园艺学报 ›› 2022, Vol. 49 ›› Issue (6): 1200-1212.doi: 10.16420/j.issn.0513-353x.2021-0367
收稿日期:
2021-10-05
修回日期:
2022-01-29
出版日期:
2022-06-25
发布日期:
2022-07-04
通讯作者:
王跃进
E-mail:wangyj@nwsuaf.edu.cn
基金资助:
Received:
2021-10-05
Revised:
2022-01-29
Online:
2022-06-25
Published:
2022-07-04
Contact:
WANG Yuejin
E-mail:wangyj@nwsuaf.edu.cn
摘要:
以中国野生葡萄刺葡萄、毛葡萄、华东葡萄和欧洲葡萄的10个株系和品种果实为试材,在田间抗病性鉴定基础上,通过解剖观察不同葡萄果实表皮组织结构特点和差异,探究葡萄果实表皮组织结构与抗白粉病的关系。结果表明,刺葡萄‘塘尾’‘福建-4’,毛葡萄‘丹凤-2’‘泰山-12’‘商-24’为抗病种质,华东葡萄‘白河35-1’‘湖南-1’;欧洲葡萄‘无核白’‘红地球’‘佳丽酿’为敏感品种。刺葡萄、毛葡萄、华东葡萄的表皮角质层比欧洲葡萄‘无核白’厚,刺葡萄和毛葡萄表皮层细胞排列规则且紧密,而欧洲葡萄‘无核白’表皮角质层最薄,表皮层细胞排列不规则且松散。刺葡萄‘塘尾’表皮层和亚表皮层细胞最厚,毛葡萄‘丹凤-2’和华东葡萄‘白河35-1’次之,欧洲葡萄品种‘无核白’的表皮层和亚表皮层最薄。相关性分析表明,葡萄果皮角质层厚度、表皮层厚度与对白粉病的抗性显著正相关,抗病种质的果皮角质层与表皮层厚度普遍厚于感病种质。
中图分类号:
魏晓羽, 王跃进. 中国野生葡萄果皮解剖结构与白粉病抗性的相关性研究[J]. 园艺学报, 2022, 49(6): 1200-1212.
WEI Xiaoyu, WANG Yuejin. Correlation Between Anatomical Structure and Resistance to Powdery Mildew in Chinese Wild Vitis Species[J]. Acta Horticulturae Sinica, 2022, 49(6): 1200-1212.
种 Species | 品种或株系 Cultivaror Clone | 田间自然发病 | 人工接种 | 综合抗性反应 Resistance response | ||
---|---|---|---|---|---|---|
Under natural in the field | Artificial inoculation | |||||
病情指数 Susceptibility index | 表现型 Phenotype | 病情指数 Susceptibility index | 表现型 Phenotype | |||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 56.09 | 高感 High susceptible | 66.03 | 高感High susceptible | 5 |
红地球 Red Globe | 27.24 | 感病 Susceptible | 45.24 | 感病 Susceptible | 4 | |
佳丽酿 Carinena | 17.60 | 抗病 Resistance | 43.80 | 感病 Susceptible | 4 | |
华东葡萄 | 湖南-1 Hunan-1 | 54.91 | 高感 High susceptible | 74.91 | 高感 High susceptible | 5 |
V. pseudoreticulata | 白河35-1 Baihe 35-1 | 19.65 | 抗病 Resistance | 29.65 | 感病 Susceptible | 4 |
毛葡萄 | 丹凤-2 Danfeng-2 | 2.30 | 高抗 High resistance | 5.30 | 抗病 Resistance | 3 |
V. quinquangularis | 商-24 Shang-24 | 4.12 | 高抗 High resistance | 6.12 | 抗病 Resistance | 3 |
泰山-12 Taishan-12 | 5.35 | 抗病 Resistance | 6.35 | 抗病 Resistance | 3 | |
刺葡萄 V. davidii | 福建-4 Fujian-4 | 0 | 不感病Not susceptible | 1.80 | 高抗 High resistance | 1 ~ 2 |
塘尾 Tangwei | 0 | 不感病 Not susceptible | 2.30 | 高抗 High resistance | 1 ~ 2 |
表1 田间自然条件下和人工接种不同葡萄对白粉病的抗性鉴定
Table 1 Identification of grape resistance to powdery mildew under naturaland by artificial inoculation in the field
种 Species | 品种或株系 Cultivaror Clone | 田间自然发病 | 人工接种 | 综合抗性反应 Resistance response | ||
---|---|---|---|---|---|---|
Under natural in the field | Artificial inoculation | |||||
病情指数 Susceptibility index | 表现型 Phenotype | 病情指数 Susceptibility index | 表现型 Phenotype | |||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 56.09 | 高感 High susceptible | 66.03 | 高感High susceptible | 5 |
红地球 Red Globe | 27.24 | 感病 Susceptible | 45.24 | 感病 Susceptible | 4 | |
佳丽酿 Carinena | 17.60 | 抗病 Resistance | 43.80 | 感病 Susceptible | 4 | |
华东葡萄 | 湖南-1 Hunan-1 | 54.91 | 高感 High susceptible | 74.91 | 高感 High susceptible | 5 |
V. pseudoreticulata | 白河35-1 Baihe 35-1 | 19.65 | 抗病 Resistance | 29.65 | 感病 Susceptible | 4 |
毛葡萄 | 丹凤-2 Danfeng-2 | 2.30 | 高抗 High resistance | 5.30 | 抗病 Resistance | 3 |
V. quinquangularis | 商-24 Shang-24 | 4.12 | 高抗 High resistance | 6.12 | 抗病 Resistance | 3 |
泰山-12 Taishan-12 | 5.35 | 抗病 Resistance | 6.35 | 抗病 Resistance | 3 | |
刺葡萄 V. davidii | 福建-4 Fujian-4 | 0 | 不感病Not susceptible | 1.80 | 高抗 High resistance | 1 ~ 2 |
塘尾 Tangwei | 0 | 不感病 Not susceptible | 2.30 | 高抗 High resistance | 1 ~ 2 |
图3 不同葡萄种质果实表皮显微结构 1:无核白;2:红地球;3:佳丽酿;4:白河35-1;5:湖南-1;6:丹凤-2;7:泰山-12;8:商-24;9:福建-4;10:塘尾。
Fig. 3 Comparison of fruit tissue structure of of different grape germplasm 1:Thompson Seedless;2:Red Globe;3:Carinena;4:Baihe 35-1;5:Hunan-1;6:Danfeng-2;7:Taishan-12;8:Shang-24;9:Fujian-4;10:Tangwei.
