园艺学报 ›› 2022, Vol. 49 ›› Issue (6): 1327-1338.doi: 10.16420/j.issn.0513-353x.2021-0468
刘瑶瑶, 吴严严, 石岩, 毛天宇, 包满珠, 张俊卫, 张杰()
收稿日期:
2021-12-27
修回日期:
2022-03-30
出版日期:
2022-06-25
发布日期:
2022-07-05
通讯作者:
张杰
E-mail:flybebrave@mail.hzau.edu.cn
基金资助:
LIU Yaoyao, WU Yanyan, Shi Yan, MAO Tianyu, BAO Manzhu, ZHANG Junwei, ZHANG Jie()
Received:
2021-12-27
Revised:
2022-03-30
Online:
2022-06-25
Published:
2022-07-05
Contact:
ZHANG Jie
E-mail:flybebrave@mail.hzau.edu.cn
摘要:
在前期转录组数据的基础上对梅花(Prunus mume)垂枝候选基因PmTAC1(TILLER ANGLE CONTROL 1)进行了克隆及相关分析。PmTAC1编码区全长915 bp,编码304个氨基酸,且在梅花垂枝和直枝品种中无序列差异。氨基酸序列比对进一步证实PmTAC1具备IGT家族典型结构域,进化树分析表明PmTAC1与桃(Prunus persica)的PpeTAC1亲缘关系最近,亚细胞定位预测该蛋白定位于细胞核和叶绿体,蛋白疏水性分析显示其具有亲水性。PmTAC1在茎中表达最高,叶和顶芽次之。PmTAC1在垂枝品种的1年生枝条中的表达显著高于直枝品种,且在两种枝型枝条近远轴侧均有差异。垂枝品种PmTAC1的启动子序列长度为1 608 bp,直枝品种启动子序列长度为1 379 bp。启动子顺式元件预测到光响应、赤霉素合成、脱落酸响应顺式元件的数量在两种枝型品种间具有差异。推测PmTAC1在垂枝和直枝梅花品种中的启动子序列及表达量差异可能与垂枝性状形成有关。
中图分类号:
刘瑶瑶, 吴严严, 石岩, 毛天宇, 包满珠, 张俊卫, 张杰. 垂枝与直枝梅花PmTAC1启动子序列差异与垂枝性状的关系初探[J]. 园艺学报, 2022, 49(6): 1327-1338.
LIU Yaoyao, WU Yanyan, Shi Yan, MAO Tianyu, BAO Manzhu, ZHANG Junwei, ZHANG Jie. Preliminary Study on the Relationship Between Promoter Sequence Difference of PmTAC1 and Weeping Trait of Prunus mume[J]. Acta Horticulturae Sinica, 2022, 49(6): 1327-1338.
图1 垂枝与直枝梅花品种表型 C1:磨山垂枝;C2:粉红垂枝;C3:淡粉垂枝;Z1:米单绿;Z2:小绿萼;Z3:单瓣朱砂。下同。
Fig. 1 Phenotypes of mei cultivars with weeping and upright branches C1:Moshan Chuizhi;C2:Fenhong Chuizhi;C3:Danfen Chuizhi;Z1:Midanlü;Z2:Xiaolü E;Z3:Danban Zhusha. The same below.
