettolino F, Bacic A. 2010. Plant cell walls:the skeleton of the plant world. Functional Plant Biology, 37 (5):357-381.
doi: 10.1071/FP09279 URL |
[3] |
Douchkov D, Lueck S, Hensel G, Kumlehn J, Rajaraman J, Johrde A, Doblin M S, Beahan C T, Kopischke M, Fuchs R, Lipka V, Niks E R, Bulone V, Chowdhury J, Little A, Burton R A, Bacic A, Fincher G B, Schweizer P. 2016. The barley(Hordeum vulgare)cellulose synthase-like D 2 gene(HvCslD2)mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus. New Phytologist, 212 (2):421-433.
doi: 10.1111/nph.14065 pmid: 27352228 |
[4] |
Endler A, Persson S. 2011. Cellulose synthases and synthesis in Arabidopsis. Molecular Plant, 4 (2):199-211.
doi: 10.1093/mp/ssq079 pmid: 21307367 |
[5] | Gu F, Bringmann M, Combs J R, Yang J, Bergmann D C, Nielsen E. 2016. Arabidopsis CSLD 5 functions in cell plate formation in a cell cycle-dependent manner. The Plant Cell, 28 (7):1722-1737. |
[6] |
Handakumbura P P, Matos D A, Osmont K S, Harrington M J, Heo K, Kafle K, Kim S H, Kim S H, Baskin T I, Hazen S P. 2013. Perturbation of Brachypodium distachyon CELLULOSE SYNTHASE A4 or 7 results in abnormal cell walls. BMC Plant Biology, 13 (1):1-16.
doi: 10.1186/1471-2229-13-1 URL |
[7] |
Hsieh Y S, Harris P J. 2009. Xyloglucans of monocotyledons have diverse structures. Molecular Plant, 2 (5):943-965.
doi: 10.1093/mp/ssp061 pmid: 19825671 |
[8] |
Kaur S, Dhugga K S, Beech R, Singh J. 2017. Genome-wide analysis of the cellulose synthase-like(Csl)gene family in bread wheat(Triticum aestivum L.). BMC Plant Biology, 17 (1):1-17.
doi: 10.1186/s12870-016-0951-9 URL |
[9] |
Kim C M, Park S H, Je B I, Park S H, Park S J, Piao H L, Eun M Y, Dolan L, Han C. 2007. OsCSLD1,a cellulose synthase-like D 1 gene,is required for root hair morphogenesis in rice. Plant Physiology, 143 (3):1220-1230.
doi: 10.1104/pp.106.091546 URL |
[10] |
Li L, Hey S, Liu S, Liu Q, Mcninch C, Hu H C, Wen T J, Marcon C, Paschold A, Bruce W, Schnable P S, Hochholdinger F. 2016. Characterization of maize roothairless 6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth. Scientific Reports, 6 (1):1-12.
doi: 10.1038/s41598-016-0001-8 URL |
[11] |
Li W, Yang Z, Yao J, Li J, Song W, Yang X. 2018. Cellulose synthase-like D 1 controls organ size in maize. BMC Plant Biology, 18 (1):1-15.
doi: 10.1186/s12870-017-1213-1 URL |
[12] | Li Weiya. 2019. Molecular mechanism analysis of ZmCSLD1 and map based cloning of qLA2-1 for plant architecture development[Ph. D. Dissertation]. Beijing: China Agricultural University. (in Chinese) |
李威亚. 2019. 玉米株型关键基因ZmCSLD1分子机制解析及叶夹角qLA2-1精细定位[博士论文]. 北京: 中国农业大学. | |
[13] |
Li Y, Yang T, Dai D, Hu Y, Guo X, Guo H. 2017. Evolution,gene expression profiling and 3D modeling of CSLD proteins in cotton. BMC Plant Biology, 17 (1):1-19.
doi: 10.1186/s12870-016-0951-9 URL |
[14] |
Little A, Schwerdt J G, Shirley N J, Khor S F, Neumann K, O’Donovan L A, Lahnstein J, Collins H M, Henderson M, Fincher G B, Burton R A. 2018. Revised phylogeny of the cellulose synthase gene superfamily:insights into cell wall evolution. Plant Physiology, 177 (3):1124-1141.
doi: 10.1104/pp.17.01718 pmid: 29780036 |
[15] |
Mao Q, Chen C, Xie T, Luan A, Liu C, He Y. 2018. Comprehensive tissue-specific transcriptome profiling of pineapple(Ananas comosus)and building an eFP-browser for further study. Peer J, 6:e6028.