种 Species | 品种或株系 Cultivar or clone | 角质层厚度/μm Thickness of cuticle | 细胞排列 Cellular state | ||
---|---|---|---|---|---|
绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | |||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 5.61 ± 0.33 c | 9.31 ± 0.49 e | 7.69 ± 0.19 g | 平整 Flat |
红地球 Red Globe | 5.56 ± 0.29 c | 8.83 ± 0.25 e | 9.17 ± 0.30 f | 较为平整 Relatively flat | |
佳丽酿 Carinena | 8.79 ± 0.44 b | 12.73 ± 0.16 d | 14.53 ± 0.39 de | 平整光滑 Flat and smooth | |
华东葡萄 | 白河35-1 Baihe 35-1 | 8.55 ± 0.28 b | 12.48 ± 0.33 d | 15.37 ± 0.28 d | 较光滑 Relatively smooth |
V. pseudoreticulata | 湖南-1 Hunan-1 | 9.41 ± 0.31 b | 13.86 ± 18.27 cd | 13.81 ± 0.37 e | 较平整 Relatively flat |
毛葡萄 | 丹凤-2 Danfeng-2 | 10.47 ± 0.73 a | 13.21 ± 0.36 d | 19.05 ± 0.26 ab | 较为平整 Relatively flat |
V. quinquangularis | 商-24 Shang-24 | 10.04 ± 0.22 ab | 15.73 ± 0.43 b | 18.23 ± 0.25 b | 光滑较规则 Smooth,relatively regular |
泰山-12 Taishan-12 | 10.08 ± 0.26 ab | 14.47 ± 0.56 c | 17.26 ± 0.35 c | 光滑规则 Smooth and regular | |
刺葡萄 | 福建-4 Fujian-4 | 9.51 ± 0.27 ab | 18.64 ± 0.59 a | 18.61 ± 0.42 ab | 规则较光滑 Regular,relatively smooth |
V. davidii | 塘尾 Tangwei | 9.86 ± 0.22 ab | 19.34 ± 0.55 a | 19.41 ± 0.39 a | 规则光滑 Regular and smooth |
表2 不同葡萄种质果实角质层结构及差异
Table 2 Differences in fruit cuticle structure of different grape germplasm
种 Species | 品种或株系 Cultivar or clone | 角质层厚度/μm Thickness of cuticle | 细胞排列 Cellular state | ||
---|---|---|---|---|---|
绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | |||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 5.61 ± 0.33 c | 9.31 ± 0.49 e | 7.69 ± 0.19 g | 平整 Flat |
红地球 Red Globe | 5.56 ± 0.29 c | 8.83 ± 0.25 e | 9.17 ± 0.30 f | 较为平整 Relatively flat | |
佳丽酿 Carinena | 8.79 ± 0.44 b | 12.73 ± 0.16 d | 14.53 ± 0.39 de | 平整光滑 Flat and smooth | |
华东葡萄 | 白河35-1 Baihe 35-1 | 8.55 ± 0.28 b | 12.48 ± 0.33 d | 15.37 ± 0.28 d | 较光滑 Relatively smooth |
V. pseudoreticulata | 湖南-1 Hunan-1 | 9.41 ± 0.31 b | 13.86 ± 18.27 cd | 13.81 ± 0.37 e | 较平整 Relatively flat |
毛葡萄 | 丹凤-2 Danfeng-2 | 10.47 ± 0.73 a | 13.21 ± 0.36 d | 19.05 ± 0.26 ab | 较为平整 Relatively flat |
V. quinquangularis | 商-24 Shang-24 | 10.04 ± 0.22 ab | 15.73 ± 0.43 b | 18.23 ± 0.25 b | 光滑较规则 Smooth,relatively regular |
泰山-12 Taishan-12 | 10.08 ± 0.26 ab | 14.47 ± 0.56 c | 17.26 ± 0.35 c | 光滑规则 Smooth and regular | |
刺葡萄 | 福建-4 Fujian-4 | 9.51 ± 0.27 ab | 18.64 ± 0.59 a | 18.61 ± 0.42 ab | 规则较光滑 Regular,relatively smooth |
V. davidii | 塘尾 Tangwei | 9.86 ± 0.22 ab | 19.34 ± 0.55 a | 19.41 ± 0.39 a | 规则光滑 Regular and smooth |
种 Species | 品种或株系 Cultivar or clone | 表皮细胞厚度/μm Epidermal cell thickness | 表皮细胞 Epidermal cell | |||
---|---|---|---|---|---|---|
绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | 层数 Layers | 细胞排列 Cellular state | ||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 11.56 ± 0.38 g | 15.89 ± 1.34 d | 19.47 ± 1.31 a | 2 | 较松散 Relatively loose |
红地球 Red Globe | 12.37 ± 0.41 g | 14.61 ± 0.78 d | 48.97 ± 0.58 a | 2 | 松散 Loose | |
