园艺学报 ›› 2022, Vol. 49 ›› Issue (5): 984-994.doi: 10.16420/j.issn.0513-353x.2021-0165
刘众杰1, 郑婷1, 赵方贵1, 傅伟红1, 诸葛雅贤1, 张志昌2, 房经贵1,3,*()
收稿日期:
2022-01-11
修回日期:
2022-02-15
出版日期:
2022-05-25
发布日期:
2022-05-25
通讯作者:
房经贵
E-mail:fanggg@ njau.du.cn
基金资助:
LIU Zhongjie1, ZHENG Ting1, ZHAO Fanggui1, FU Weihong1, ZHUGE Yaxian1, ZHANG Zhichang2, FANG Jinggui1,3,*()
Received:
2022-01-11
Revised:
2022-02-15
Online:
2022-05-25
Published:
2022-05-25
Contact:
FANG Jinggui
E-mail:fanggg@ njau.du.cn
摘要:
对10个葡萄砧木品种的干旱、涝害以及盐胁迫的耐受性进行研究,以筛选综合抗性较强的品种。砧木‘520A’综合表现最好,对3种胁迫均有较强的抗性;‘420A’对2种胁迫有较强的抗性;‘3309M’‘1103P’和‘110R’分别只对其中的1种胁迫有较强的抗性;‘贝达’和‘101-14’则对3种胁迫的抗性均较弱。渗透胁迫下砧木的抗性与其可溶性糖、脯氨酸、MDA以及Ca2+的积累呈正相关,而与总叶绿素含量呈负相关。
中图分类号:
刘众杰, 郑婷, 赵方贵, 傅伟红, 诸葛雅贤, 张志昌, 房经贵. 葡萄砧木对渗透胁迫的抗性差异及生理响应机理[J]. 园艺学报, 2022, 49(5): 984-994.
LIU Zhongjie, ZHENG Ting, ZHAO Fanggui, FU Weihong, ZHUGE Yaxian, ZHANG Zhichang, FANG Jinggui. Resistance Difference and Physiological Response Mechanism of Grape Rootstocks to Osmotic Stress[J]. Acta Horticulturae Sinica, 2022, 49(5): 984-994.
砧木 Rootstock name | 来源 Source | 亲本 Parent | 砧木特性 Rootstock characteristic |
---|---|---|---|
520A | 美国 America | Vitis berlandieri × V. riparia | 生长旺盛,抗旱,抗寒,土壤适应性较广 Vigorous growth,drought resistance,cold resistance and wide soil adaptability |
110R | 法国 France | V. berlandieri × V. rupestris | 抗旱,长势旺盛,不易生根,产枝量小 Drought resistance,vigorous growth,difficult to take root and small branch yield |
贝达 Beta | 美国 America | V. riparia × V. labrusca | 长势旺盛,耐旱,耐湿,抗寒,抗病,产枝量中等 Vigorous growth,drought resistance,moisture resistance,cold resistance,disease resistance,medium branch yield |
1103P | 意大利 Italy | V. berlandieri × V. rupestris | 长势旺盛,耐湿,耐盐碱土,较耐旱 Vigorous growth,moisture resistance,salt and alkaline soil resistance,drought resistance |
抗砧3号 Kangzhen 3 | 中国 China | V. berlandieri × V. riparia | 生长旺盛,耐盐碱,抗根瘤蚜,产条量高,土壤适应性广 It has strong growth,salt and alkali resistance,phylloxera resistance,high yield and wide soil adaptability |
420A | 法国 France | V. berlandieri × V. riparia | 生长旺盛,抗旱,抗盐碱 Vigorous growth,drought resistance,salt and alkali resistance |
5BB | 奥地利 Austria | V. berlandieri × V. riparia | 生长旺盛,抗根瘤蚜,扦插生根率高,嫁接亲和性较差 Vigorous growth,resistance to phylloxera,high rooting rate and poor grafting compatibility |
101-14 | 法国 France | V. riparia × V. rupestris | 生长较旺,抗根瘤蚜,适于肥沃土壤,扦插易生根,与欧洲葡萄嫁接亲和力好 It grows vigorously,is resistant to phylloxera,is suitable for fertile soil,is easy to take root by cutting,and has good grafting affinity with European grape varieties |