doi: 10.7717/peerj.6028 URL |
[16] |
Ming R, van Buren R, Wai C M, Tang H, Schatz M C, Bowers J E, Lyons E, Wang M L, Chen J, Biggers E, Zhang J, Huang L, Zhang L, Miao W, Zhang J, Ye Z, Miao C, Lin Z, Wang H, Zhou H, Yim W C, Priest H D, Zheng C, Woodhouse M, Edger P P, Guyot R, Guo H B, Guo H, Zheng G, Singh R, Sharma A, Min X, Zheng Y, Lee H, Gurtowski J, Sedlazeck F J, Harkess A, McKain M R, Liao Z, Fang J, Liu J, Zhang X, Zhang Q, Hu W, Qin Y, Wang K, Chen L Y, Shirley N, Lin Y R, Liu L Y, Hernandez A G, Wright C L, Bulone V, Tuskan G A, Heath K, Zee F, Moore P H, Sunkar R, Leebens-Mack J H, Mockler T, Bennetzen J L, Freeling M, Sankoff D, Paterson A H, Zhu X, Yang X, Smith J A, Cushman J C, Paull R E, Yu Q. 2015. The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics, 47 (12):1435-1442.
doi: 10.1038/ng.3435 pmid: 26523774 |
[17] |
Mishra S, Mohanty A K, Drzal L T, Misra M, Hinrichsen G. 2004. A review on pineapple leaf fibers,sisal fibers and their biocomposites. Macromolecular Materials and Engineering, 289 (11):955-974.
doi: 10.1002/mame.200400132 URL |
[18] |
Nelson B K, Cai X, Nebenführ A. 2007. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. The Plant Journal, 51 (6):1126-1136.
doi: 10.1111/j.1365-313X.2007.03212.x URL |
[19] |
Park S, Szumlanski A L, Gu F, Guo F, Nielsen E. 2011. A role for CSLD 3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells. Nature Cell Biology, 13 (8):973-980.
doi: 10.1038/ncb2294 URL |
[20] |
Paull R E, Chen N J, Ming R, Wai C M, Shirley N, Schwerdt J, Bulone V. 2016. Carbon flux and carbohydrate gene families in pineapple. Tropical Plant Biology, 9 (3):200-213.
doi: 10.1007/s12042-016-9176-1 URL |
[21] |
Peng X, Pang H, Abbas M, Yan X, Dai X, Li Y, Li Q. 2019. Characterization of Cellulose synthase-like D(CSLD)family revealed the involvement of PtrCslD 5 in root hair formation in Populus trichocarpa. Scientific Reports, 9 (1):1-9.
doi: 10.1038/s41598-018-37186-2 URL |
[22] | Richmond T A, Somerville C R. 2001. Integrative approaches to determining Csl function//Plant cell walls. Dordrecht:Springer:131-143. |
[23] |
Schwerdt J G, Mackenzie K, Wright F, Oehme D, Wagner J M, Harvey A J, Shirley N J, Burton R A, Schreiber M, Halpin C, Zimmer J, Marchall D F, Waugh R, Fincher G B. 2015. Evolutionary dynamics of the cellulose synthase gene superfamily in grasses. Plant Physiology, 168 (3):968-983.
doi: 10.1104/pp.15.00140 pmid: 25999407 |
[24] |
Song X, Xu L, Yu J, Tian P, Hu X, Wang Q, Pan Y. 2019. Genome-wide characterization of the cellulose synthase gene superfamily in Solanum lycopersicum. Gene, 688:71-83.
doi: 10.1016/j.gene.2018.11.039 URL |
[25] | Verhertbruggen Y, Yin L, Oikawa A, Scheller H V. 2011. Mannan synthase activity in the CSLD family. Plant Signaling & Behavior, 6 (10):1620-1623. |
[26] |
Wang L, Guo K, Li Y, Tu Y, Hu H, Wang B, Cui X, Peng L. 2010. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biology, 10 (1):1-16.
doi: 10.1186/1471-2229-10-1 URL |
[27] |
Wang W, Wang L, Chen C, Xiong G, Tan X, Yang K, Wang Z, Zhou Y, Ye D, Chen L. 2011. Arabidopsis CSLD1 and CSLD 4 are required for cellulose deposition and normal growth of pollen tubes. Journal of Experimental Botany, 62 (14):5161-5177.
doi: 10.1093/jxb/err221 pmid: 21765162 |
[28] | Wu Aimin, Zhao Xianhai, Xie Qiaoli, Xie Xinming. 2015. Research progress in glucuronoxylan biosynthesis. Journal of South China Agricultural University, 36 (4):1-10. (in Chinese) |
吴蔼民, 赵先海, 解巧丽, 解新明. 2015. 葡萄糖醛酸木聚糖生物合成研究进展. 华南农业大学学报, 36 (4):1-10. | |
[29] | Xiao Yinyan, Yuan Weina, Liu Jing, Meng Jian, Sheng Qiming, Tan Yehuan, Xu Chunxiang. 2020. Xyloglucan and the advances in its roles in plant tolerance to stresses. Chinese Bulletin of Botany, 55 (6):777-787. (in Chinese) |
肖银燕, 袁伟娜, 刘静, 孟建, 盛奇明, 谭烨欢, 徐春香. 2020. 木葡聚糖及其在植物抗逆过程中的功能研究进展. 植物学报, 55 (6):777-787. | |
[30] |
Yang J, Zhang Y. 2015. I-TASSER server:new development for protein structure and function predictions. Nucleic Acids Research, 43 (W1):W174-W181.
