园艺学报 ›› 2022, Vol. 49 ›› Issue (4): 816-826.doi: 10.16420/j.issn.0513-353x.2021-0007
刘筱玮1, 夏斌1, 李子葳1, 杨宇佳1, 陈斌1, 周蕴薇2,**(), 何淼1,**()
收稿日期:
2021-11-29
修回日期:
2022-03-07
出版日期:
2022-04-25
发布日期:
2022-04-24
通讯作者:
周蕴薇,何淼
E-mail:dlzhyw@126.com;hm2017148@126.com
基金资助:
LIU Xiaowei1, XIA Bin1, LI Ziwei1, YANG Yujia1, CHEN Bin1, ZHOU Yunwei2,**(), HE Miao1,**()
Received:
2021-11-29
Revised:
2022-03-07
Online:
2022-04-25
Published:
2022-04-24
Contact:
ZHOU Yunwei,HE Miao
E-mail:dlzhyw@126.com;hm2017148@126.com
摘要:
从野菊(Chrysanthemum indicum)中克隆了cin-miR396a前体序列及其启动子,对前体序列进行比对与进化分析,对启动子顺式作用元件进行分析,并研究了cin-miR396a前体序列对拟南芥的遗传转化及对其耐盐性的影响。结果表明,cin-MIR396a长度为145 bp,含有完整的茎环结构,与拟南芥ath-MIR396a进化关系最近。启动子区具有光信号、茉莉酸甲酯、赤霉素、水杨酸、脱落酸等多种响应元件,推测cin-MIR396a参与多种逆境胁迫下的应答及调控。在拟南芥中过表达cin-miR396a前体可以提高盐胁迫下种子发芽率以及成苗期的耐盐性,cin-miR396a在拟南芥响应盐胁迫中发挥正调控作用。
中图分类号:
刘筱玮, 夏斌, 李子葳, 杨宇佳, 陈斌, 周蕴薇, 何淼. 拟南芥中过表达野菊miR396a基因增强其耐盐性[J]. 园艺学报, 2022, 49(4): 816-826.
LIU Xiaowei, XIA Bin, LI Ziwei, YANG Yujia, CHEN Bin, ZHOU Yunwei, HE Miao. Overexpression of Chrysanthemum indicum miR396a Gene in Arabidopsis Enhances Its Salt Tolerance[J]. Acta Horticulturae Sinica, 2022, 49(4): 816-826.
用途 Usage | 引物名称 Primer name | 引物序列(5′-3′) Sequence |
---|---|---|
前体基因克隆 Precursor gene cloning | MIR396a-F | TCTAGACGCTATTGTTTTACACACAAGTGTG |
MIR396a-R | CCCGGGCTGTGTTGATTCTTTCTCTATCTT | |
启动子克隆 Promoter cloning | P-miR396a-F | GCTCTCCATCTTGTTTCTCGTC |
转化植株PCR验证 PCR assay of the transgenic plants | P-miR396a-R | GCAGTTCAAGAAAGCTGTGGAAG |
35S-F | TCCCACTATCCTTCGCAAGAC | |
miR396a-R | CTGTGTTGATTCTTTCTCTATCTT | |
实时荧光定量PCR | athU6-F | CGATAAAATTGGAACGATACAGA |
Fluorescent quantitative real-time | athU6-R | ATTTGGACCATTTCTCGATTTGT |
PCR(qRT-PCR) | cin-miR396aF | TTCCACAGCTTTCTTGAACTG |
表1 本研究中所用引物及序列
Table 1 Primers and sequences used in this study
用途 Usage | 引物名称 Primer name | 引物序列(5′-3′) Sequence |
---|---|---|
前体基因克隆 Precursor gene cloning | MIR396a-F | TCTAGACGCTATTGTTTTACACACAAGTGTG |
MIR396a-R | CCCGGGCTGTGTTGATTCTTTCTCTATCTT | |
启动子克隆 Promoter cloning | P-miR396a-F | GCTCTCCATCTTGTTTCTCGTC |
转化植株PCR验证 PCR assay of the transgenic plants | P-miR396a-R | GCAGTTCAAGAAAGCTGTGGAAG |
35S-F | TCCCACTATCCTTCGCAAGAC | |
miR396a-R | CTGTGTTGATTCTTTCTCTATCTT | |
实时荧光定量PCR | athU6-F | CGATAAAATTGGAACGATACAGA |
Fluorescent quantitative real-time | athU6-R | ATTTGGACCATTTCTCGATTTGT |
PCR(qRT-PCR) | cin-miR396aF | TTCCACAGCTTTCTTGAACTG |
图3 cin-MIR396a系统进化分析 ath:拟南芥;bdi:二穗短柄草;fve:野草莓;gma:大豆;mtr:蒺藜状苜蓿;nta:烟草;osa:水稻;sly:番茄;stu:马铃薯;sbi:高粱;tcc:可可树;vvi:葡萄;zma:玉米。
Fig. 3 Phylogenetic relationship analysis of cin-MIR396a ath:Arabidopsis thaliana;bdi:Brachypodium distachyon;fve:Fragaria vesca;gma:Glycie max;mtr:Medicago truncatula;nta:Nicotiana tabacum;osa:Oryza sativa;sly:Solanum lycopersicum;stu:Solanum tuberosum;sbi:Sorghum bicolor;tcc:Theobroma cacao;vvi:Vitis vinifera;zma:Zea mays.
