园艺学报 ›› 2022, Vol. 49 ›› Issue (6): 1351-1362.doi: 10.16420/j.issn.0513-353x.2021-0767
邱可立1,2, 王玉民3, 何金铃2, 俞红1,4, 潘海发1, 盛玉1, 谢庆梅1, 陈红莉1, 周晖1,**(), 张金云1,**()
收稿日期:
2021-10-29
修回日期:
2021-12-14
出版日期:
2022-06-25
发布日期:
2022-07-05
通讯作者:
周晖,张金云
E-mail:huichou1987@126.com;zjy600@aaas.org.cn
基金资助:
QIU Keli1,2, WANG Yumin3, HE Jinling2, YU Hong1,4, PAN Haifa1, SHENG Yu1, XIE Qingmei1, CHEN Hongli1, ZHOU Hui1,**(), ZHANG Jinyun1,**()
Received:
2021-10-29
Revised:
2021-12-14
Online:
2022-06-25
Published:
2022-07-05
Contact:
ZHOU Hui,ZHANG Jinyun
E-mail:huichou1987@126.com;zjy600@aaas.org.cn
摘要:
利用生物信息技术鉴定了桃中漆酶(LAC)家族成员,分析其进化关系分析、基因结构、启动子区顺式作用元件以及表达模式。结果表明,在桃基因组中共鉴定出48个漆酶基因,通过在桃子叶愈伤组织中的表达模式分析,发现1个表达量很高的关键成员PpLAC21,在该基因沉默的桃愈伤组织中,木质素的含量下降,推测该基因可能参与桃愈伤组织的木质素合成。
中图分类号:
邱可立, 王玉民, 何金铃, 俞红, 潘海发, 盛玉, 谢庆梅, 陈红莉, 周晖, 张金云. 桃漆酶家族基因鉴定及PpLAC21功能分析[J]. 园艺学报, 2022, 49(6): 1351-1362.
QIU Keli, WANG Yumin, HE Jinling, YU Hong, PAN Haifa, SHENG Yu, XIE Qingmei, CHEN Hongli, ZHOU Hui, ZHANG Jinyun. Identification of Peach Laccase Family Genes and Function Analysis of PpLAC21[J]. Acta Horticulturae Sinica, 2022, 49(6): 1351-1362.
基因 Gene | 引物序列(5′-3′) Primer sequence |
---|---|
TEF2 | F:GGTGTGACGATGAAGAGTGATG:R:TGAAGGAGAGGGAAGGTGAAAG |
PpLAC7 | F:AGGGCAGATAACCCAGGCA:R:AGGTGGTCGCAGAGTCTCATT |
PpLAC15 | F:CCTAAAACTATCGACAAGCGAGTT:R:TGACAAGGAGGGACGGACAA |
PpLAC19 | F:GGGCTGATAATCCAGGAGTTTG:R:CCTTTGCCATTGTCCACCA |
PpLAC20 | F:GGGTGGCTATCCGATTTCTG:R:AGCTTCCCATCCTGGACTACC |
PpLAC21 | F:CGACCCTGTTGAAAGAAATACC:R:CCATACACCGGGATTATCTGCT |
PpLAC22 | F:GCCCAAATGTCTCTGATGCTTA:R:CTCATCATTCAGTGCTGCGTT |
PpLAC24 | F:CACCAAACTCCTCGGATGC:R:TCCCTTGCTCAGCCTCCAT |
PpLAC27 | F:GCTGGCGGTTGGATTGC:R:GATCCACGCCATCCTTAGC |
PpLAC28 | F:CCACCCACTTCACCTCCAT:R:CGCCAACGGTGTTCCTCT |
PpLAC30 | F:GCTATCCGATTTCAAGCAGATAA:R:TTGATTCATTCGGTCCTTTCC |
PpLAC33 | F:TGGCACCAAACACCTCTGAC:R:CCCTTGCTCAACCTCCATAACA |
PpLAC43 | F:GCACTACTCACTGCCAACCTT:R:TGAAGTTCCCAGTTCCATCCA |
PpLAC44 | F:TCTCATCCCTTCCACCTTCAT:R:ATACTTTGCCGGGTCCTGTT |
PpLAC45 | F:GCTGCAAGACACCAATCTTCTC:R:GGCAACCCAACCACCTGTA |
表1 荧光定量引物序列
Table 1 Primer sequence used for qRT-PCR
基因 Gene | 引物序列(5′-3′) Primer sequence |
---|---|
TEF2 | F:GGTGTGACGATGAAGAGTGATG:R:TGAAGGAGAGGGAAGGTGAAAG |
PpLAC7 | F:AGGGCAGATAACCCAGGCA:R:AGGTGGTCGCAGAGTCTCATT |