doi: 10.1093/nar/gkv342 URL |
[31] |
Yin Y, Huang J, Xu Y. 2009. The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biology, 9 (1):1-14
doi: 10.1186/1471-2229-9-1 URL |
[32] |
Yoshikawa T, Eiguchi M, Hibara K, Ito J, Nagato Y. 2013. Rice slender leaf 1 gene encodes cellulose synthase-like D4 and is specifically expressed in M-phase cells to regulate cell proliferation. Journal of Experimental Botany, 64 (7):2049-2061.
doi: 10.1093/jxb/ert060 pmid: 23519729 |
[33] |
Yuan W, Liu J, Takac T, Chen H, Li X, Meng J, Tan Y, Ning T, He Z, Yi G, Xu C. 2021. Genome-wide identification of banana Csl gene family and their different responses to low temperature between chilling-sensitive and tolerant cultivars. Plants, 10 (1):122.
doi: 10.3390/plants10010122 URL |
[34] | Zhou Wenzhao. 2003. Preliminary determination of fiber characteristics of pineapple varieties. Agricultural Research and Application,(4):13-14. (in Chinese) |
周文钊. 2003. 菠萝品种纤维特性的初步测定. 广西热带农业,(4):13-14. |
[1] | 刘传和, 贺涵, 邵雪花, 赖多, 匡石滋, 肖维强, 刘岩. 菠萝新品种‘粤彤’[J]. 园艺学报, 2022, 49(9): 2053-2054. |
[2] | 吴竞, 何业华, 张伟, 刘朝阳, 龚雪, 薛彪, 刘佳柔, 栾爱萍, 林文秋, 甘吉昌, 钟乙中, 廖志婵, 邱梦青, 李晶晶. 菠萝果眼形成的组织形态学观察[J]. 园艺学报, 2022, 49(2): 293-303. |
[3] | 黄译瑾, 何佳丽, 姜李娜, 曹艳红, 秦嗣军, 吕德国. 果实脆性变化的生理生化研究进展[J]. 园艺学报, 2022, 49(12): 2641-2658. |
[4] | 谢国芳, 刘娜, 宋易, 管春花, 张明生. 菜豆豆荚发育过程中内源激素与细胞壁代谢的关系[J]. 园艺学报, 2021, 48(2): 289-299. |
[5] | 张晓楠, 余歆, 叶子茂, 刘小丰, 朱延松, 杨胜男, 王旭, 刘梦雨, 赵晓春. 宽皮柑橘果实的剥皮性及与细胞壁多糖的关系[J]. 园艺学报, 2021, 48(12): 2336-2348. |
[6] | 栾爱萍, 贺军虎, 何业华, 张 伟, 李晶晶, 谢 桃. 菠萝新品种‘玉玲珑’[J]. 园艺学报, 2020, 47(S2): 2959-5960. |
[7] | 栾爱萍1,贺军虎1,*,刘佳柔2,张 伟2,谢 桃2,何业华2. 矮凤梨短营养期突变体‘14-1’分子变异的AFLP分析[J]. 园艺学报, 2020, 47(4): 734-740. |
[8] | 祝 建, 刘本勇, 李述举, 白芝兰, 刘 聪, 邓晓东, 张 豫, 谢宗周, 刘继红, . 2,4-D在柑橘果实留树保鲜中的作用和可能机制研究[J]. 园艺学报, 2020, 47(11): 2086-2094. |
[9] | 郭红彦1,白晋华1,段风琴1,郗 鑫1,李 涛1,郭晋平2,*. 钙处理对‘壶瓶枣’裂果细胞壁降解酶活性及组织结构的影响[J]. 园艺学报, 2019, 46(8): 1486-1494. |
[10] | 杜晨晴,吴秀文,闫 磊,刘亚林,姜存仓*. 缺硼和低pH对枳苗根系细胞壁组分及细胞中硼分布的影响[J]. 园艺学报, 2018, 45(7): 1272-1282. |
[11] | 谢小波1,2,*,黄 云3,田胜平1,李贵利3,曹尚银2,*. 软籽石榴种子硬度发育与种皮细胞壁显微结构的关系研究[J]. 园艺学报, 2017, 44(6): 1174-1180. |
[12] | 苏 敬,乜兰春*,齐迎斌,王苗苗. 番茄叶面喷施硅和钙对果实硬度及相关生理代谢的影响[J]. 园艺学报, 2016, 43(4): 789-795. |
[13] | 栾爱萍,何业华*,林文秋,陈程杰,冯筠庭,谢 桃,龚 雪,夏靖娴. 菠萝AcSERK1 启动子的转录起始位点及胚性细#br# 胞特异性鉴定[J]. 园艺学报, 2016, 43(11): 2251-2256. |
[14] | 李运合1,2,3,孙光明1,张红娜1,刘胜辉1,吴青松1,3,*. 菠萝生长素极性运输载体基因AcPINs和AcAUXs的分离与表达分析[J]. 园艺学报, 2016, 43(10): 1916-1928. |
[15] | 李映志, 吕庆芳, 丰 锋, 叶春海*, 吴钿, 毛 琪, 王俊宁, 李洪波, 杨少瑕. 菠萝蜜新品种‘海大 3 号’[J]. 园艺学报, 2014, 41(9): 1937-1938. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司