佳丽酿 Carinena | 19.22 ± 0.46 cd | 17.89 ± 0.81 cd | 29.68 ± 1.26 b | 2 ~ 3 | 紧密 Tightly | |
华东葡萄 | 白河35-1 Baihe-35-1 | 19.09 ± 0.39 d | 19.61 ± 0.34 c | 28.54 ± 0.66 b | 2 | 较紧密 Relatively tight |
V. pseudoreticulata | 湖南-1 Hunan-1 | 16.26 ± 0.38 f | 17.41 ± 0.29 cd | 27.94 ± 0.75 b | 2 | 较紧密 Relatively tight |
毛葡萄 | 丹凤-2 Danfeng-2 | 25.15 ± 0.36 ab | 24.59 ± 1.52 b | 22.09 ± 1.11 c | 2 | 非常紧密 Very tightly |
V. quinquangularis | 商-24 Shang-24 | 20.49 ± 0.44 c | 25.08 ± 0.84 b | 20.62 ± 0.61 c | 2 | 非常紧密 Very tightly |
泰山-12 Taishan-12 | 17.74 ± 0.83 e | 19.06 ± 0.75 c | 17.90 ± 0.34 d | 2 | 非常紧密 Very tightly | |
刺葡萄 | 福建-4 Fujian-4 | 24.28 ± 0.56 b | 30.26 ± 0.82 a | 15.58 ± 0.47 d | 2 ~ 3 | 非常紧密 Very tightly |
V. davidii | 塘尾 Tangwei | 26.49 ± 0.31 a | 30.80 ± 1.10 a | 12.09 ± 0.42 e | 2 ~ 3 | 非常紧密 Very tightly |
表3 不同葡萄种质果实表皮结构及差异
Table 3 Differences in the epidermal structureof different grape germplasm
种 Species | 品种或株系 Cultivar or clone | 表皮细胞厚度/μm Epidermal cell thickness | 表皮细胞 Epidermal cell | |||
---|---|---|---|---|---|---|
绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | 层数 Layers | 细胞排列 Cellular state | ||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 11.56 ± 0.38 g | 15.89 ± 1.34 d | 19.47 ± 1.31 a | 2 | 较松散 Relatively loose |
红地球 Red Globe | 12.37 ± 0.41 g | 14.61 ± 0.78 d | 48.97 ± 0.58 a | 2 | 松散 Loose | |
佳丽酿 Carinena | 19.22 ± 0.46 cd | 17.89 ± 0.81 cd | 29.68 ± 1.26 b | 2 ~ 3 | 紧密 Tightly | |
华东葡萄 | 白河35-1 Baihe-35-1 | 19.09 ± 0.39 d | 19.61 ± 0.34 c | 28.54 ± 0.66 b | 2 | 较紧密 Relatively tight |
V. pseudoreticulata | 湖南-1 Hunan-1 | 16.26 ± 0.38 f | 17.41 ± 0.29 cd | 27.94 ± 0.75 b | 2 | 较紧密 Relatively tight |
毛葡萄 | 丹凤-2 Danfeng-2 | 25.15 ± 0.36 ab | 24.59 ± 1.52 b | 22.09 ± 1.11 c | 2 | 非常紧密 Very tightly |
V. quinquangularis | 商-24 Shang-24 | 20.49 ± 0.44 c | 25.08 ± 0.84 b | 20.62 ± 0.61 c | 2 | 非常紧密 Very tightly |
泰山-12 Taishan-12 | 17.74 ± 0.83 e | 19.06 ± 0.75 c | 17.90 ± 0.34 d | 2 | 非常紧密 Very tightly | |
刺葡萄 | 福建-4 Fujian-4 | 24.28 ± 0.56 b | 30.26 ± 0.82 a | 15.58 ± 0.47 d | 2 ~ 3 | 非常紧密 Very tightly |
V. davidii | 塘尾 Tangwei | 26.49 ± 0.31 a | 30.80 ± 1.10 a | 12.09 ± 0.42 e | 2 ~ 3 | 非常紧密 Very tightly |
种 Species | 品种或株系 Cultivar or clone | 亚表皮细胞厚度/μm Sub Epidermal cell thickness | 亚表皮细 胞层数 Subepidermal cell layers | 细胞排列 Cellular state | ||
---|---|---|---|---|---|---|
绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | ||||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 125.77 ± 5.60 e | 127.00 ± 5.36 f | 128.16 ± 1.48 d | 3 | 疏松 Loose |
红地球 Red Globe | 132.02 ± 4.69 e | 143.95 ± 3.73 e | 166.84 ± 9.58 c | 3 ~ 5 | 疏松 Loose | |
佳丽酿 Carinena | 198.43 ± 3.28 b | 193.69 ± 4.16 b | 190.31 ± 7.63 b | 5 ~ 6 | 致密 Tightly | |
华东葡萄 | 白河35-1 Baihe-35-1 | 148.47 ± 1.00 d | 162.49 ± 3.72 d | 154.58 ± 14.26 c | 6 ~ 8 | 疏松 Loose |
V. pseudoreticulata | 湖南-1 Hunan-1 | 100.18 ± 3.01 f | 142.81 ± 3.63 e | 143.77 ± 3.85 cd | 6 ~ 8 | 疏松 Loose |
毛葡萄 V. quinquangularis | 丹凤-2 Danfeng-2 | 151.01 ± 7.99 d | 192.80 ± 5.97 b | 188.03 ± 9.90 bc | 7 ~ 9 | 致密 Tightly |