PpLAC15 | F:CCTAAAACTATCGACAAGCGAGTT:R:TGACAAGGAGGGACGGACAA |
PpLAC19 | F:GGGCTGATAATCCAGGAGTTTG:R:CCTTTGCCATTGTCCACCA |
PpLAC20 | F:GGGTGGCTATCCGATTTCTG:R:AGCTTCCCATCCTGGACTACC |
PpLAC21 | F:CGACCCTGTTGAAAGAAATACC:R:CCATACACCGGGATTATCTGCT |
PpLAC22 | F:GCCCAAATGTCTCTGATGCTTA:R:CTCATCATTCAGTGCTGCGTT |
PpLAC24 | F:CACCAAACTCCTCGGATGC:R:TCCCTTGCTCAGCCTCCAT |
PpLAC27 | F:GCTGGCGGTTGGATTGC:R:GATCCACGCCATCCTTAGC |
PpLAC28 | F:CCACCCACTTCACCTCCAT:R:CGCCAACGGTGTTCCTCT |
PpLAC30 | F:GCTATCCGATTTCAAGCAGATAA:R:TTGATTCATTCGGTCCTTTCC |
PpLAC33 | F:TGGCACCAAACACCTCTGAC:R:CCCTTGCTCAACCTCCATAACA |
PpLAC43 | F:GCACTACTCACTGCCAACCTT:R:TGAAGTTCCCAGTTCCATCCA |
PpLAC44 | F:TCTCATCCCTTCCACCTTCAT:R:ATACTTTGCCGGGTCCTGTT |
PpLAC45 | F:GCTGCAAGACACCAATCTTCTC:R:GGCAACCCAACCACCTGTA |
基因 Gene | ID | 蛋白质长度/aa Protein length | 等电点 pI | 分子量/D Relative molecular mass | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|
PpLAC1 | Prupe.1G323200 | 578 | 9.18 | 65 744.34 | 过氧化物酶体 Peroxisome |
PpLAC2 | Prupe.1G357100 | 544 | 9.18 | 60 477.29 | 细胞外基质 Extracellular matrix |
PpLAC3 | Prupe.1G559300 | 568 | 8.98 | 64 123.39 | 溶酶体 Lysosome |
PpLAC4 | Prupe.2G191900 | 574 | 8.38 | 63 604.68 | 细胞外基质 Extracellular matrix |
PpLAC5 | Prupe.2G205500 | 584 | 5.40 | 64 495.92 | 溶酶体 Lysosome |
PpLAC6 | Prupe.2G205600 | 609 | 6.74 | 67 760.86 | 溶酶体 Lysosome |
PpLAC7 | Prupe.2G245800 | 558 | 9.02 | 61 240.19 | 细胞外基质 Extracellular matrix |
PpLAC8 | Prupe.2G257400 | 583 | 8.53 | 64 070.85 | 细胞外基质 Extracellular matrix |
PpLAC9 | Prupe.2G278000 | 592 | 6.54 | 66 358.74 | 细胞外基质 Extracellular matrix |
PpLAC10 | Prupe.2G325200 | 567 | 6.82 | 62 943.79 | 溶酶体 Lysosome |
PpLAC11 | Prupe.3G216000 | 542 | 8.39 | 60 174.81 | 细胞外基质 Extracellular matrix |
PpLAC12 | Prupe.4G018800 | 543 | 9.72 | 61 649.96 | 细胞外基质 Extracellular matrix |
PpLAC13 | Prupe.4G131900 | 597 | 7.99 | 67 085.54 | 细胞外基质 Extracellular matrix |
PpLAC14 | Prupe.5G075700 | 591 | 8.40 | 65 813.66 | 质膜 Plasma membrane |
PpLAC15 | Prupe.5G231100 | 582 | 7.06 | 65 497.57 | 溶酶体 Lysosome |
PpLAC16 | Prupe.6G000400 | 552 | 9.01 | 61 928.85 | 细胞外基质 Extracellular matrix |
PpLAC17 | Prupe.6G000500 | 554 | 8.84 | 62 137.61 | 细胞外基质 Extracellular matrix |
PpLAC18 | Prupe.6G048400 | 1 559 | 6.47 | 175 147.62 | 质膜 Plasma membrane |
PpLAC19 | Prupe.6G061300 | 558 | 9.43 | 61 628.12 | 细胞外基质 Extracellular matrix |
