园艺学报 ›› 2022, Vol. 49 ›› Issue (7): 1602-1610.doi: 10.16420/j.issn.0513-353x.2021-0447
收稿日期:
2021-08-18
修回日期:
2021-11-03
出版日期:
2022-07-25
发布日期:
2022-07-29
基金资助:
YANG Linlin1, HUANG Yuntong2, FU Zeyuan1, XU Qijiang2()
Received:
2021-08-18
Revised:
2021-11-03
Online:
2022-07-25
Published:
2022-07-29
摘要:
在被子植物中,花分为两性花和单性花两种类型,而单性花又有雌雄异花同株和雌雄异株之分。在单性花性别分化过程中,性别决定涉及多种调节机制,其中表观遗传机制发挥重要的作用。本文中综述了DNA甲基化、组蛋白修饰以及microRNA等表观遗传机制在园艺植物性别决定方面的作用以及表观调控通过调节植物激素影响植物性别和花器官发育的研究进展,并对今后相关研究进行展望。
中图分类号:
杨琳琳, 黄云彤, 付泽元, 徐启江. 园艺植物性别决定的表观遗传机制研究进展[J]. 园艺学报, 2022, 49(7): 1602-1610.
YANG Linlin, HUANG Yuntong, FU Zeyuan, XU Qijiang. Research Progress on the Epigenetic Mechanisms of Sex Determination in Horticultural Plants[J]. Acta Horticulturae Sinica, 2022, 49(7): 1602-1610.
[1] |
Akagi T, Henry I M, Kawai T, Comai L, Tao R. 2016. Epigenetic regulation of the sex determination gene MeGI in polyploid persimmon. The Plant Cell, 28:2905-2915.
doi: 10.1105/tpc.16.00532 URL |
[2] |
Akagi T, Henry I M, Tao R, Comai L. 2014. Plant genetics. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science, 346:646-650.
doi: 10.1126/science.1257225 URL |
[3] |
Alonso-Peral M M, Li J, Li Y, Allen R S, Schnippenkoetter W, Ohms S, White R G, Millar A A. 2010. The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol, 154:757-771.
doi: 10.1104/pp.110.160630 pmid: 20699403 |
[4] |
Aryal R, Jagadeeswaran G, Zheng Y, Yu Q, Sunkar R, Ming R. 2014. Sex specific expression and distribution of small RNAs in papaya. BMC Genomics, 15:20.
doi: 10.1186/1471-2164-15-20 URL |
[5] |
Aukerman M J, Sakai H. 2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell, 15:2730-2741.
pmid: 14555699 |
[6] |
Aya K, Hiwatashi Y, Kojima M, Sakakibara H, Ueguchi-Tanaka M, Hasebe M, Matsuoka M. 2011. The gibberellin perception system evolved to regulate a pre-existing GAMYB-mediated system during land plant evolution. Nat Commun, 2:544.
doi: 10.1038/ncomms1552 URL |
[7] |
Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M. 2009. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell, 21:1453-1472.
doi: 10.1105/tpc.108.062935 URL |
[8] |
Bacovsky V, Houben A, Kumke K, Hobza R. 2019. The distribution of epigenetic histone marks differs between the X and Y chromosomes in Silene latifolia. Planta, 250:487-494.
doi: 10.1007/s00425-019-03182-7 |
[9] |
Banks J A. 2008. MicroRNA,sex determination and floral meristem determinacy in maize. Genome Biol, 9:204.
doi: 10.1186/gb-2008-9-1-204 pmid: 18254926 |
[10] |
Bannister A J, Kouzarides T. 2011. Regulation of chromatin by histone modifications. Cell Res, 21:381-395.
doi: 10.1038/cr.2011.22 pmid: 21321607 |
[11] |
Casanova-Saez R, Voss U. 2019. Auxin metabolism controlsdevelopmental decisions in land plants. Trends Plant Sci, 24:741-754.
doi: S1360-1385(19)30124-4 pmid: 31230894 |
[12] |
Chen J, Zheng Y, Qin L, Wang Y, Chen L, He Y, Fei Z, Lu G. 2016. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis. BMC Plant Biol, 16:80.