商-24 Shang-24 | 168.99 ± 3.56 c | 183.55 ± 4.96 bc | 187.65 ± 3.07 bc | 7 ~ 8 | 致密 Tightly | |
泰山-12 Taishan-12 | 175.23 ± 7.99 c | 176.04 ± 2.28 c | 182.09 ± 1.50 bc | 8 ~ 9 | 致密 Tightly | |
刺葡萄 | 福建-4 Fujian-4 | 279.77 ± 4.08 a | 292.06 ± 4.09 a | 311.04 ± 11.77 a | 10 ~ 12 | 致密 Tightly |
V. davidii | 塘尾 Tangwei | 284.11 ± 5.93 a | 301.81 ± 4.07 a | 334.42 ± 7.24 a | 9 ~ 12 | 致密Tightly |
表4 不同葡萄种质果实亚表皮结构及差异
Table 4 Differences in sub epidermal structureof different grape germplasm
种 Species | 品种或株系 Cultivar or clone | 亚表皮细胞厚度/μm Sub Epidermal cell thickness | 亚表皮细 胞层数 Subepidermal cell layers | 细胞排列 Cellular state | ||
---|---|---|---|---|---|---|
绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | ||||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 125.77 ± 5.60 e | 127.00 ± 5.36 f | 128.16 ± 1.48 d | 3 | 疏松 Loose |
红地球 Red Globe | 132.02 ± 4.69 e | 143.95 ± 3.73 e | 166.84 ± 9.58 c | 3 ~ 5 | 疏松 Loose | |
佳丽酿 Carinena | 198.43 ± 3.28 b | 193.69 ± 4.16 b | 190.31 ± 7.63 b | 5 ~ 6 | 致密 Tightly | |
华东葡萄 | 白河35-1 Baihe-35-1 | 148.47 ± 1.00 d | 162.49 ± 3.72 d | 154.58 ± 14.26 c | 6 ~ 8 | 疏松 Loose |
V. pseudoreticulata | 湖南-1 Hunan-1 | 100.18 ± 3.01 f | 142.81 ± 3.63 e | 143.77 ± 3.85 cd | 6 ~ 8 | 疏松 Loose |
毛葡萄 V. quinquangularis | 丹凤-2 Danfeng-2 | 151.01 ± 7.99 d | 192.80 ± 5.97 b | 188.03 ± 9.90 bc | 7 ~ 9 | 致密 Tightly |
商-24 Shang-24 | 168.99 ± 3.56 c | 183.55 ± 4.96 bc | 187.65 ± 3.07 bc | 7 ~ 8 | 致密 Tightly | |
泰山-12 Taishan-12 | 175.23 ± 7.99 c | 176.04 ± 2.28 c | 182.09 ± 1.50 bc | 8 ~ 9 | 致密 Tightly | |
刺葡萄 | 福建-4 Fujian-4 | 279.77 ± 4.08 a | 292.06 ± 4.09 a | 311.04 ± 11.77 a | 10 ~ 12 | 致密 Tightly |
V. davidii | 塘尾 Tangwei | 284.11 ± 5.93 a | 301.81 ± 4.07 a | 334.42 ± 7.24 a | 9 ~ 12 | 致密Tightly |
时期 Stage | 指标 Item | 病情指数 Disease index | 绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | E | S | W | C | E | S | W | C | E | S | |||
绿果期Green hard | C | -0.728* | |||||||||||
E | -0.683* | 0.806** | |||||||||||
S | -0.545 | 0.401 | 0.731* | ||||||||||
W | -0.586 | 0.664* | 0.403 | 0.108 | |||||||||
转色期Berry veraison | C | -0.750* | 0.767** | 0.835** | 0.810** | 0.335 | |||||||
E | -0.719* | 0.651* | 0.908** | 0.827** | 0.336 | 0.906** | |||||||
S | -0.644* | 0.518 | 0.841** | 0.966** | 0.116 | 0.881** | 0.913** | ||||||
W | -0.197 | 0.554 | 0.540 | 0.567 | 0.227 | 0.572 | 0.439 | 0.501 | |||||
成熟期Berry ripening | C | -0.764* | 0.942** | 0.927** | 0.617 | 0.646* | 0.854** | 0.827** | 0.716* | 0.550 | |||
E | -0.660* | 0.567 | 0.869** | 0.951** | 0.139 | 0.894** | 0.924** | 0.993** | 0.558 | 0.750* | |||
S | -0.643* | 0.431 | 0.773** | 0.959** | 0.061 | 0.850** | 0.881** | 0.988** | 0.405 | 0.644* | 0.970** | ||
W | -0.758* | 0.782** | 0.892** | 0.778** | 0.636* | 0.821** | 0.866** | 0.801** | 0.651* | 0.905** | 0.830** | 0.736* |
表5 角质层(C)、表皮(E)、亚表皮(S)厚度、蜡质量(W)与病情指数的相关性
Table 5 Correlation between the thickness of cuticle(C),epidermis(E),sub-epidermis(S)and wax quality(W)with disease index