PpLAC20 | Prupe.6G072100 | 587 | 9.77 | 64 558.17 | 细胞外基质 Extracellular matrix |
PpLAC21 | Prupe.6G089100 | 583 | 9.33 | 64 487.37 | 溶酶体 Lysosome |
PpLAC22 | Prupe.6G089300 | 581 | 9.30 | 64 283.15 | 细胞外基质 Extracellular matrix |
PpLAC23 | Prupe.6G155100 | 577 | 6.81 | 64 268.78 | 细胞外基质 Extracellular matrix |
PpLAC24 | Prupe.6G177700 | 564 | 8.41 | 62 267.07 | 溶酶体 Lysosome |
PpLAC25 | Prupe.6G179500 | 580 | 7.09 | 65 306.02 | 细胞外基质 Extracellular matrix |
基因 Gene | ID | 蛋白质长度/aa Protein length | 等电点 pI | 分子量/D Relative molecular mass | 亚细胞定位 Subcellular localization |
PpLAC26 | Prupe.6G242000 | 567 | 6.64 | 63 053.79 | 溶酶体 Lysosome |
PpLAC27 | Prupe.6G257700 | 585 | 9.02 | 64 453.73 | 质膜 Plasma membrane |
PpLAC28 | Prupe.6G258000 | 586 | 9.85 | 64 986.03 | 细胞外基质 Extracellular matrix |
PpLAC29 | Prupe.6G267700 | 563 | 5.95 | 61 867.26 | 细胞外基质 Extracellular matrix |
PpLAC30 | Prupe.6G271500 | 559 | 9.31 | 60 774.70 | 细胞外基质 Extracellular matrix |
PpLAC31 | Prupe.7G140500 | 539 | 9.29 | 60 306.38 | 细胞外基质 Extracellular matrix |
PpLAC32 | Prupe.7G140600 | 537 | 9.46 | 59 617.38 | 溶酶体 Lysosome |
PpLAC33 | Prupe.7G156500 | 587 | 8.65 | 65 072.51 | 细胞外基质 Extracellular matrix |
PpLAC34 | Prupe.8G046800 | 568 | 6.76 | 64 097.74 | 细胞外基质 Extracellular matrix |
PpLAC35 | Prupe.8G046900 | 578 | 9.08 | 65 169.63 | 细胞外基质 Extracellular matrix |
PpLAC36 | Prupe.8G047000 | 584 | 4.95 | 65 244.50 | 细胞外基质 Extracellular matrix |
PpLAC37 | Prupe.8G047100 | 570 | 5.52 | 62 952.86 | 质膜 Plasma membrane |
PpLAC38 | Prupe.8G047200 | 569 | 5.29 | 62 540.13 | 质膜 Plasma membrane |
PpLAC39 | Prupe.8G047300 | 569 | 5.11 | 62 344.97 | 质膜 Plasma membrane |
PpLAC40 | Prupe.8G047500 | 558 | 5.52 | 61 255.84 | 质膜 Plasma membrane |
PpLAC41 | Prupe.8G047900 | 564 | 5.58 | 62 057.08 | 质膜 Plasma membrane |
PpLAC42 | Prupe.8G048100 | 564 | 5.93 | 62 274.45 | 细胞外基质 Extracellular matrix |
PpLAC43 | Prupe.8G094800 | 367 | 9.69 | 40 256.36 | 质膜 Plasma membrane |
PpLAC44 | Prupe.8G095000 | 514 | 8.63 | 57 389.05 | 溶酶体 Lysosome |
PpLAC45 | Prupe.8G095400 | 563 | 8.78 | 62 198.39 | 溶酶体 Lysosome |
PpLAC46 | Prupe.8G097000 | 563 | 8.78 | 62 158.28 | 溶酶体 Lysosome |
PpLAC47 | Prupe.8G172900 | 536 | 9.26 | 59 889.78 | 细胞外基质 Extracellular matrix |
PpLAC48 | Prupe.8G189700 | 588 | 5.94 | 65 150.69 | 溶酶体 Lysosome |