3309C | 法国 France | V. riparia × V. rupestris | 生长较旺盛,抗旱,抗根瘤蚜 Strong growth,drought resistance and root rumen aphid resistance |
SO4 | 德国 Germany | V. berlandieri × V. riparia | 生长旺盛,抗旱,抗根瘤蚜能力较强,土壤适应性广 It has strong growth,drought resistance,strong resistance to phylloxera and wide soil adaptability |
表1 10个葡萄砧木品种特性
Table 1 Characteristics of 10 grape rootstocks
砧木 Rootstock name | 来源 Source | 亲本 Parent | 砧木特性 Rootstock characteristic |
---|---|---|---|
520A | 美国 America | Vitis berlandieri × V. riparia | 生长旺盛,抗旱,抗寒,土壤适应性较广 Vigorous growth,drought resistance,cold resistance and wide soil adaptability |
110R | 法国 France | V. berlandieri × V. rupestris | 抗旱,长势旺盛,不易生根,产枝量小 Drought resistance,vigorous growth,difficult to take root and small branch yield |
贝达 Beta | 美国 America | V. riparia × V. labrusca | 长势旺盛,耐旱,耐湿,抗寒,抗病,产枝量中等 Vigorous growth,drought resistance,moisture resistance,cold resistance,disease resistance,medium branch yield |
1103P | 意大利 Italy | V. berlandieri × V. rupestris | 长势旺盛,耐湿,耐盐碱土,较耐旱 Vigorous growth,moisture resistance,salt and alkaline soil resistance,drought resistance |
抗砧3号 Kangzhen 3 | 中国 China | V. berlandieri × V. riparia | 生长旺盛,耐盐碱,抗根瘤蚜,产条量高,土壤适应性广 It has strong growth,salt and alkali resistance,phylloxera resistance,high yield and wide soil adaptability |
420A | 法国 France | V. berlandieri × V. riparia | 生长旺盛,抗旱,抗盐碱 Vigorous growth,drought resistance,salt and alkali resistance |
5BB | 奥地利 Austria | V. berlandieri × V. riparia | 生长旺盛,抗根瘤蚜,扦插生根率高,嫁接亲和性较差 Vigorous growth,resistance to phylloxera,high rooting rate and poor grafting compatibility |
101-14 | 法国 France | V. riparia × V. rupestris | 生长较旺,抗根瘤蚜,适于肥沃土壤,扦插易生根,与欧洲葡萄嫁接亲和力好 It grows vigorously,is resistant to phylloxera,is suitable for fertile soil,is easy to take root by cutting,and has good grafting affinity with European grape varieties |
3309C | 法国 France | V. riparia × V. rupestris | 生长较旺盛,抗旱,抗根瘤蚜 Strong growth,drought resistance and root rumen aphid resistance |
SO4 | 德国 Germany | V. berlandieri × V. riparia | 生长旺盛,抗旱,抗根瘤蚜能力较强,土壤适应性广 It has strong growth,drought resistance,strong resistance to phylloxera and wide soil adaptability |
砧木 Rootstock | 盐害指数Salt damage index | 耐涝性 Salt tolerance | ||
---|---|---|---|---|
2 d | 4 d | 8 d | ||