时期 Stage | 指标 Item | 病情指数 Disease index | 绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | E | S | W | C | E | S | W | C | E | S | |||
绿果期Green hard | C | -0.728* | |||||||||||
E | -0.683* | 0.806** | |||||||||||
S | -0.545 | 0.401 | 0.731* | ||||||||||
W | -0.586 | 0.664* | 0.403 | 0.108 | |||||||||
转色期Berry veraison | C | -0.750* | 0.767** | 0.835** | 0.810** | 0.335 | |||||||
E | -0.719* | 0.651* | 0.908** | 0.827** | 0.336 | 0.906** | |||||||
S | -0.644* | 0.518 | 0.841** | 0.966** | 0.116 | 0.881** | 0.913** | ||||||
W | -0.197 | 0.554 | 0.540 | 0.567 | 0.227 | 0.572 | 0.439 | 0.501 | |||||
成熟期Berry ripening | C | -0.764* | 0.942** | 0.927** | 0.617 | 0.646* | 0.854** | 0.827** | 0.716* | 0.550 | |||
E | -0.660* | 0.567 | 0.869** | 0.951** | 0.139 | 0.894** | 0.924** | 0.993** | 0.558 | 0.750* | |||
S | -0.643* | 0.431 | 0.773** | 0.959** | 0.061 | 0.850** | 0.881** | 0.988** | 0.405 | 0.644* | 0.970** | ||
W | -0.758* | 0.782** | 0.892** | 0.778** | 0.636* | 0.821** | 0.866** | 0.801** | 0.651* | 0.905** | 0.830** | 0.736* |
图4 人工接种白粉病菌后不同葡萄种质果皮组织超微结构比较 a:自然状态下果实表皮;b:人工接种后果实表皮(箭头指向菌丝刺穿表皮位点)。1:无核白;2:红地球;3:佳丽酿;4:白河35-1;5:湖南-1;6:丹凤-2;7:泰山-12;8:商-24;9:福建-4;10:塘尾。
Fig. 4 Comparison of ultrastructure of different grape pericarp a:The skin of the fruit in its natural state;b:Fruit epidermis after artificial inoculation(The arrow points to the site where the mycelium punctures the epidermis). 1:Thompson Seedless;2:Red Globe;3:Carinena;4:Baihe 35-1;5:Hunan-1;6:Danfeng-2;7:Taishan-12;8:Shang-24;9:Fujian-4;10:Tangwei.
[1] |
Aarrouf J, Garcin A, Lizzi Y, Maâtaoui M E. 2008. Immunolocalization and histocytopathological effects of Xanthomonas arboricola pv. pruni on naturally infected leaf and fruit tissues of peach(Prunus persica L. Batsch). Journal of Phytopathology, 156:338-345.
doi: 10.1111/j.1439-0434.2007.01364.x URL |
[2] |
Bally I S E. 1999. Changes in the cuticular surface during the development of mango(Mangifera indica L.)cv. Kensington Pride. Scientia Horticulturae, 79 (1):13-22.
doi: 10.1016/S0304-4238(98)00159-9 URL |
[3] |
Bargel H, Neinhuis C. 2005. Tomato(Lycopersicon esculentum Mill.)fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. Journal of Experimental Botany, 56 (413):1049-1060.
doi: 10.1093/jxb/eri098 URL |
[4] |
Bechinger C, Giebel K F, Schnell M, Leiderer P, Deising H B, Bastmeyer M. 1999. Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science, 285 (5435):1896-1899.
pmid: 10489364 |
[5] | Chang Jin-mei, Zhang Lu-bin, Liu Feng, Zhan Ru-lin. 2012. The relationship between the disease resistance and pericarp structure in mango (Mangifern indica). Chinese Journal of Tropical Crops, 33 (11):2040-2043. (in Chinese) |
常金梅, 张鲁斌, 柳凤, 詹儒林. 2012. 芒果果实抗病性差异及其与果皮结构相关性初探. 热带作物学报, 33 (11):2040-2043. | |
[6] |
Comménil P, Brunet L, Audran J C. 1997. The development of the grape berry cuticle in relation to susceptibility to bunch rot disease. Journal of Experimental Botany, 48 (313):1599-1607.