表2 桃漆酶蛋白的理化性质与亚细胞定位预测
Table 2 Physicochemical properties and subcellular localization prediction of peach laccase protein
基因 Gene | ID | 蛋白质长度/aa Protein length | 等电点 pI | 分子量/D Relative molecular mass | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|
PpLAC1 | Prupe.1G323200 | 578 | 9.18 | 65 744.34 | 过氧化物酶体 Peroxisome |
PpLAC2 | Prupe.1G357100 | 544 | 9.18 | 60 477.29 | 细胞外基质 Extracellular matrix |
PpLAC3 | Prupe.1G559300 | 568 | 8.98 | 64 123.39 | 溶酶体 Lysosome |
PpLAC4 | Prupe.2G191900 | 574 | 8.38 | 63 604.68 | 细胞外基质 Extracellular matrix |
PpLAC5 | Prupe.2G205500 | 584 | 5.40 | 64 495.92 | 溶酶体 Lysosome |
PpLAC6 | Prupe.2G205600 | 609 | 6.74 | 67 760.86 | 溶酶体 Lysosome |
PpLAC7 | Prupe.2G245800 | 558 | 9.02 | 61 240.19 | 细胞外基质 Extracellular matrix |
PpLAC8 | Prupe.2G257400 | 583 | 8.53 | 64 070.85 | 细胞外基质 Extracellular matrix |
PpLAC9 | Prupe.2G278000 | 592 | 6.54 | 66 358.74 | 细胞外基质 Extracellular matrix |
PpLAC10 | Prupe.2G325200 | 567 | 6.82 | 62 943.79 | 溶酶体 Lysosome |
PpLAC11 | Prupe.3G216000 | 542 | 8.39 | 60 174.81 | 细胞外基质 Extracellular matrix |
PpLAC12 | Prupe.4G018800 | 543 | 9.72 | 61 649.96 | 细胞外基质 Extracellular matrix |
PpLAC13 | Prupe.4G131900 | 597 | 7.99 | 67 085.54 | 细胞外基质 Extracellular matrix |
PpLAC14 | Prupe.5G075700 | 591 | 8.40 | 65 813.66 | 质膜 Plasma membrane |
PpLAC15 | Prupe.5G231100 | 582 | 7.06 | 65 497.57 | 溶酶体 Lysosome |
PpLAC16 | Prupe.6G000400 | 552 | 9.01 | 61 928.85 | 细胞外基质 Extracellular matrix |
PpLAC17 | Prupe.6G000500 | 554 | 8.84 | 62 137.61 | 细胞外基质 Extracellular matrix |
PpLAC18 | Prupe.6G048400 | 1 559 | 6.47 | 175 147.62 | 质膜 Plasma membrane |
PpLAC19 | Prupe.6G061300 | 558 | 9.43 | 61 628.12 | 细胞外基质 Extracellular matrix |
PpLAC20 | Prupe.6G072100 | 587 | 9.77 | 64 558.17 | 细胞外基质 Extracellular matrix |
PpLAC21 | Prupe.6G089100 | 583 | 9.33 | 64 487.37 | 溶酶体 Lysosome |
PpLAC22 | Prupe.6G089300 | 581 | 9.30 | 64 283.15 | 细胞外基质 Extracellular matrix |
PpLAC23 | Prupe.6G155100 | 577 | 6.81 | 64 268.78 | 细胞外基质 Extracellular matrix |
PpLAC24 | Prupe.6G177700 | 564 | 8.41 | 62 267.07 | 溶酶体 Lysosome |
PpLAC25 | Prupe.6G179500 | 580 | 7.09 | 65 306.02 | 细胞外基质 Extracellular matrix |
基因 Gene | ID | 蛋白质长度/aa Protein length | 等电点 pI | 分子量/D Relative molecular mass | 亚细胞定位 Subcellular localization |