520A | 0 ± h | 2.8 ± 0.0 g | 12.1 ± 0.4 j | 强Strong |
1103P | 0 ± h | 11.5 ± 0.3 f | 18.8 ± 0.6 i | 强Strong |
3309C | 0 ± h | 1.8 ± 0.2 h | 23.3 ± 0.8 h | 强Strong |
SO4 | 1.3 ± 0.2 f | 11.5 ± 0.7 f | 26.4 ± 0.7 g | 中Medium |
420A | 2.5 ± 0.3 e | 13.2 ± 0.1 e | 26.7 ± 0.8 f | 中Medium |
110R | 4.8 ± 0.2 d | 13.2 ± 0.3 e | 28.1 ± 0.9 e | 中Medium |
抗砧3号 Kangzhen 3 | 1.0 ± 0.1 g | 17.1 ± 0.4 c | 29.2 ± 1.2 d | 中Medium |
101-14 | 13.2 ± 0.3 b | 36.9 ± 1.0 a | 31.9 ± 1.3 c | 弱Sensitive |
贝达Beta | 8.4 ± 0.2 c | 15.3 ± 0.2 d | 36.2 ± 1.1 b | 弱Sensitive |
5BB | 15.2 ± 0.4 a | 25.0 ± 0.1 b | 40.0 ± 1.4 a | 弱Sensitive |
表2 盐胁迫对葡萄砧木盐害指数的比较
Table 2 Comparison of salt damage index of grape rootstock under salt stress
砧木 Rootstock | 盐害指数Salt damage index | 耐涝性 Salt tolerance | ||
---|---|---|---|---|
2 d | 4 d | 8 d | ||
520A | 0 ± h | 2.8 ± 0.0 g | 12.1 ± 0.4 j | 强Strong |
1103P | 0 ± h | 11.5 ± 0.3 f | 18.8 ± 0.6 i | 强Strong |
3309C | 0 ± h | 1.8 ± 0.2 h | 23.3 ± 0.8 h | 强Strong |
SO4 | 1.3 ± 0.2 f | 11.5 ± 0.7 f | 26.4 ± 0.7 g | 中Medium |
420A | 2.5 ± 0.3 e | 13.2 ± 0.1 e | 26.7 ± 0.8 f | 中Medium |
110R | 4.8 ± 0.2 d | 13.2 ± 0.3 e | 28.1 ± 0.9 e | 中Medium |
抗砧3号 Kangzhen 3 | 1.0 ± 0.1 g | 17.1 ± 0.4 c | 29.2 ± 1.2 d | 中Medium |
101-14 | 13.2 ± 0.3 b | 36.9 ± 1.0 a | 31.9 ± 1.3 c | 弱Sensitive |
贝达Beta | 8.4 ± 0.2 c | 15.3 ± 0.2 d | 36.2 ± 1.1 b | 弱Sensitive |
5BB | 15.2 ± 0.4 a | 25.0 ± 0.1 b | 40.0 ± 1.4 a | 弱Sensitive |
砧木 Rootstock | 旱情指数Drought damage index | 耐旱性 Drought tolerance | ||
---|---|---|---|---|
8 d | 12 d | 16 d | ||
520A | 3.1 ± 0.4 g | 6.7 ± 0.3 j | 19.6 ± 1.1 h | 强Strong |
420A | 2.5 ± 0.2 h | 14.6 ± 0.7 i | 32.9 ± 1.9 g | 强Strong |
110R | 3.1 ± 0.2 g | 29.2 ± 1.3 h | 34.2 ± 1.3 f | 强Strong |
1103P | 13.3 ± 0.9 a | 57.1 ± 2.5 d | 77.1 ± 3.1 e | 中Medium |
贝达Beta | 6.3 ± 0.4 f | 47.9 ± 2.1 g | 77.1 ± 2.9 e | 中Medium |
3309C | 8.3 ± 0.5 e | 56.3 ± 2.7 e | 85.4 ± 4.1 d | 中Medium |
SO4 | 14.6 ± 0.8 b | 50.0 ± 1.8 f | 86.3 ± 3.9 c | 中Medium |
抗砧3号 Kangzhen 3 | 16.7 ± 0.8 d | 65.8 ± 2.9 b | 87.5 ± 4.5 b | 弱Sensitive |
5BB | 33.3 ± 1.6 a | 62.5 ± 3.1 c | 87.5 ± 5.3 b | 弱Sensitive |
101-14 | 18.8 ± 1.0 c | 81.3 ± 4.2 a | 93.8 ± 5.5 a | 弱Sensitive |
表3 干旱胁迫对葡萄砧木旱情指数的比较
Table 3 Comparison of drought index of grape rootstock under drought stress
砧木 Rootstock | 旱情指数Drought damage index | 耐旱性 Drought tolerance | ||
---|---|---|---|---|
8 d | 12 d | 16 d | ||