doi: 10.1186/s12870-016-0770-z URL |
[13] |
Consuegra S, Rodriguez Lopez C M. 2016. Epigenetic-induced alterations in sex-ratios in response to climate change:an epigenetic trap? Bioessays, 38:950-958.
doi: 10.1002/bies.201600058 pmid: 27548838 |
[14] |
Das A, Saxena S, Kumar K, Tribhuvan K U, Singh N K, Gaikwad K. 2020. Non-coding RNAs having strong positive interaction with mRNAs reveal their regulatory nature during flowering in a wild relative of pigeonpea(Cajanus scarabaeoides). Mol Biol Rep, 47:3305-3317.
doi: 10.1007/s11033-020-05400-y URL |
[15] |
Diggle P K, Di Stilio V S, Gschwend A R, Golenberg E M, Moore R C, Russell J R, Sinclair J P. 2011. Multiple developmental processes underlie sex differentiation in angiosperms. Trends Genet, 27:368-376.
doi: 10.1016/j.tig.2011.05.003 URL |
[16] |
Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q. 2012. A long noncoding RNA regulates photoperiod-sensitive male sterility,an essential component of hybrid rice. Proc Natl Acad Sci U S A, 109:2654-2659.
doi: 10.1073/pnas.1121374109 URL |
[17] | Du Z, Li H, Wei Q, Zhao X, Wang C, Zhu Q, Yi X, Xu W, Liu X S, Jin W, Su Z. 2013. Genome-wide analysis of histone modifications:H3K4me2,H3K4me3,H3K9ac,and H3K27ac in Oryza sativa L. japonica. Mol Plant, 6:1463-1472. |
[18] |
Emerson R A, Emerson S H. 1922. Genetic interrelations of two andromonoecious types of maize,dwarf and anther ear. Genetics, 7:203-236.
doi: 10.1093/genetics/7.3.203 pmid: 17245980 |
[19] | Gao Ming, Cheng Yi-cun, Yang Su-su, Liu Ying-guan, Zhu Hui-ping, Wang Yang-dong. 2015. Progress on sex differentiation in unisexual flower plants. Acta Prataculturae Sinica, 24 (11):206-217. (in Chinese) |
高暝, 陈益存, 杨素素, 刘英冠, 朱慧萍, 汪阳东. 2015. 单性花植物性别分化研究进展. 草业学报, 24 (11):206-217. | |
[20] |
Ge W, Zhang Y, Cheng Z, Hou D, Li X, Gao J. 2017. Main regulatory pathways,key genes and microRNAs involved in flower formation and development of Moso bamboo(Phyllostachys edulis). Plant Biotechnol J, 15:82-96.
doi: 10.1111/pbi.12593 URL |
[21] |
Golicz A A, Bhalla P L, Singh M B. 2018. LncRNAs in plant and animal sexual reproduction. Trends Plant Sci, 23:195-205.
doi: 10.1016/j.tplants.2017.12.009 URL |
[22] |
Hollister J D, Gaut B S. 2009. Epigenetic silencing of transposable elements:a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res, 19:1419-1428.
doi: 10.1101/gr.091678.109 pmid: 19478138 |
[23] |
Jung J H, Seo Y H, Seo P J, Reyes J L, Yun J, Chua N H, Park C M. 2007. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell, 19:2736-2748.
doi: 10.1105/tpc.107.054528 URL |
[24] |
Lai Y S, Zhang X, Zhang W, Shen D, Wang H, Xia Y, Qiu Y, Song J, Wang C, Li X. 2017. The association of changes in DNA methylation with temperature-dependent sex determination in cucumber. J Exp Bot, 68:2899-2912.
doi: 10.1093/jxb/erx144 URL |
[25] |
Latrasse D, Rodríguez-Granados N Y, Veluchamy A, Mariappan K G, Bevilacqua C, Crapart N, Camps C, Sommard V, Raynaud C, Dogimont C, Boualem A, Benhamed M, Bendahmane A. 2017. The quest for epigenetic regulation underlying unisexual flower development in Cucumis melo. Epigenetics Chromatin, 10:22.