PpLAC26 | Prupe.6G242000 | 567 | 6.64 | 63 053.79 | 溶酶体 Lysosome |
PpLAC27 | Prupe.6G257700 | 585 | 9.02 | 64 453.73 | 质膜 Plasma membrane |
PpLAC28 | Prupe.6G258000 | 586 | 9.85 | 64 986.03 | 细胞外基质 Extracellular matrix |
PpLAC29 | Prupe.6G267700 | 563 | 5.95 | 61 867.26 | 细胞外基质 Extracellular matrix |
PpLAC30 | Prupe.6G271500 | 559 | 9.31 | 60 774.70 | 细胞外基质 Extracellular matrix |
PpLAC31 | Prupe.7G140500 | 539 | 9.29 | 60 306.38 | 细胞外基质 Extracellular matrix |
PpLAC32 | Prupe.7G140600 | 537 | 9.46 | 59 617.38 | 溶酶体 Lysosome |
PpLAC33 | Prupe.7G156500 | 587 | 8.65 | 65 072.51 | 细胞外基质 Extracellular matrix |
PpLAC34 | Prupe.8G046800 | 568 | 6.76 | 64 097.74 | 细胞外基质 Extracellular matrix |
PpLAC35 | Prupe.8G046900 | 578 | 9.08 | 65 169.63 | 细胞外基质 Extracellular matrix |
PpLAC36 | Prupe.8G047000 | 584 | 4.95 | 65 244.50 | 细胞外基质 Extracellular matrix |
PpLAC37 | Prupe.8G047100 | 570 | 5.52 | 62 952.86 | 质膜 Plasma membrane |
PpLAC38 | Prupe.8G047200 | 569 | 5.29 | 62 540.13 | 质膜 Plasma membrane |
PpLAC39 | Prupe.8G047300 | 569 | 5.11 | 62 344.97 | 质膜 Plasma membrane |
PpLAC40 | Prupe.8G047500 | 558 | 5.52 | 61 255.84 | 质膜 Plasma membrane |
PpLAC41 | Prupe.8G047900 | 564 | 5.58 | 62 057.08 | 质膜 Plasma membrane |
PpLAC42 | Prupe.8G048100 | 564 | 5.93 | 62 274.45 | 细胞外基质 Extracellular matrix |
PpLAC43 | Prupe.8G094800 | 367 | 9.69 | 40 256.36 | 质膜 Plasma membrane |
PpLAC44 | Prupe.8G095000 | 514 | 8.63 | 57 389.05 | 溶酶体 Lysosome |
PpLAC45 | Prupe.8G095400 | 563 | 8.78 | 62 198.39 | 溶酶体 Lysosome |
PpLAC46 | Prupe.8G097000 | 563 | 8.78 | 62 158.28 | 溶酶体 Lysosome |
PpLAC47 | Prupe.8G172900 | 536 | 9.26 | 59 889.78 | 细胞外基质 Extracellular matrix |
PpLAC48 | Prupe.8G189700 | 588 | 5.94 | 65 150.69 | 溶酶体 Lysosome |
[1] |
Arcuri Mariana L C, Larissa C Fialho, Alessandra Vasconcellos Nunes-Laitz, Maria Cecília P Fuchs-Ferraz, Ivan Rodrigo Wolf, Guilherme Targino Valente, Celso L Marino, Ivan G Maia. 2020. Genome-wide identification of multifunctional laccase gene family in Eucalyptus grandis: potential targets for lignin engineering and stress tolerance. Trees, 34:745-758.
doi: 10.1007/s00468-020-01954-3 URL |
[2] |
Berkman S J, Roscoe E M, Bourret J C. 2019. Comparing self-directed methods for training staff to create graphs using Graphpad Prism. J Appl Behav Anal, 52 (1):188-204.