用途 Primer use | 引物名称 Primer name | 引物序列(5′-3′) Primer sequnce |
---|---|---|
克隆Cloning | PmTAC1-F | ATGAAGATCTTCAACTGGGTTC |
PmTAC1-R | TCAGTGCACACAAGGGGCACCTTG | |
启动子克隆Promoter cloning | PmTAC1-Pro-F | TGAAGCCTCTTATGAAC |
PmTAC1-Pro-R | CAGAAAGTAACCCACCT | |
实时荧光定量qRT-PCR | PmTAC1-qRTF | AAACCAATGACAAGGACACAC |
PmTAC1-qRTR | CGCTCTCCAGAACGAAAT | |
ACTIN2- qRTF | TGTGATGGTTGGTATGGGG | |
ACTIN2- qRTR | AACTGGATGCTCTTCTGGG |
表1 PmTAC1克隆和表达量分析所用引物
Table 1 Primers used for cloning and expression analyses of PmTAC1
用途 Primer use | 引物名称 Primer name | 引物序列(5′-3′) Primer sequnce |
---|---|---|
克隆Cloning | PmTAC1-F | ATGAAGATCTTCAACTGGGTTC |
PmTAC1-R | TCAGTGCACACAAGGGGCACCTTG | |
启动子克隆Promoter cloning | PmTAC1-Pro-F | TGAAGCCTCTTATGAAC |
PmTAC1-Pro-R | CAGAAAGTAACCCACCT | |
实时荧光定量qRT-PCR | PmTAC1-qRTF | AAACCAATGACAAGGACACAC |
PmTAC1-qRTR | CGCTCTCCAGAACGAAAT | |
ACTIN2- qRTF | TGTGATGGTTGGTATGGGG | |
ACTIN2- qRTR | AACTGGATGCTCTTCTGGG |
图5 梅花PmTAC1在垂枝品种C2和直枝品种Z3不同组织中的表达 t-检验。* α = 0.05,** α= 0.01。
Fig. 5 Expression of PmTAC1 in different tissues of weeping cultivar C2 and upright cultivar Z3 t-test. *α = 0.05,**α = 0.01.
图6 梅花PmTAC1在F1群体垂枝和直枝后代枝条近轴和远轴侧中的表达 不同字母代表差异显著(P < 0.05)。
Fig. 6 Expression of PmTAC1 in the adaxial and abaxial sides of the branches from the weeping and upright offspring of F1 population Different letters mean significant difference(P < 0.05). T-test*a = 0.05,**a = 0.01.
图7 梅花PmTAC1在垂枝品种C1、C2、C3和直枝品种Z1、Z2、C3枝条近轴和远轴侧中的表达 不同字母代表差异显著(P < 0.05)。
Fig. 7 Expression of PmTAC1 in adaxial and abaxial sides of weeping cultivar C1,C2,C3 and upright cultivar Z1,Z2,Z3 Different letters mean significant difference(P < 0.05).
cis-Element | 垂枝Weeping | 直枝 Upright | 功能 Function |
---|---|---|---|
GATA-motif | 1 | 1 | 光响应Part of a light responsive element |
I-box | 2 | 2 | 光响应Part of a light responsive element |
AAAC-motif | 1 | 0 | 光响应Light responsive element |
GT1-motif | 2 | 0 | 光响应Light responsive element |
G-box | 0 | 1 | 光响应cis-Acting regulatory element involved in light responsiveness |
TCCC-motif | 0 | 1 | 光响应Part of a light responsive element |
CAAT-box | 29 | 24 | 增强子Common cis-acting element in promoter and enhancer regions |
ARE | 2 | 1 | 厌氧诱导cis-Acting regulatory element essential for the anaerobic induction |
circadian | 1 | 1 | 昼夜节律控制cis-Acting regulatory element involved in circadian control |
TC-rich repeats | 1 | 1 | 防御和应激cis-Acting element involved in defense and stress responsiveness |
LTR | 1 | 1 | 低温响应cis-Acting element involved in low-temperature responsiveness |
O2-site | 1 | 1 | 玉米醇溶酶蛋白代谢调节cis-Acting regulatory element involved in zein metabolism regulation |
TATA-box | 51 | 29 | 核心启动子Core promoter element around -30 of transcription start |
TCA-element | 1 | 1 | 水杨酸响应cis-Acting element involved in salicylic acid responsiveness |
ABRE | 0 | 1 | 脱落酸响应cis-Acting element involved in the abscisic acid responsiveness |
P-box | 0 | 1 | 赤霉素响应Gibberellin-responsive element |