doi: 10.1186/s13072-017-0132-6 pmid: 28592995 |
[26] |
Li N, Meng Z, Tao M, Wang Y, Zhang Y, Li S, Gao W, Deng C. 2020. Comparative transcriptome analysis of male and female flowers in Spinacia oleracea L. BMC Genomics, 21:850.
doi: 10.1186/s12864-020-07277-4 URL |
[27] |
Li S F, Zhang G J, Yuan J H, Deng C L, Gao W J. 2016. Repetitive sequences and epigenetic modification:inseparable partners play important roles in the evolution of plant sex chromosomes. Planta, 243:1083-1095.
doi: 10.1007/s00425-016-2485-7 URL |
[28] |
Li X Y, Guo F, Ma S Y, Zhu M Y, Pan W H, Bian H W. 2019. Regulation of flowering time via miR172-mediated APETALA2-like expression in ornamental gloxinia(Sinningia speciosa). J Zhejiang Univ Sci B, 20:322-331.
doi: 10.1631/jzus.B1800003 URL |
[29] | Li Ying, Meng Xianwei, Ma Zhihang, Liu Mengjun, Zhao Jin. 2022. Identification and expression analysis of microRNA families associated with phase transition in Chinese jujube. Acta Horticulturae Sinica, 49 (1):23-40. (in Chinese) |
李莹, 孟宪巍, 马志航, 刘孟军, 赵锦. 2022. 枣树阶段转变相关microRNA家族的鉴定及其表达分析. 园艺学报, 49 (1):23-40. | |
[30] |
Li Z F, Zhang Y C, Chen Y Q. 2015. MiRNAs and lncRNAs in reproductive development. Plant Sci, 238:46-52.
doi: 10.1016/j.plantsci.2015.05.017 URL |
[31] |
Liu H, Wang R, Mao B, Zhao B, Wang J. 2019. Identification of lncRNAs involved in rice ovule development and female gametophyte abortion by genome-wide screening and functional analysis. BMC Genomics, 20:90.
doi: 10.1186/s12864-019-5442-6 URL |
[32] |
Liu J, Chatham L, Aryal R, Yu Q, Ming R. 2018. Differential methylation and expression of HUA1 ortholog in three sex types of papaya. Plant Sci, 272:99-106.
doi: 10.1016/j.plantsci.2018.04.001 URL |
[33] |
Ma J, Yan B, Qu Y, Qin F, Yang Y, Hao X, Yu J, Zhao Q, Zhu D, Ao G. 2008. Zm401,a short-open reading-frame mRNA or noncoding RNA, is essential for tapetum and microspore development and can regulate the floret formation in maize. J Cell Biochem, 105:136-146.
doi: 10.1002/jcb.21807 URL |
[34] |
Marciniak K, Przedniczek K. 2021. Anther dehiscence is regulated by gibberellic acid in yellow lupine(Lupinus luteus L.). BMC Plant Biol, 21:314.
doi: 10.1186/s12870-021-03085-4 URL |
[35] |
Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A. 2009. A transposon-induced epigenetic change leads to sex determination in melon. Nature, 461:1135-1138.
doi: 10.1038/nature08498 URL |
[36] |
Mateo-Bonmatí E, Casanova-Sáez R, Ljung K. 2019. Epigenetic regulation of auxin homeostasis. Biomolecules, 9 (10):623.
doi: 10.3390/biom9100623 URL |
[37] | Millar A A, Lohe A, Wong G. 2019. Biology and function of miR159 in plants. Plants(Basel), 8 (8):255. |
[38] |
Murase K, Shigenobu S, Fujii S, Ueda K, Murata T, Sakamoto A, Wada Y, Yamaguchi K, Osakabe Y, Osakabe K, Kanno A, Ozaki Y, Takayama S. 2017. MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes Cells, 22:115-123.
doi: 10.1111/gtc.12453 pmid: 27869347 |
[39] |
Pan J, Wang G, Wen H, Du H, Lian H, He H, Pan J, Cai R. 2018. Differential gene expression caused by the F and M loci provides insight into ethylene-mediated female flower differentiation in cucumber. Front Plant Sci, 9:1091.