520A | 3.1 ± 0.4 g | 6.7 ± 0.3 j | 19.6 ± 1.1 h | 强Strong |
420A | 2.5 ± 0.2 h | 14.6 ± 0.7 i | 32.9 ± 1.9 g | 强Strong |
110R | 3.1 ± 0.2 g | 29.2 ± 1.3 h | 34.2 ± 1.3 f | 强Strong |
1103P | 13.3 ± 0.9 a | 57.1 ± 2.5 d | 77.1 ± 3.1 e | 中Medium |
贝达Beta | 6.3 ± 0.4 f | 47.9 ± 2.1 g | 77.1 ± 2.9 e | 中Medium |
3309C | 8.3 ± 0.5 e | 56.3 ± 2.7 e | 85.4 ± 4.1 d | 中Medium |
SO4 | 14.6 ± 0.8 b | 50.0 ± 1.8 f | 86.3 ± 3.9 c | 中Medium |
抗砧3号 Kangzhen 3 | 16.7 ± 0.8 d | 65.8 ± 2.9 b | 87.5 ± 4.5 b | 弱Sensitive |
5BB | 33.3 ± 1.6 a | 62.5 ± 3.1 c | 87.5 ± 5.3 b | 弱Sensitive |
101-14 | 18.8 ± 1.0 c | 81.3 ± 4.2 a | 93.8 ± 5.5 a | 弱Sensitive |
砧木 Rootstock | 涝害指数Flood damage index | 耐涝性 Flood tolerance | ||
---|---|---|---|---|
16 d | 29 d | 43 d | ||
420A | 2.1 ± 0.1 j | 14.6 ± 0.4 i | 33.3 ± 1.3 j | 强Strong |
520A | 4.2 ± 0.2 i | 19.4 ± 0.6 h | 34.4 ± 1.6 i | 强Strong |
5BB | 6.3 ± 0.2 h | 31.7 ± 1.6 g | 55.0 ± 2.4 h | 中Medium |
3309C | 29.6 ± 1.3 d | 38.3 ± 1.9 f | 56.7 ± 2.7 g | 中Medium |
SO4 | 10.4 ± 0.5 g | 45.4 ± 2.2 d | 57.1 ± 2.9 f | 中Medium |
抗砧3号 Kangzhen 3 | 13.8 ± 0.7 f | 38.8 ± 2.1 e | 59.2 ± 3.1 e | 中Medium |
110R | 18.8 ± 0.9 e | 45.4 ± 2.3 d | 61.3 ± 3.3 d | 中Medium |
1103P | 31.3 ± 1.3 c | 52.1 ± 3.1 c | 70.4 ± 2.9 c | 弱Sensitive |
101-14 | 43.8 ± 2.6 a | 55.0 ± 2.6 b | 70.8 ± 3.8 b | 弱Sensitive |
贝达Beta | 36.7 ± 1.7 b | 56.3 ± 3.4 a | 81.7 ± 4.1 a | 弱Sensitive |
表4 涝害胁迫对葡萄砧木涝害指数的比较
Table 4 Comparison of waterlogging index of grape rootstocks under waterlogging stress
砧木 Rootstock | 涝害指数Flood damage index | 耐涝性 Flood tolerance | ||
---|---|---|---|---|
16 d | 29 d | 43 d | ||
420A | 2.1 ± 0.1 j | 14.6 ± 0.4 i | 33.3 ± 1.3 j | 强Strong |
520A | 4.2 ± 0.2 i | 19.4 ± 0.6 h | 34.4 ± 1.6 i | 强Strong |
5BB | 6.3 ± 0.2 h | 31.7 ± 1.6 g | 55.0 ± 2.4 h | 中Medium |
3309C | 29.6 ± 1.3 d | 38.3 ± 1.9 f | 56.7 ± 2.7 g | 中Medium |
SO4 | 10.4 ± 0.5 g | 45.4 ± 2.2 d | 57.1 ± 2.9 f | 中Medium |
抗砧3号 Kangzhen 3 | 13.8 ± 0.7 f | 38.8 ± 2.1 e | 59.2 ± 3.1 e | 中Medium |
110R | 18.8 ± 0.9 e | 45.4 ± 2.3 d | 61.3 ± 3.3 d | 中Medium |
1103P | 31.3 ± 1.3 c | 52.1 ± 3.1 c | 70.4 ± 2.9 c | 弱Sensitive |
101-14 | 43.8 ± 2.6 a | 55.0 ± 2.6 b | 70.8 ± 3.8 b | 弱Sensitive |
贝达Beta | 36.7 ± 1.7 b | 56.3 ± 3.4 a | 81.7 ± 4.1 a | 弱Sensitive |
[1] |
Bailey-Serres J, Chang R. 2005. Sensing and signalling in response to oxygen deprivation in plants and other organisms. Annals of Botany, 96:507-518.