CGTCA-motif | 1 | 1 | 茉莉酸甲酯响应cis-Acting regulatory element involved in the MeJA-responsiveness |
TGACG-motif | 1 | 1 | 茉莉酸甲酯响应cis-Acting regulatory element involved in the MeJA-responsiveness |
表2 梅垂枝和直枝PmTAC1启动子顺式元件分布及功能注释
Table 2 Promoter cis-element distribution and functional annotations of PmTAC1
cis-Element | 垂枝Weeping | 直枝 Upright | 功能 Function |
---|---|---|---|
GATA-motif | 1 | 1 | 光响应Part of a light responsive element |
I-box | 2 | 2 | 光响应Part of a light responsive element |
AAAC-motif | 1 | 0 | 光响应Light responsive element |
GT1-motif | 2 | 0 | 光响应Light responsive element |
G-box | 0 | 1 | 光响应cis-Acting regulatory element involved in light responsiveness |
TCCC-motif | 0 | 1 | 光响应Part of a light responsive element |
CAAT-box | 29 | 24 | 增强子Common cis-acting element in promoter and enhancer regions |
ARE | 2 | 1 | 厌氧诱导cis-Acting regulatory element essential for the anaerobic induction |
circadian | 1 | 1 | 昼夜节律控制cis-Acting regulatory element involved in circadian control |
TC-rich repeats | 1 | 1 | 防御和应激cis-Acting element involved in defense and stress responsiveness |
LTR | 1 | 1 | 低温响应cis-Acting element involved in low-temperature responsiveness |
O2-site | 1 | 1 | 玉米醇溶酶蛋白代谢调节cis-Acting regulatory element involved in zein metabolism regulation |
TATA-box | 51 | 29 | 核心启动子Core promoter element around -30 of transcription start |
TCA-element | 1 | 1 | 水杨酸响应cis-Acting element involved in salicylic acid responsiveness |
ABRE | 0 | 1 | 脱落酸响应cis-Acting element involved in the abscisic acid responsiveness |
P-box | 0 | 1 | 赤霉素响应Gibberellin-responsive element |
CGTCA-motif | 1 | 1 | 茉莉酸甲酯响应cis-Acting regulatory element involved in the MeJA-responsiveness |
TGACG-motif | 1 | 1 | 茉莉酸甲酯响应cis-Acting regulatory element involved in the MeJA-responsiveness |
[1] |
Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215:403-410.
doi: 10.1016/S0022-2836(05)80360-2 pmid: 2231712 |
[2] |
Dardick C, Callahan A, Horn R, Ruiz K B, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R. 2013. Ppetac1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J, 75: 618-630.
doi: 10.1111/tpj.12234 URL |
[3] |
Deléage G, Roux B. 1987. An algorithm for protein secondary structure prediction based on class prediction. Protein Engineering,(4):289-294.
pmid: 3508279 |
[4] |
Higo K, Ugawa Y, Iwamoto M, Korenaga T. 1999. Plant cis-acting regulatory DNA elements(PLACE)database:1999. Nucleic Acids Research, 27 (1):297-300.
pmid: 9847208 |
[5] |
Hollender C A, Dardick C, 2015. Molecular basis of angiosperm tree architecture. New Phytol, 206:541-556.
doi: 10.1111/nph.13204 pmid: 25483362 |
[6] |
Hollender C A, Waite J M, Tabb A, Raines D, Chinnithambi S, Dardick C. 2018. Alteration of tac1 expression in Prunus species leads to pleiotropic shoot phenotypes. Hortic Res, 5:26.
doi: 10.1038/s41438-018-0034-1 URL |
[7] |
Ku L, Wei X, Zhang S, Zhang J, Guo S, Chen Y, 2011. Cloning and characterization of a putative tac1 ortholog associated with leaf angle in maize (Zea mays L.). PLoS ONE, 6:e20621.