doi: 10.1093/jxb/48.8.1599 URL |
[7] |
de Leeuw G T N. 1985. Deposition of lignin,suberin and callose in relation to the restriction of infection by Botrytis cinerea in ghost spots of tomato fruits. Journal of Phytopathology, 112 (2):143-152.
doi: 10.1111/j.1439-0434.1985.tb04822.x URL |
[8] |
Domínguez E, Heredia-Guerrero J A, Heredia A. 2011. The biophysical design of plant cuticles:an overview. New Phytologist, 189 (4):938-949.
pmid: 21374891 |
[9] | FAO. 2019. FAO-OIV focus 2019 table and dried grapes:non-alcoholic products of the Vitivinicultural sector intended for human consumption. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/. |
[10] |
Gabler F M, Smilanick J L, Ghosoph J M, Margosan D A. 2005. Impact of postharvest hot water or ethanol treatment of table grapes on gray mold incidence,quality,and ethanol content. Plant Disease, 89 (3):309-316.
doi: 10.1094/PD-89-0309 URL |
[11] |
Gabler F M, Smilanick J L, Mansour M, Ramming D W, Mackey B E. 2003. Correlations ofmorphological,anatomical,and chemical features of grape berries with resistance to Botrytis cinerea. Phytopathology, 93 (10):1263-1273.
doi: 10.1094/PHYTO.2003.93.10.1263 URL |
[12] | Gao Hai-yan, Liu Lin-wei, Zhang Hua-yun, Xiu De-ren. 2001. Study of SO2 acute injury on postharvest table grape. Acta Agriculturae Boreali-occidentalis Sinica, 10 (1):14-16. (in Chinese) |
高海燕, 刘邻渭, 张华云, 修德仁. 2001. SO2对采后葡萄的急性伤害研究. 西北农业学报, 10 (1):14-16. | |
[13] | Guan Ye-qing. 2015. Role of surface structure on susceptibility of apple fruit to Botryosphaeria dothidea[Ph. D. Dissertation]. Beijing:China Agricultural University. (in Chinese) |
关晔晴. 2015. 苹果果面结构与轮纹病抗病性关系的研究[博士论文]. 北京: 中国农业大学. | |
[14] |
Hansjakob A, Riederer M, Hildebrandt U. 2011. Wax matters:absence of very-long-chain aldehydes from the leaf cuticular wax of the glossy11 mutant of maize compromises the prepenetration processes of Blumeria graminis. Plant Pathology, 60 (6):1151-1161.
doi: 10.1111/j.1365-3059.2011.02467.x URL |
[15] | He Pu-chao. 1999. Grapeology. Beijing: Agriculture Press. (in Chinese) |
贺普超. 1999. 葡萄学. 北京: 农业出版社. | |
[16] | He Pu-chao, Wang Yue-jin, Wang Guo-Ying, Ren Zhi-bang, He Chun-cheng. 1991. The studies on the disease-resistance of Vitis wild species originated in China. Scientia Agricultura Sinica, 24 (3):50-56. (in Chinese) |
贺普超, 王跃进, 王国英, 任治邦, 和纯成. 1991. 中国葡萄属野生种抗病性的研究. 中国农业科学, 24 (3):50-56. | |
[17] |
Heredia-Guerrero J A, Guzman-Puyol S, Benitez J J, Athanassiou A, Heredia A, Dominguez E. 2018. Plant cuticle under global change:biophysical implications. Glob Chang Biol, 24 (7):2749-2751.
doi: 10.1111/gcb.14276 URL |
[18] |
Hetzroni A, Vana A, Mizrach A. 2011. Biomechanical characteristics of tomato fruit peels. Postharvest Biology and Technology, 59 (1):80-84.
doi: 10.1016/j.postharvbio.2010.08.008 URL |
[19] |
Isabel L, Burcu B, Luis F G. 2014. The fruit cuticle as a modulator of postharvest quality. Postharvest Biology and Technology, 87:103-112.
doi: 10.1016/j.postharvbio.2013.08.012 URL |
[20] | Konarska A. 2012. Differences in the fruit peel structures between two apple cultivars during storage. Acta Scientiarum Polonorum-Hortorum Cultus, 11 (2):105-116. |
[21] |
Lafuente M T, GonzcLlez-Candelas L, Reig-Armiclana J, Veyrat A, Cajuste J F, Garcca-Breijo F J. 2010. Epicuticular wax content and morphology as related to ethylene and storage performance of‘Navelate’orange fruit. Postharvest Biology and Technology, 55 (1):29-35.
doi: 10.1016/j.postharvbio.2009.07.005 URL |
[22] |
Lewandowska M, Keyl A, Feussner I. 2020. Wax biosynthesis in response to danger:its regulation upon abiotic and biotic stress. New Phytologist, 227 (3):698-713.