pmid: 16051633 |
[2] |
Bailey-Serres J, Fukao T, Gibbs D J, Holdsworth M J. 2012. Making sense of low oxygen sensing. Trends in Plant Science, 17:129-138.
doi: 10.1016/j.tplants.2011.12.004 pmid: 22280796 |
[3] |
Benito B, Haro R, Amtmann A, Cuin T, Dreyer I. 2014. The twins K+ and Na+ in plants. Journal of Plant Physiology, 171:723-731.
doi: 10.1016/j.jplph.2013.10.014 URL |
[4] |
Bose J, Munns R, Shabala S, Gilliham M, Pogson B, Tyerman S. 2017. Chloroplast function and ion regulation in plants growing on saline soils:lessons from halophytes. Journal of Experimental Botany, 68:3129-3143.
doi: 10.1093/jxb/erx142 URL |
[5] |
Chaves M, Oliveira M. 2004. Mechanisms underlying plant resilience to water deficits:prospects for water-saving agriculture. Journal of Experimental Botany, 55:2365-2384.
pmid: 15475377 |
[6] |
de Herralde F, Del Mar Alsina M, Aranda X, Save R, Biel C. 2006. Effects of rootstock and irrigation regime on hydraulic architecture of Vitis vinifera L. cv. Tempranillo. OENO One, 40:133-139.
doi: 10.20870/oeno-one.2006.40.3.868 URL |
[7] |
Demmig-Adams B, Adams Iii W W. 2006. Photoprotection in an ecological context:the remarkable complexity of thermal energy dissipation. New Phytologist, 172:11-21.
pmid: 16945085 |
[8] |
Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S M A. 2009. Plant drought stress:effects,mechanisms and management. Agronomy for Sustainable Development, 29:185-212.
doi: 10.1051/agro:2008021 URL |
[9] |
Ferris H, Zheng L, Walker M. 2012. Resistance of grape rootstocks to plant-parasitic nematodes. Journal of Nematology, 44:377.
pmid: 23482972 |
[10] | Fiedler S, Vepraskas M J, Richardson J. 2007. Soil redox potential:importance,field measurements,and observations. Advances in Agronomy, 94:1-54. |
[11] | Flexas J, Diaz‐Espejo A, Galmes J, Kaldenhoff R, Medrano H, Ribas-Carbo M. 2007. Rapid variations of mesophyll conductance in response to changes in CO2concentration around leaves. Plant,Cell & Environment, 30:1284-1298. |
[12] |
Haider M S, Kurjogi M M, Khalil-Ur-Rehman M, Fiaz M, Pervaiz T, Jiu S, Jia H, Wang C, Fang J. 2017. Grapevine immune signaling network in response to drought stress as revealed by transcriptomic analysis. Plant Physiology and Biochemistry, 121:187-195.
doi: 10.1016/j.plaphy.2017.10.026 URL |
[13] |
Jogaiah S, Ramteke S D, Sharma J, Upadhyay A K. 2014. Moisture and salinity stress induced changes in biochemical constituents and water relations of different grape rootstock cultivars. International Journal of Agronomy, DOI: 10.1155/2014/789087.
doi: 10.1155/2014/789087 URL |
[14] | Kawai Y, Benz J, Kliewer W M. 1996. Effect of flooding on shoot and root growth of rooted cuttings of four grape rootstocks. Journal of the Japanese Society for Horticultural Science, 65:455-461. |
[15] | Keller M. 2010. Managing grapevines to optimise fruit development in a challenging environment:a climate change primer for viticulturists. Australian Journal of Grape & Wine Research, 16:56-69. |
[16] |
Medici A, Laloi M, Atanassova R. 2014. Profiling of sugar transporter genes in grapevine coping with water deficit. FEBS Letters, 588:3989-3997.