doi: 10.1371/journal.pone.0020621 URL |
[8] | Li Ya-meng. 2006. Physiological characteristics of weeping phenomenon and its simple sequence repeats analysis in weeping peach(Prunus persica var. pendula)[Ph. D. Dissertation]. Tai’an: Shandong Agricultural University. (in Chinese) |
李亚蒙. 2006. 桃垂枝性状生理特性及SSR分子标记研究[博士论文]. 泰安: 山东农业大学. | |
[9] | Liu Meng-meng. 2018. Gene cloning and functional analysis of PpeTAC1[M. D. Dissertation]. Zhengzhou: Henan Agricultural University. (in Chinese) |
刘蒙蒙. 2018. PpeTAC1基因的克隆与功能分析[硕士论文]. 郑州: 河南农业大学. | |
[10] | Lu Shun-jiao, Yi Shuang-shuang, Li Chong-hui, Liao Yi, Yin Jun-mei. 2018. Research progress of promoters on horticultural plants. Northern Horticulture,(16):185-195. (in Chinese) |
陆顺教, 易双双, 李崇晖, 廖易, 尹俊梅. 2018. 启动子在园艺植物上的研究进展. 北方园艺,(16):185-195. | |
[11] | Lü Ying-min, Chen Jun-yu. 2003. Preliminary report on the genetics of pendulous characteristics of Prunus mume. Journal of Beijing Forestry University, 25 (S2):43-45,118. (in Chinese) |
吕英民, 陈俊愉. 2003. 梅花垂枝性状遗传研究初报. 北京林业大学学报, 25 (S2):43-45,118. | |
[12] | Ma Yue-lin. 2016. Cloning and bioinformatics of TAC1 in Salix psammophila and characterization of its tissue expression[M. D. Dissertation]. Hohhot: Inner Mongolia Agricultural University. (in Chinese) |
马月林. 2016. 沙柳TAC1基因克隆与生物信息学及组织表达特性分析[硕士论文]. 呼和浩特: 内蒙古农业大学. | |
[13] |
Mao T Y, Zhu H H, Liu Y Y, Bao M Z, Zhang J W, Fu Q, Xiong C F, Zhang J. 2020. Weeping candidate genes screened using comparative transcriptomic analysis of weeping and upright progeny in an f1 population of Prunus mume. Physiol Plant, 170:318-334.
doi: 10.1111/ppl.13179 URL |
[14] | Nakai K. 1996. Refinement of the prediction methods of signal peptides for the genome analyses of Saccharomyces cerevisiae and Bacillus subtilis. Genome Informatics,(7):72-81. |
[15] | Qi Xiao. 2015. Research on branch angle genes PopTAC and PopLAZY in narrow crown poplar[M. D. Dissertation]. Tai’an: Shandong Agricultural University. (in Chinese) |
亓晓. 2015. 窄冠型杨树分枝相关基因PopTAC、PopLAXY的克隆及功能分析[硕士论文]. 泰安: 山东农业大学. | |
[16] | Shen Xiang, Li Ya-meng, Kang Luan, Zou Yan-mei, Shu Huai-rui. 2008. Relationship between morphology and hormones during weeping peach (Prunus persica var. pendula)shoot development. Acta Horticulturae Sinica, 35 (3):395-402. (in Chinese) |
沈向, 李亚蒙, 康鸾, 邹岩梅, 束怀瑞. 2008. 垂枝桃枝条发育形态和内源激素的关系. 园艺学报, 35 (3):395-402. | |
[17] |
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. Mega6:molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 30:2725-2729.
doi: 10.1093/molbev/mst197 URL |
[18] |
Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M. 2013. Control of root system architecture by deeper rooting 1 increases rice yield under drought conditions. Nat Genet, 45:1097-1102.
doi: 10.1038/ng.2725 URL |
[19] |
Vostrikova T V. 2007. Instability of cytogenetic parameters and genome instability in Betula pendula Roth. Russian Journal of Ecology, 38 (2):80-84.
doi: 10.1134/S1067413607020026 URL |
[20] |
Waite J M, Dardick C. 2018. Tiller angle control 1 modulates plant architecture in response to photosynthetic signals. J Exp Bot, 69:4935-4944.
doi: 10.1093/jxb/ery253 URL |
[21] | Wang Fu-ting. 2013. Separation,endogenous hormone and molecular research of pendulous characteristics of Prunus mume[M. D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese) |
王富廷. 2013. 梅花垂枝性状形态解剖、激素生理和基因分子水平研究[硕士论文]. 北京: 北京林业大学. | |
[22] | Wang Fu-ting, Yang wei-ru, Hao Rui-jie, Wang Tao, Zhang Qi-xiang. 2014. Studies on the cell separation of the secondary xylem of pendulous characteristics of Prunus mume. Guihaia, 34 (3):304-307,325. (in Chinese) |
王富廷, 杨炜茹, 郝瑞杰, 王涛, 张启翔. 2014. 梅花垂枝性状次生木质部解离研究. 广西植物, 34 (3):304-307,325. | |
[23] | Wang Lirong, Wang Jiao, Zhu Gengrui, Fang Weichao, Wang Xinwei, Chen Cangwen, Cao Ke. 2017. Genetic analysis of some special traits in peach. Acta Horticulturae Sinica, 44 (2):223-232. |
王力荣, 王蛟, 朱更瑞, 方伟超, 王新卫, 陈昌文, 曹珂. 2017. 桃若干重要特异性状的遗传趋向分析. 园艺学报, 44 (2):223-232. | |
[24] |
Wang Y, Li J, 2008. Molecular basis of plant architecture. Annu Rev Plant Biol, 59:253-279.