doi: 10.3389/fpls.2018.01091 URL |
[40] |
Piferrer F. 2013. Epigenetics of sex determination and gonadogenesis. Dev Dyn, 242:360-370.
doi: 10.1002/dvdy.23924 URL |
[41] | Qin Li. 2016. Comparative transcriptome analysis of male and female flowers and identification of gender-related miRNA targets in Asparagus officinalis L [M. S. Dissertation]. Hangzhou:Zhejiang University. (in Chinese) |
秦力. 2016. 芦笋雌雄花发育转录组分析及性别决定相关miRNA靶基因的鉴定[硕士论文]. 杭州: 浙江大学. | |
[42] |
Rodríguez Lorenzo J L, Hobza R, Vyskot B. 2018. DNA methylation and genetic degeneration of the Y chromosome in the dioecious plant Silene latifolia. BMC Genomics, 19:540.
doi: 10.1186/s12864-018-4936-y pmid: 30012097 |
[43] |
Rodríguez Lorenzo J L, Hubinsky M, Vyskot B, Hobza R. 2020. Histone post-translational modifications in Silene latifolia X and Y chromosomes suggest a mammal-like dosage compensation system. Plant Sci, 299:110528.
doi: 10.1016/j.plantsci.2020.110528 URL |
[44] |
Shivaraj S M, Jain A, Singh A. 2018. Highly preserved roles of Brassica mIR172 in polyploid Brassicas:ectopic expression of variants of Brassica mIR172 accelerates floral transition. Mol Genet Genomics, 293:1121-1138.
doi: 10.1007/s00438-018-1444-3 pmid: 29752548 |
[45] | Smith A R, Zhao D. 2016. Sterility Caused by Floral Organ degeneration and abiotic stresses in Arabidopsis and cereal grains. Front Plant Sci, 7:1503. |
[46] |
Somyong S, Poopear S, Sunner S K, Wanlayaporn K, Jomchai N, Yoocha T, Ukoskit K, Tangphatsornruang S, Tragoonrung S. 2016. ACC oxidase and miRNA159a, and their involvement in fresh fruit bunch yield (FFB) via sex ratio determination in oil palm. Mol Genet Genomics, 291:1243-1257.
doi: 10.1007/s00438-016-1181-4 URL |
[47] |
Song J H, Cao J S, Wang C G. 2013. BcMF11, a novel non-coding RNA gene from Brassica campestris,is required for pollen development and male fertility. Plant Cell Rep, 32:21-30.
doi: 10.1007/s00299-012-1337-6 URL |
[48] |
Song J H, Cao J S, Yu X L, Xiang X. 2007. BcMF11,a putative pollen-specific non-coding RNA from Brassica campestris ssp.chinensis. J Plant Physiol, 164:1097-1100.
doi: 10.1016/j.jplph.2006.10.002 URL |
[49] |
Tsuji H, Aya K, Ueguchi-Tanaka M, Shimada Y, Nakazono M, Watanabe R, Nishizawa N K, Gomi K, Shimada A, Kitano H, Ashikari M, Matsuoka M. 2006. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J, 47:427-444.
doi: 10.1111/j.1365-313X.2006.02795.x URL |
[50] |
Vyskot B, Araya A, Veuskens J, Negrutiu I, Mouras A. 1993. DNA methylation of sex chromosomes in a dioecious plant,Melandrium album. Mol Gen Genet, 239:219-224.
doi: 10.1007/BF00281621 URL |
[51] |
Wang B, Fang R, Chen F, Han J, Liu Y G, Chen L, Zhu Q. 2020. A novel CCCH-type zinc finger protein SAW1 activates OsGA20ox3 to regulate gibberellin homeostasis and anther development in rice. J Integr Plant Biol, 62:1594-1606.