doi: 10.1111/nph.16571 pmid: 32242934 |
[23] | Marois J J, Bledsoe A M, Gubler G. 1985. Effects of surfactants on epicuticular wax and infection of grape berries by Botrytis cinerea. Phytopathology, 75:1329. |
[24] | Marois J J, Nelson J K, Morrison J C, Lile L S, Bledso A M. 1986. The influence of berry contact within grape clusters on the development of Botrytis cinerea and epicuticular wax. Am J Enol Vitic, 37:293-296. |
[25] |
Oliveira L L, Quilot-Turion B, Dufour C, Corre M N, Lessire R, Genard M, Poessel J L. 2020. Cuticular waxes of nectarines during fruit development in relation to surface conductance and susceptibility to Monilinia laxa. Journal of Experimental Botany, 71 (18):5521-5537.
doi: 10.1093/jxb/eraa284 pmid: 32556164 |
[26] |
Scott R J, Spielman M, Dickinson H G. 2004. Stamen structure and function. Plant Cell, 16 (Suppl):S46-S60.
doi: 10.1105/tpc.017012 URL |
[27] | Sharma P, Prasad J, Kothari S L, Gour V S. 2020. Evaluation of variation in cuticular wax yield with season,solvent,and species in Calotropis. National Academy Science Letters-India, 43 (1):99-101. |
[28] |
Silva A, Noronha H, Dai Z, Delrot S, Geros H. 2017. Low source-sink ratio reduces reserve starch in grapevine woody canes and modulates sugar transport and metabolism at transcriptional and enzyme activity levels. Planta, 246 (3):525-535.
doi: 10.1007/s00425-017-2708-6 URL |
[29] | Suzuki T, Shinogi T, Narusaka Y, Park P. 2003. Infection behavior of Alternaria alternata Japanese pear pathotype and localization of 1,3-beta-D-glucan in compatible and incompatible interactions between the pathogen and host plants. Journal of General Plant Pathology, 2 (69):91-100. |
[30] | Tian Xin. 2012. Study on the relationship between the physical structure,enzymatic activities and fruit shrink disease resistance in different jujube varieties[Ph. D. Dissertation]. Beijing:Beijing Forestry University. (in Chinese) |
田昕. 2012. 不同枣树品种果实结构和酶活性与缩果病抗性关系分析[博士论文]. 北京: 北京林业大学. | |
[31] | Wang Y, Liu Y, He P, Chen J, Lamikanra O, Lu J. 1995. Evaluation of foliar resistance to Uncinula necator in Chinese wild vitis species. Vitis, 34 (3):159-164. |
[32] | Wang Yue-jin, He Pu-chao. 1997. Study on the inheritance of resistance to powdery mildew in Chinese native wild Vitis L. species. Scientia Agricultura Sinica, 30 (1):20-26. (in Chinese) |
王跃进, 贺普超. 1997. 中国葡萄属野生种叶片抗白粉病遗传研究. 中国农业科学, 30 (1):20-26. | |
[33] | Wang Yuejin, He Pu-chao, Zhang Jian-xia. 1999. Studies on the methods of resistance to Uncinula necator in Vitis. Journal of Northwest A & F University,(5):6-10. (in Chinese) |
王跃进, 贺普超, 张剑侠. 1999. 葡萄抗白粉病鉴定方法的研究. 西北农业大学学报,(5):6-10. | |
[34] | Wu Fengying, Liu Mengqi, Wang Yuejin. 2020. Function analysis of the stilbene synthase genes VqSTS12 and VqSTS25of the resistance topowdery mildew in Vitis quinquanqularis. Acta Horticulturae Sinica, 47 (2):205-219.. (in Chinese) |
吴凤颖, 刘梦琦, 王跃进. 2020. 中国野生毛葡萄芪合酶基因抗白粉病功能分析. 园艺学报, 47 (2):205-219. | |
[35] |
Xie X, Wang Y. 2016. VqDUF642,a gene isolated from the Chinese grape Vitis quinquangularis,is involved in berry development and pathogen resistance. Planta, 244 (5):1075-1094.
doi: 10.1007/s00425-016-2569-4 URL |
[36] |
Yang M, Luo Z, Gao S, Belwal T, Wang L, Qi M, Ban Z, Wu B, Wang F, Li L. 2021. The chemical composition and potential role of epicuticular and intracuticular wax in four cultivars of table grapes. Postharvest Biology and Technology, 173:111430.
doi: 10.1016/j.postharvbio.2020.111430 URL |
[37] |
Yao W, Wang L, Wang J, Ma F, Yang Y, Wang C, Tong W, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. 2017. VpPUB24,a novel gene from Chinese grapevine,Vitis pseudoreticulata,targets VpICE 1 to enhance cold tolerance. Journal of Experimental Botany, 68 (11):2933-2949.
doi: 10.1093/jxb/erx136 URL |
[38] |
Yeats T H, Rose J K C. 2013. The formation and function of plant cuticles. Plant Physiology, 163 (1):5-20.