doi: 10.1146/annurev.arplant.59.032607.092902 URL |
[25] |
Wilkins M R, Gasteiger E, Bairoch A, Sanchez J C, Williams K L, Appel R D, Hochstrasser D F. 1999. Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology, 112:531-552.
pmid: 10027275 |
[26] |
Xu D, Qi X, Li J, Han X, Wang J, Jiang Y, Tian Y, Wang Y, 2017. Pztac and Pzlazy from a narrow-crown poplar contribute to regulation of branch angles. Plant Physiol Biochem, 118:571-578.
doi: 10.1016/j.plaphy.2017.07.011 URL |
[27] | Yang Chao-dong, Gong Tian-zhi, Zhang Xia. 2007. Advances in genetics and physiology of weeping traits of Prunus. Journal of Yangtze University(Natural Science), 2:23-25,29. (in Chinese) |
杨朝东, 龚天芝, 张霞. 2007. 李属植物垂枝的遗传和生理学研究进展. 长江大学学报(自科版),(2):23-25,29. | |
[28] |
Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C. 2007. Tac1,a major quantitative trait locus controlling tiller angle in rice. Plant J, 52:891-898.
doi: 10.1111/j.1365-313X.2007.03284.x URL |
[29] |
Yoshida M, Nakamura T, Yamamoto H, Okuyama T. 1999. Negative gravitropism and growth stress in GA3-treated branches of Prunus spachiana Kitamura f. spachiana cv. Plenarosea. Journal of Wood Science, 45 (5):368-372.
doi: 10.1007/BF01177907 URL |
[30] |
Yoshihara T, Iino M. 2007. Identification of the gravitropism-related rice gene LAZY1and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol. 48:678-688.
pmid: 17412736 |
[31] |
Zhang J, Zhang Q, Cheng T, Yang W, Pan H, Zhong J, Huang L, Liu E. 2015. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant(Prunus mume sieb. Et zucc). DNA Res, 22:183-191.
doi: 10.1093/dnares/dsv003 pmid: 25776277 |
[32] | Zhang Jie. 2016. Construction of high-density genetic map and QTL analysis of ornamental traits in mei[Ph. D. Dissertation]. Beijing:Beijing Forestry University. (in Chinese) |
张杰. 2016. 梅花高密度遗传图谱构建及部分观赏性状QTL分析[博士论文]. 北京: 北京林业大学. | |
[33] | Zhang Lei. 2018. Cloning and preliminary functional analysis of SpsLAZY1a,b in Salix psammophila[M. D. Dissertation]. Hohhot: Inner Mongolia Agricultural University. (in Chinese) |
张磊. 2018. 沙柳SpsLAZY1a、b基因克隆及功能初步分析[硕士论文]. 呼和浩特: 内蒙古农业大学. | |
[34] |
Zhang Q, Zhang H, Sun L, Fan G, Ye M, Jiang L, Liu X, Ma K, Shi C, Bao F, Guan R, Han Y, Fu Y, Pan H, Chen Z, Li L, Wang J, Lv M, Zheng T, Yuan C, Zhou Y, Lee S M, Yan X, Xu X, Wu R, Chen W, Cheng T. 2018. The genetic architecture of floral traits in the woody plant Prunus mume. Nat Commun, 9:1702.
doi: 10.1038/s41467-018-04093-z URL |
[35] | Zhang Yi-chi. 2019. Key genes selection associated with weeping trait of mei[M. D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese) |
张亦驰. 2019. 梅花垂枝性状关键基因筛选[硕士论文]. 北京: 北京林业大学. | |
[36] |
Zhao H, Huai Z, Xiao Y, Wang X, Yu J, Ding G, Peng J. 2014. Natural variation and genetic analysis of the tiller angle gene Mstac1 in Miscanthus sinensis. Planta, 240:161-175.