doi: 10.1111/jipb.12924 URL |
[52] |
Wang L, Han W, Diao S, Suo Y, Li H, Mai Y, Wang Y, Sun P, Fu J. 2021. Study of sexual-linked genes(OGI and MeGI) on the performance of androecious persimmons(Diospyros kaki Thunb.). Plants(Basel), 10. DOI: 10.3390/plants10020390.
doi: 10.3390/plants10020390 URL |
[53] |
Wang T, Ping X, Cao Y, Jian H, Gao Y, Wang J, Tan Y, Xu X, Lu K, Li J, Liu L. 2019. Genome-wide exploration and characterization of miR172/euAP2 genes in Brassica napus L. for likely role in flower organ development. BMC Plant Biol, 19:336.
doi: 10.1186/s12870-019-1936-2 URL |
[54] | Wang You-ning, Su Chao, Zou Yan-min, Wang Li-xiang, Li Xia. 2018. Research progress of microRNA172 in plant development and stress responses. Chinese Bulletin of Life Sciences, 28:645-654. (in Chinese) |
王幼宁, 苏超, 邹艳敏, 王利祥, 李霞. 2016. microRNA172参与植物生长发育及逆境响应的研究进展. 生命科学, 28:645-654. | |
[55] | Xu Z L, Chen Y C, Gao M, Wu L W, Zhao Y X, Wang Y D. 2019. Research progress in sex differentiation in angiosperms. Scientia Silvae Sinicae, 55:157-169. |
[56] |
Xie Y, Chen L. 2020. Epigenetic regulation of Gibberellin metabolism and signaling. Plant Cell Physiol, 61:1912-1918.
doi: 10.1093/pcp/pcaa101 URL |
[57] |
Yamamuro C, Zhu J K, Yang Z. 2016. Epigenetic modifications and plant hormone action. Mol Plant, 9:57-70.
doi: S1674-2052(15)00403-7 pmid: 26520015 |
[58] |
Yang H, Chang F, You C, Cui J, Zhu G, Wang L, Zheng Y, Qi J, Ma H. 2015. Whole-genome DNA methylation patterns and complex associations with gene structure and expression during flower development in Arabidopsis. The Plant Journal, 81:268-281.
doi: 10.1111/tpj.12726 URL |
[59] |
Yu S, Wang J W. 2020. The crosstalk between microRNAs and gibberellin signaling in plants. Plant Cell Physiol, 61:1880-1890.
doi: 10.1093/pcp/pcaa079 URL |
[60] |
Zhang H, Lang Z, Zhu J K. 2018. Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol, 19:489-506.
doi: 10.1038/s41580-018-0016-z URL |
[61] |
Zhang W, Garcia N, Feng Y, Zhao H, Messing J. 2015. Genome-wide histone acetylation correlates with active transcription in maize. Genomics, 106:214-220.
doi: 10.1016/j.ygeno.2015.05.005 pmid: 26021446 |
[62] |
Zhang W, Wang X, Yu Q, Ming R, Jiang J. 2008. DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Res, 18:1938-1943.
doi: 10.1101/gr.078808.108 URL |
[63] |
Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan S W, Chen H, Henderson I R, Shinn P, Pellegrini M, Jacobsen S E, Ecker J R. 2006. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell, 126:1189-1201.
doi: 10.1016/j.cell.2006.08.003 URL |
[64] |
Zhang Y, Zhang X, Liu B, Wang W, Liu X, Chen C, Liu X, Yang S, Ren H. 2014. A GAMYB homologue CsGAMYB1 regulates sex expression of cucumber via an ethylene-independent pathway. J Exp Bot, 65:3201-3213.
doi: 10.1093/jxb/eru176 pmid: 24790111 |
[65] |
Zhao Y, Wang S, Wu W, Li L, Jiang T, Zheng B. 2018. Clearance of maternal barriers by paternal miR159 to initiate endosperm nuclear division in Arabidopsis. Nat Commun, 9:5011.