doi: 10.1016/j.febslet.2014.09.016 pmid: 25261250 |
[17] |
Miras-Avalos J M, Intrigliolo D S. 2017. Grape composition under abiotic constrains:water stress and salinity. Front Plant Sci, 8:851.
doi: 10.3389/fpls.2017.00851 URL |
[18] |
Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 59:651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[19] |
Peccoux A, Loveys B, Zhu J, Gambetta GA, Serge D, Philippe V, Schultz H R, Nathalie O, Dai Z. 2018. Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. Tree Physiology, 38:1026-1040.
doi: 10.1093/treephys/tpx153 URL |
[20] | Rivero R M, Ruiz J M, Romero L. 2003. Role of grafting in horticultural plants under stress conditions. Journal of Food Agriculture and Environment, 1:70-74. |
[21] |
Ruperti B, Botton A, Populin F, Eccher G, Meggio F. 2019. Flooding responses on grapevine:a physiological,transcriptional,and metabolic perspective. Frontiers in Plant Science, 10:339.
doi: 10.3389/fpls.2019.00339 URL |
[22] | Samson C, Casteran P. 1971. Techniques for propagation of grapes. Techniques de Multiplication de la Vigne, 2:3-34. |
[23] |
Schmull M, Thomas F M. 2000. Morphological and physiological reactions of young deciduous trees(Quercus robur L.,Q. petraea[Matt.] Liebl.,Fagus sylvatica L.)to waterlogging. Plant and Soil, 225:227-242.
doi: 10.1023/A:1026516027096 URL |
[24] |
Schultz H R, Matthews M A. 1993. Growth,osmotic adjustment,and cell-wall mechanics of expanding grape leaves during water deficits. Crop Science, 33:287-294.
doi: 10.2135/cropsci1993.0011183X003300020015x URL |
[25] |
Serra I, Strever A, Myburgh P, Deloire A. 2014. the interaction between rootstocks and cultivars(Vitis vinifera L.)to enhance drought tolerance in grapevine. Australian Journal of Grape and Wine Research, 20:1-14.
doi: 10.1111/ajgw.12054 URL |
[26] |
Sharma D K, Dubey A, Srivastav M, Singh AK, Sairam RK, Pandey RN, Dahuja A, Kaur C. 2011. Effect of putrescine and paclobutrazol on growth,physiochemical parameters,and nutrient acquisition of salt-sensitive citrus rootstock Karna khatta(Citrus karna Raf.)under NaCl stress. Journal of Plant Growth Regulation, 30:301-311.
doi: 10.1007/s00344-011-9192-1 URL |
[27] |
Sucu S, Yağcı A, Yıldırım K. 2018. Changes in morphological,physiological traits and enzyme activity of grafted and ungrafted grapevine rootstocks under drought stress. Erwerbs-Obstbau, 60:127-136.
doi: 10.1007/s10341-017-0345-7 URL |
[28] | Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A. 2015. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Scientific Reports, 5:1-12. |
[29] |
Walker R R, Blackmore D H, Clingeleffer P R, Correll R. 2004. Rootstock effects on salt tolerance of irrigated field‐grown grapevines(Vitis vinifera L. cv. Sultana)2. Ion concentrations in leaves and juice. Australian Journal of Grape and Wine Research, 10:90-99.
doi: 10.1111/j.1755-0238.2004.tb00011.x URL |
[30] | Yeung E, Van Veen H, Vashisht D, Sobral P, Hummel M, Rankenberg T, Steffens B, Steffen A, Sauter M, de Vries M, Schuurink R C, Bazin J, Bailey J, Voesenek L, Sasidharan R. 2018. A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 115:E6085-E6094. |
[31] |
Zheng T, Dong T, Muhammad H, Jin H, Jia H, Fang J. 2020. Brassinosteroid regulates 3-Hydroxy-3-methylglutaryl CoA reductase to promote grape fruit development. Journal of Agricultural and Food Chemistry, 68 (43):11987-11996.