doi: 10.1002/jaba.522 pmid: 30382580 |
[3] |
Cai X Z, Xu Q F, Wang C C, Zheng Z. 2006. Development of a virus-induced gene-silencing system for functional analysis of the RPS2-dependent resistance signalling pathways in Arabidopsis. Plant Mol Biol, 62:223-232.
doi: 10.1007/s11103-006-9016-z URL |
[4] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools:an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 13:1194-1202.
doi: 10.1016/j.molp.2020.06.009 URL |
[5] |
Cheng X, Li G, Ma C, Abdullah M, Zhang J, Zhao H, Jin Q, Cai Y, Lin Y. 2020. Correction:comprehensive genome-wide analysis of the pear(Pyrus bretschneideri)laccase gene(PbLAC)family and functional identification of PbLAC 1 involved in lignin biosynthesis. PLoS ONE, 15:e0228183.
doi: 10.1371/journal.pone.0228183 URL |
[6] | Ding Rong, Liang Jing, Zhao Hewen, Zhang Kezhong. 2018. Application and optimization of VIGS experimental technology system in Rosa hybrida. Chinese Agricultural Science Bulletin, 34:87-92. (in Chinese) |
丁榕, 梁晶, 赵和文, 张克中. 2018. VIGS实验技术体系在月季中的应用及优化. 中国农学通报, 34:87-92. | |
[7] |
Faivre-Rampant, Gilroy E M, Hrubikova K, Hein I, Millam S, Loake G J, Birch P, Taylor M, Lacomme C. 2004. Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol, 134:1308-1316.
pmid: 15084725 |
[8] | Gao X, Britt R C, Shan L, He P. 2011. Agrobacterium-mediated virus-induced gene silencing assay in cotton. J Vis Exp,e2938. |
[9] |
Godge M R, Purkayastha A, Dasgupta I, Kumar P P. 2009. Virus-induced gene silencing for functional analysis of selected genes. Plant Cell Rep, 28:335.
doi: 10.1007/s00299-008-0660-4 URL |
[10] |
Kim J, Park M, Jeong E S, Lee J M, Choi D. 2017. Harnessing anthocyanin-rich fruit:a visible reporter for tracing virus-induced gene silencing in pepper fruit. Plant Methods, 13:3.
doi: 10.1186/s13007-016-0151-5 URL |
[11] |
Li K B. 2003. ClustalW-MPI:ClustalW analysis using distributed and parallel computing. Bioinformatics, 19 (12):1585-1586.
doi: 10.1093/bioinformatics/btg192 URL |
[12] |
Liu Q, Luo L, Wang X, Shen Z, Zheng L. 2017. Comprehensive analysis of rice laccase gene(OsLAC)family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. Int J Mol Sci, 18:16.
doi: 10.3390/ijms18010016 URL |
[13] | Liu Yanying, Ni Shanshan, Xiang Leilei, Chen Yukun. 2020. Genome-wide identification of the laccase gene family and its expression analysis under low temperature stress in Musa accuminata. Acta Horticulturae Sinica, 47 (5):837-852. (in Chinese) |
刘彦英, 倪珊珊, 项蕾蕾, 陈裕坤. 2020. 香蕉漆酶基因家族鉴定及低温胁迫下的表达分析, 园艺学报, 47 (5):837-852. | |
[14] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))method. Methods, 25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[15] | Marchler-Bauer A, Derbyshire M K, Gonzales N R, Lu S, Chitsaz F, Geer L Y, Geer R C, He J, Gwadz M, Hurwitz D I, Lanczycki C J, Lu F, Marchler G H, Song J S, Thanki N, Wang Z, Yamashita R A, Zhang D, Zheng C, Bryant S H. 2015. CDD:NCBI’s conserved domain database. Nucleic Acids Res, 43:D222-226. |
[16] |
Martinez-Alvarez O, Montero P, Gomez-Guillen C. 2008. Evidence of an active laccase-like enzyme in deepwater pink shrimp(Parapenaeus longirostris). Food Chem, 108:624-632.
doi: 10.1016/j.foodchem.2007.11.029 URL |
[17] |
Nikki K, Barnes W J, Richard T L, Anderson C T. 2015. Imaging with the fluorogenic dye basic fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon. Journal of Experimental Botany, 66:4295-4304.