doi: 10.1038/s41467-018-07429-x URL |
[66] | Zhou Chenping, Yang Min, Guo Jinju, Kuang Ruibin, Yang Hu, Huang Bingxiong, Wei Yuerong. 2022. Dynamic changes in DNA methylome and transcriptome patterns during papaya fruit ripening. Acta Horticulturae Sinica, 49 (3):519-532. (in Chinese) |
周陈平, 杨敏, 郭金菊, 邝瑞彬, 杨护, 黄炳雄, 魏岳荣. 2022. 番木瓜成熟过程中全基因组DNA甲基化和转录组变化分析. 园艺学报, 49 (3):519-532. | |
[67] |
Zhou J, Wang X, He K, Charron J B, Elling A A, Deng X W. 2010. Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression. Plant Mol Biol, 72:585-595.
doi: 10.1007/s11103-009-9594-7 URL |
[1] | 邵凤清, 罗秀荣, 王奇, 张宪智, 王文彩. 果实成熟过程中的DNA甲基化调控研究进展[J]. 园艺学报, 2023, 50(1): 197-208. |
[2] | 聂文锋, 王金玉, 高春娟, 陈学好. 表观遗传修饰调控园艺植物果实发育研究进展[J]. 园艺学报, 2022, 49(3): 671-686. |
[3] | 石彩云, 刘丽, 魏志峰, 高登涛, 刘永忠. 园艺植物质子泵及其对有机酸积累调控的研究进展[J]. 园艺学报, 2022, 49(12): 2611-2621. |
[4] | 葛诗蓓, 姜小春, 王羚羽, 喻景权, 周艳虹. 园艺植物丛枝菌根抗非生物胁迫的作用机制研究进展[J]. 园艺学报, 2020, 47(9): 1752-1776. |
[5] | 相元萍, 王一丹, 贺洪军, 徐启江, . 植物转座子类型及其插入突变对园艺植物花发育影响的研究进展[J]. 园艺学报, 2020, 47(11): 2247-2266. |
[6] | 蔡广华1,路洪凤2,黄三文3,*,孙进京2,*. 花器官发育B类基因AP3同源基因在几种葫芦科植物单性花发育过程中的作用研究[J]. 园艺学报, 2019, 46(8): 1604-1615. |
[7] | 杜晓云1,宋来庆1,赵玲玲1,3,刘美英1,唐 岩1,孙燕霞1,姜中武1,3,*,束怀瑞1,2,*. 红富士苹果芽变系DNA甲基化研究[J]. 园艺学报, 2019, 46(1): 107-120. |
[8] | 张 映,陈钰辉,连 勇,刘富中*. 园艺植物单性结实的分子研究进展[J]. 园艺学报, 2018, 45(7): 1402-1414. |
[9] | 赵玉洁,张太奎,刘翠玉,黄贤斌,苑兆和*. 园艺植物性别决定机制研究进展[J]. 园艺学报, 2018, 45(11): 2228-2242. |
[10] | 廖晶晶,牛聪聪,解群杰,邢巧娟,齐红岩*. 基因瞬时表达技术在园艺植物上的应用研究进展[J]. 园艺学报, 2017, 44(9): 1787-1795. |
[11] | 舒巧利1,陈 志3,党江波1,杨 星1,孙海艳1,梁国鲁1,洪棋斌2,*,向素琼1,*. 染色体识别技术及其在园艺植物上的应用进展[J]. 园艺学报, 2017, 44(9): 1772-1786. |
[12] | 尚均忠,向 林,王 月,陈龙清*. 蕨类植物性别决定调控机制研究进展[J]. 园艺学报, 2016, 43(9): 1776-1790. |
[13] | 张平贤1,何 欢1,罗正荣1,3,杨 勇2,王仁梓2,张青林1,3,*. DlSx-AF4S标记在柿及其杂交后代性别鉴定中的有效性研究[J]. 园艺学报, 2016, 43(1): 47-54. |
[14] | 李 巍 徐启江. 被子植物开花时间和花器官发育的表观遗传调控研究进展[J]. 园艺学报, 2014, 41(6): 1245-1256. |
[15] | 龚 浩,罗剑宁,罗少波,郑晓明,何晓莉,吴海滨*. 黄瓜与甜瓜的性别决定分子机制研究进展[J]. 园艺学报, 2014, 41(2): 382-388. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司