doi: 10.1021/acs.jafc.0c04466 pmid: 33059448 |
[1] | 王晓晨, 聂子页, 刘先菊, 段 伟, 范培格, 梁振昌, . 脱落酸对‘京香玉’葡萄果实单萜物质合成的影响[J]. 园艺学报, 2023, 50(2): 237-249. |
[2] | 张晓明, 闫国华, 周 宇, 王 晶, 段续伟, 吴传宝, 张开春. 甜樱桃砧木新品种‘京春2号’[J]. 园艺学报, 2022, 49(S2): 31-32. |
[3] | 王宝亮, 刘凤之, 冀晓昊, 王孝娣, 史祥宾, 张艺灿, 李 鹏, 王海波. 早熟鲜食葡萄新品种‘华葡早玉’[J]. 园艺学报, 2022, 49(S2): 33-34. |
[4] | 王宝亮, 王海波, 冀晓昊, 王孝娣, 史祥宾, 王志强, 王小龙, 刘凤之. 中熟鲜食葡萄新品种‘华葡黄玉’[J]. 园艺学报, 2022, 49(S2): 35-36. |
[5] | 牛早柱, 赵艳卓, 陈 展, 宣立锋, 牛帅科, 魏建国, 褚凤杰, 杨丽丽. 晚熟无核葡萄新品种‘紫龙珠’[J]. 园艺学报, 2022, 49(S2): 37-38. |
[6] | 师校欣, 杜国强, 杨丽丽, 乔月莲, 黄成立, 王素月, 赵跃欣, 魏晓慧, 王 莉, 齐向丽. 晚熟无核葡萄新品种‘红峰无核’[J]. 园艺学报, 2022, 49(S2): 39-40. |
[7] | 吴月燕, 陈天池, 王立如, 韩善琪, 付 涛. 鲜食葡萄新品种‘甬早红’[J]. 园艺学报, 2022, 49(S2): 41-42. |
[8] | 余阳俊, 汪维红, 苏同兵, 张凤兰, 张德双, 赵岫云, 于拴仓, 李佩荣, 辛晓云, 王 姣. 抗根肿病耐抽薹大白菜新品种‘京春CR3’[J]. 园艺学报, 2022, 49(S2): 87-88. |
[9] | 王丽丽, 王 鑫, 吴海东, 温 蔷, 杨晓飞. 抗根肿病大白菜新品种‘辽白28’[J]. 园艺学报, 2022, 49(S2): 89-90. |
[10] | 田红梅, 刘 娟, 张长坤, 陶 珍, 张 建, 王朋成, . 甜瓜砧木用南瓜新品种‘皖砧6号’[J]. 园艺学报, 2022, 49(S2): 127-128. |
[11] | 王晓玥, 闫爱玲, 张国军, 王慧玲, 任建成, 刘振华, 孙 磊, 徐海英, . 葡萄新品种‘瑞都晚红’[J]. 园艺学报, 2022, 49(S1): 29-30. |
[12] | 聂鑫淼, 栾恒, 冯改利, 王超, 李岩, 魏珉. 硅营养和嫁接砧木对黄瓜幼苗耐冷性的影响[J]. 园艺学报, 2022, 49(8): 1795-1804. |
[13] | 王勇健, 孔俊花, 范培格, 梁振昌, 金秀良, 刘布春, 代占武. 葡萄表型组高通量获取及分析方法研究进展[J]. 园艺学报, 2022, 49(8): 1815-1832. |
[14] | 郑晓东, 袭祥利, 李玉琪, 孙志娟, 马长青, 韩明三, 李少旋, 田义轲, 王彩虹. 油菜素内酯对盐碱胁迫下平邑甜茶幼苗生长的影响及调控机理研究[J]. 园艺学报, 2022, 49(7): 1401-1414. |
[15] | 魏晓羽, 王跃进. 中国野生葡萄果皮解剖结构与白粉病抗性的相关性研究[J]. 园艺学报, 2022, 49(6): 1200-1212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司