doi: 10.1093/jxb/erv158 pmid: 25922482 |
[18] |
Schuetz M, Benske A, Smith R A, Watanabe Y, Tobimatsu Y, Ralph J, Demura T, Ellis B, Samuels A L. 2014. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol, 166:798-807.
doi: 10.1104/pp.114.245597 URL |
[19] |
Senthil-Kumar M, Mysore K S. 2014. Tobacoo rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc, 9 (7):1549-1562.
doi: 10.1038/nprot.2014.092 pmid: 24901739 |
[20] |
Shulaev V, Korban S S, Sosinski B, Abbott A G, Aldwinckle H S, Folta K M, Iezzoni A, Main D, Arus P, Dandekar A M, Lewers K, Brown S K, Davis T M, Gardiner S E, Potter D, Veilleux R E. 2008. Multiple models for Rosaceae genomics. Plant Physiol, 147:985-1003.
doi: 10.1104/pp.107.115618 URL |
[21] | Shu Qingyan, Zhu jin, Men Siqi. 2018. Establishing Virus Induced Gene Silencing(VIGS)system in tree peony using PsUFGT genes. Acta Horticulturae Sinica, 45 (1):168-176. (in Chinese) |
舒庆艳, 朱瑾, 门思琦. 2018. 基于牡丹类黄酮糖基转移酶基因建立VIGS技术体系. 园艺学报, 45 (1):168-176. | |
[22] |
Singh V K, Mangalam A K, Dwivedi S, Naik S. 1998. Primer premier:program for design of degenerate primers from a protein sequence. Biotechniques, 24 (2):318-319.
pmid: 9494736 |
[23] |
Soni N, Hegde N, Dhariwal A, Kushalappa A C. 2020. Role of laccase gene in wheat NILs differing at QTL-Fhb 1 for resistance against Fusarium head blight. Plant Sci, 298:110574.
doi: 10.1016/j.plantsci.2020.110574 URL |
[24] |
Tang Yi, Li Lingfei, Wang Xiaoqing. 2017. Establishment of transient gene expression and virus-induced gene silencing(VIGS)system in Gerbera hybrida petals. Plant Physiology Journal, 53:505-512. (in Chinese)
doi: 10.1111/j.1399-3054.1981.tb02741.x URL |
唐宜, 李凌飞, 王小菁. 2017. 非洲菊花瓣瞬时表达和病毒诱导的基因沉默(VIGS)系统的建立. 植物生理学报, 53:505-512. | |
[25] | Wang Q, Li G, Zheng K, Zhu X, Ma J, Wang D, Tang K, Feng X, Leng J, Yu H, Yang S, Feng X. 2019. The soybean laccase gene family: evolution and possible roles in plant defense and stem strength selection. Genes(Basel), 10:19. |
[26] |
Wang Y, Bouchabke-Coussa O, Lebris P, Antelme S, Soulhat C, Gineau E, Dalmais M, Bendahmane A, Morin H, Mouille G, Legee F, Cezard L, Lapierre C, Sibout R. 2015. LACCASE 5 is required for lignification of the Brachypodium distachyon culm. Plant Physiol, 168:192-204.
doi: 10.1104/pp.114.255489 pmid: 25755252 |
[27] |
Yi Chou E, Schuetz M, Hoffmann N, Watanabe Y, Sibout R, Samuels A L. 2018. Distribution,mobility,and anchoring of lignin-related oxidative enzymes in Arabidopsis secondary cell walls. J Exp Bot, 69:1849-1859.
doi: 10.1093/jxb/ery067 pmid: 29481639 |
[28] |
Yoshida, Hikorokuro. 1883. LXIII.—Chemistry of lacquer(Urushi). Part I. Communication from the Chemical Society of Tokio. Journal of the Chemical Society,Transactions, 43:472.
doi: 10.1039/CT8834300472 URL |
[29] |
Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang Z Y, Dixon R A. 2013. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 25:3976-3987.