doi: 10.1007/s00425-014-2070-x pmid: 24771021 |
[37] | Zhu K J, Wu Q J, Huang Y, Ye J L, Xu Q, Deng X X. 2020. Genome-wide characterization of cis-acting elements in the promoters of key carotenoid pathway genes from the main species of genus Citrus. Horticultural Plant Journal, 6:11. |
[1] | 王晓晨, 聂子页, 刘先菊, 段 伟, 范培格, 梁振昌, . 脱落酸对‘京香玉’葡萄果实单萜物质合成的影响[J]. 园艺学报, 2023, 50(2): 237-249. |
[2] | 任 菲, 卢苗苗, 刘吉祥, 陈信立, 刘道凤, 眭顺照, 马 婧. 蜡梅胚胎晚期丰富蛋白基因CpLEA的表达及抗性分析[J]. 园艺学报, 2023, 50(2): 359-370. |
[3] | 翟含含, 翟宇杰, 田义, 张叶, 杨丽, 温陟良, 陈海江. 桃SAUR家族基因分析及PpSAUR5功能鉴定[J]. 园艺学报, 2023, 50(1): 1-14. |
[4] | 赵雪艳, 王琪, 王莉, 王方圆, 王庆, 李艳. 基于比较转录组的延胡索组织差异性表达分析[J]. 园艺学报, 2023, 50(1): 177-187. |
[5] | 王沙, 张心慧, 赵玉洁, 李变变, 招雪晴, 沈雨, 董建梅, 苑兆和. 石榴花青苷合成相关基因PgMYB111的克隆与功能分析[J]. 园艺学报, 2022, 49(9): 1883-1894. |
[6] | 高彦龙, 吴玉霞, 张仲兴, 王双成, 张瑞, 张德, 王延秀. 苹果ELO家族基因鉴定及其在低温胁迫下的表达分析[J]. 园艺学报, 2022, 49(8): 1621-1636. |
[7] | 邱子文, 刘林敏, 林永盛, 林晓洁, 李永裕, 吴少华, 杨超. 千层金MbEGS基因的克隆与功能分析[J]. 园艺学报, 2022, 49(8): 1747-1760. |
[8] | 陶鑫, 朱荣香, 贡鑫, 吴磊, 张绍铃, 赵建荣, 张虎平. 梨果糖激酶基因PpyFRK5在果实蔗糖积累中的作用[J]. 园艺学报, 2022, 49(7): 1429-1440. |
[9] | 郑林, 王帅, 刘语诺, 杜美霞, 彭爱红, 何永睿, 陈善春, 邹修平. 柑橘响应黄龙病菌侵染的NAC基因的克隆及表达分析[J]. 园艺学报, 2022, 49(7): 1441-1457. |
[10] | 张秋悦, 刘昌来, 于晓晶, 杨甲定, 封超年. 盐胁迫条件下杜梨叶片差异表达基因qRT-PCR内参基因筛选[J]. 园艺学报, 2022, 49(7): 1557-1570. |
[11] | 马维峰, 李艳梅, 马宗桓, 陈佰鸿, 毛娟. 苹果POD家族基因的鉴定与MdPOD15的功能分析[J]. 园艺学报, 2022, 49(6): 1181-1199. |
[12] | 张凯, 麻明英, 王萍, 李益, 金燕, 盛玲, 邓子牛, 马先锋. 柑橘HSP20家族基因鉴定及其响应溃疡病菌侵染表达分析[J]. 园艺学报, 2022, 49(6): 1213-1232. |
[13] | 梁沁, 张延晖, 康开权, 刘瑾航, 李亮, 冯宇, 王超, 杨超, 李永裕. miR168家族进化特性及其在砂梨休眠期的表达模式分析[J]. 园艺学报, 2022, 49(5): 958-972. |
[14] | 梁晨, 孙如意, 向锐, 孙艺萌, 师校欣, 杜国强, 王莉. 葡萄生长调控因子GRF家族基因的鉴定及表达分析[J]. 园艺学报, 2022, 49(5): 995-1007. |
[15] | 肖学宸, 刘梦雨, 蒋梦琦, 陈燕, 薛晓东, 周承哲, 吴兴健, 吴君楠, 郭寅生, 叶开温, 赖钟雄, 林玉玲. 龙眼褪黑素合成途径SNAT、ASMT和COMT家族基因鉴定及表达分析[J]. 园艺学报, 2022, 49(5): 1031-1046. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司