doi: 10.1104/pp.113.222737 URL |
[39] | Yu Meng-meng, Shen Lin, Sheng Ji-ping. 2012. MeJA-Induced disease resistance in postharvest tomato fruits. Food Science, 33 (9):11-15. (in Chinese) |
于萌萌, 申琳, 生吉萍. 2012. 茉莉酸甲酯诱导采后番茄果实抗病的作用. 食品科学, 33 (9):11-15. | |
[40] | Yu Yi-he. 2013. Fuction study on the disease-resistance to powdery mildew of ubiquitin ligase gene from Chinese wild Vitis pseudoreticulata.[Ph. D. Dissertation]. Yangling:Northwest A & F University. (in Chinese) |
余义和. 2013. 中国野生华东葡萄泛素连接酶基因抗白粉病功能研究[博士论文]. 杨凌: 西北农林科技大学. | |
[41] |
Yuan Shu-zhi, Ding Xin-yuan, Wang Jiao, Li Li-li, Cao Jian-kang. 2015. Progress in studies on the structural resistance of fruit tissues after harvest. Food Science, 36 (7):206-210. (in Chinese)
doi: 10.1111/j.1365-2621.1971.tb04025.x URL |
袁树枝, 丁薪源, 王姣, 李丽莉, 曹建康. 2015. 采后果实组织结构抗病性研究进展. 食品科学, 36 (7):206-210. | |
[42] | Zhou Hui-ling, Li Jia-rui. 2006. The relationship between fruit texture and storage character in grapes. Acta Horticulturae Sinica, 33 (1):28-32. (in Chinese) |
周会玲, 李嘉瑞. 2006. 葡萄果实组织结构与耐贮性的关系. 园艺学报, 33 (1):28-32. |
[1] | 杨植, 张川疆, 杨芯芳, 董梦怡, 王振磊, 闫芬芬, 吴翠云, 王玖瑞, 刘孟军, 林敏娟. 枣与酸枣杂交后代果实遗传倾向及混合遗传分析[J]. 园艺学报, 2023, 50(1): 36-52. |
[2] | 邵凤清, 罗秀荣, 王奇, 张宪智, 王文彩. 果实成熟过程中的DNA甲基化调控研究进展[J]. 园艺学报, 2023, 50(1): 197-208. |
[3] | 王 飞, 李 宁, 尹延旭, 高升华, 徐 凯, 姚明华. 辣椒新品种‘鄂椒红元帅’[J]. 园艺学报, 2022, 49(S2): 119-120. |
[4] | 王燕, 刘针杉, 张静, 杨鹏飞, 马蓝, 王旨意, 涂红霞, 杨绍凤, 王浩, 陈涛, 王小蓉. 中国樱桃杂交F1代花和果实若干性状遗传倾向分析[J]. 园艺学报, 2022, 49(9): 1853-1865. |
[5] | 蒙小玉, 穆悦, 胡杨, 吴潇, 朱辰, 王慧敏, 陶书田, 张绍铃, 殷豪. 几种果实表面积的三维激光扫描测定[J]. 园艺学报, 2022, 49(9): 1998-2006. |
[6] | 张悦, 索玉静, 孙鹏, 韩卫娟, 刁松锋, 李华威, 张嘉嘉, 傅建敏, 李芳东. 柿种质资源果实形态多样性分析[J]. 园艺学报, 2022, 49(7): 1473-1490. |
[7] | 路涛, 余宏军, 李强, 蒋卫杰. 叶果量调控对番茄生长发育、果实品质和产量的影响[J]. 园艺学报, 2022, 49(6): 1261-1274. |
[8] | 向妙莲, 吴帆, 李树成, 马巧利, 王印宝, 肖刘华, 陈金印, 陈明. 外源褪黑素调控活性氧代谢诱导梨果实抗采后黑斑病[J]. 园艺学报, 2022, 49(5): 1102-1110. |
[9] | 叶泗洪, 刘飞, 添长久. 黄秋葵新品种‘皖秋葵4号’[J]. 园艺学报, 2022, 49(5): 1175-1176. |
[10] | 李黎, 冯丹丹, 潘慧, 李文艺, 邓蕾, 汪祖鹏, 钟彩虹. 猕猴桃花粉灭菌方法比较及对果实品质的影响[J]. 园艺学报, 2022, 49(4): 769-777. |
[11] | 王宏, 杨王莉, 蔺经, 杨青松, 李晓刚, 盛宝龙, 常有宏. 早熟砂梨‘苏翠1号’与其亲本‘翠冠’‘华酥’成熟果实差异代谢产物及差异基因比较分析[J]. 园艺学报, 2022, 49(3): 493-508. |
[12] | 刘文欢, 邱芳颖, 王娅, 陈朗, 马岩岩, 吕强, 易时来, 谢让金, 郑永强. 枯草芽孢杆菌液态肥对柑橘养分吸收和果实品质的影响[J]. 园艺学报, 2022, 49(3): 509-518. |
[13] | 周陈平, 杨敏, 郭金菊, 邝瑞彬, 杨护, 黄炳雄, 魏岳荣. 番木瓜成熟过程中全基因组DNA甲基化和转录组变化分析[J]. 园艺学报, 2022, 49(3): 519-532. |
[14] | 聂文锋, 王金玉, 高春娟, 陈学好. 表观遗传修饰调控园艺植物果实发育研究进展[J]. 园艺学报, 2022, 49(3): 671-686. |
[15] | 武红霞, 李星, 许文天, 郑斌, 马小卫, 苏穆清, 梁清志, 姚全胜, 王松标. 杧果‘金煌’ב热农1号’后代果实性状遗传分析[J]. 园艺学报, 2022, 49(2): 416-426. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司