doi: 10.1105/tpc.113.117770 URL |
[30] |
Zhou P, Peng J Y, Zeng M J, Wu L X, Fan Y X, Zeng L H. 2021. Virus-induced gene silencing(VIGS)in Chinese narcissus and its use in functional analysis of NtMYB3. Horticultural Plant Journal, 7 (6):565-572.
doi: 10.1016/j.hpj.2021.04.009 URL |
[1] | 翟含含, 翟宇杰, 田义, 张叶, 杨丽, 温陟良, 陈海江. 桃SAUR家族基因分析及PpSAUR5功能鉴定[J]. 园艺学报, 2023, 50(1): 1-14. |
[2] | 袁馨, 徐云鹤, 张雨培, 单楠, 陈楚英, 万春鹏, 开文斌, 翟夏琬, 陈金印, 甘增宇. 猕猴桃后熟过程中ABA响应结合因子AcAREB1调控AcGH3.1的表达[J]. 园艺学报, 2023, 50(1): 53-64. |
[3] | 邢柱东, 吕福堂, 郭尚敬, 张演义. 新品种‘聊大红金’桃[J]. 园艺学报, 2023, 50(1): 225-226. |
[4] | 杨兴旺, 王海波, 王莹莹, 王小龙, 王志强, 刘培培, 刘万春, 王孝娣. 中熟抗寒桃新品种‘中农甘爽’[J]. 园艺学报, 2022, 49(S2): 15-16. |
[5] | 杨兴旺, 王海波, 王莹莹, 张艺灿, 王宝亮, 刘培培, 史祥宾, 刘万春, 王孝娣. 中熟抗寒桃新品种‘中农白干’[J]. 园艺学报, 2022, 49(S2): 17-18. |
[6] | 杨兴旺, 刘凤之, 王海波, 王莹莹, 王志强, 史祥宾, 冀晓昊, 刘万春, 王孝娣. 中熟抗寒桃新品种‘中农寒水蜜’[J]. 园艺学报, 2022, 49(S2): 19-20. |
[7] | 杨兴旺, 刘凤之, 王海波, 王莹莹, 张艺灿, 李 鹏, 王小龙, 刘万春, 王孝娣. 晚熟抗寒桃新品种‘中农秋香’[J]. 园艺学报, 2022, 49(S2): 21-22. |
[8] | 王莹莹, 刘立常, 刘志伍, 杨兴旺, 刘万春, 王孝娣, . 极晚熟桃新品种‘中农冬蜜’[J]. 园艺学报, 2022, 49(S2): 23-24. |
[9] | 王莹莹, 刘立常, 刘志伍, 杨兴旺, 刘万春, 王孝娣, . 小果油桃新品种‘中农珍珠’[J]. 园艺学报, 2022, 49(S2): 25-26. |
[10] | 吴延军, 刘庆忠, 陈鸿才, 戚行江, 朱东姿, 郑家祥, 曹学敏, 方丹燕. 甜樱桃新品种‘江南锦’[J]. 园艺学报, 2022, 49(S2): 29-30. |
[11] | 张晓明, 闫国华, 周 宇, 王 晶, 段续伟, 吴传宝, 张开春. 甜樱桃砧木新品种‘京春2号’[J]. 园艺学报, 2022, 49(S2): 31-32. |
[12] | 宋 放, 陈 奇, 袁炎良, 陈 沙, 尹海军, 蒋迎春, . 黄肉猕猴桃新品种‘先沃1号’[J]. 园艺学报, 2022, 49(S2): 47-48. |
[13] | 齐永杰, 高正辉, 马 娜, 王清明, 柯凡君, 陈 钱, 徐义流, . 黄肉抗溃疡病猕猴桃新品种‘皖农金果’[J]. 园艺学报, 2022, 49(S2): 49-50. |
[14] | 张慧琴, 楼国荣, 陆玲鸿, 古咸彬, 宋根华, 谢 鸣. 黄肉中华猕猴桃新品种‘金义’[J]. 园艺学报, 2022, 49(S2): 51-52. |
[15] | 季琳琳, 陈素传, 吴志辉, 常 君, 韩文妍, 陶汝鹏. 早花山核桃新品种‘宁国山核桃2号’[J]. 园艺学报, 2022, 49(S2): 53-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司