顺式作 用元件 cis-acting elements | 功能 Function | 野菊 Chrysanthemum indicum | 拟南芥 Arabidopsis thaliana | 水稻 Oryza sativa |
---|---|---|---|---|
A-box | 顺式作用调节元件cis-Acting regulatory element | + | - | - |
ABRE | 脱落酸应答元件cis-Acting element involved in ABA responsiveness | + | + | + |
ACE | 光应答元件cis-Acting element involved in light responsiveness | - | - | + |
AE-box | 部分光应答元件Part of a light responsive element | - | - | + |
ARE | 厌氧诱导应答元件cis-Acting element essential for the anaerobic induction | + | + | - |
Box 4 | 部分光应答元件Part of a light responsive element | + | + | - |
BoxⅡ | 部分光应答元件Part of a light responsive element | + | - | - |
CAAT-box | 增强子元件cis-Acting element playing an enhancing role | + | + | + |
CAT-box | 分生组织表达有关的应答元件cis-Acting element related to meristem expression | - | - | + |
CCAAT-box | MYBHv1结合位点MYBHv1 binding site | + | - | - |
CGTCA-motif | 茉莉酸甲酯应答元件cis-Acting element involved in the MeJA-responsiveness | + | + | + |
circadian | 昼夜节律应答元件cis-Acting element involved in circadian control | - | + | - |
ERE | 乙烯应答元件Ethylene responsive element | + | + | - |
GA-motif | 部分光应答元件Part of a light responsive element | + | - | - |
GARE-motif | 赤霉素应答元件Gibberellin-responsive element | - | - | + |
GATA-motif | 部分光应答元件Part of a light responsive element | + | - | + |
G-Box | 光应答元件cis-Acting element involved in light responsiveness | + | + | + |
GCN4_motif | 胚乳表达的应答元件cis-Acting element involved in endosperm expression | + | - | - |
I-box | 部分光应答元件Part of a light responsive element | + | - | - |
MBS | 干旱诱导中MYB 结合位点MYB binding site involved in drought-inducibility | + | - | - |
MYB | MYB结合位点MYB binding site | + | + | + |
MYC | MYC结合位点MYC binding site | + | + | + |
O2-site | 玉米醇溶蛋白代谢的应答元件cis-Acting element involved in zein metabolism regulation | + | - | + |
P-box | 赤霉素应答元件cis-Acting element involved in gibberellin-responsive | + | + | - |
TATA-box | 核心启动子元件Core promoter elements | + | + | + |
TCA-element | 水杨酸应答元件cis-Acting element involved in salicylic acid responsiveness | + | - | - |
TGACG-motif | 茉莉酸甲酯应答元件cis-Acting element involved in the MeJA-responsiveness | - | + | + |
表2 cin-MIR396a启动子区顺时作用元件比较
Table 2 Comparison of cis-acting elements in promoters of cin-MIR396a
顺式作 用元件 cis-acting elements | 功能 Function | 野菊 Chrysanthemum indicum | 拟南芥 Arabidopsis thaliana | 水稻 Oryza sativa |
---|---|---|---|---|
A-box | 顺式作用调节元件cis-Acting regulatory element | + | - | - |
ABRE | 脱落酸应答元件cis-Acting element involved in ABA responsiveness | + | + | + |
ACE | 光应答元件cis-Acting element involved in light responsiveness | - | - | + |
AE-box | 部分光应答元件Part of a light responsive element | - | - | + |
ARE | 厌氧诱导应答元件cis-Acting element essential for the anaerobic induction | + | + | - |
Box 4 | 部分光应答元件Part of a light responsive element | + | + | - |
BoxⅡ | 部分光应答元件Part of a light responsive element | + | - | - |
CAAT-box | 增强子元件cis-Acting element playing an enhancing role | + | + | + |
CAT-box | 分生组织表达有关的应答元件cis-Acting element related to meristem expression | - | - | + |
CCAAT-box | MYBHv1结合位点MYBHv1 binding site | + | - | - |
CGTCA-motif | 茉莉酸甲酯应答元件cis-Acting element involved in the MeJA-responsiveness | + | + | + |
circadian | 昼夜节律应答元件cis-Acting element involved in circadian control | - | + | - |
ERE | 乙烯应答元件Ethylene responsive element | + | + | - |
GA-motif | 部分光应答元件Part of a light responsive element | + | - | - |
GARE-motif | 赤霉素应答元件Gibberellin-responsive element | - | - | + |
GATA-motif | 部分光应答元件Part of a light responsive element | + | - | + |
G-Box | 光应答元件cis-Acting element involved in light responsiveness | + | + | + |
GCN4_motif | 胚乳表达的应答元件cis-Acting element involved in endosperm expression | + | - | - |
I-box | 部分光应答元件Part of a light responsive element | + | - | - |
MBS | 干旱诱导中MYB 结合位点MYB binding site involved in drought-inducibility | + | - | - |
MYB | MYB结合位点MYB binding site | + | + | + |
MYC | MYC结合位点MYC binding site | + | + | + |
O2-site | 玉米醇溶蛋白代谢的应答元件cis-Acting element involved in zein metabolism regulation | + | - | + |
P-box | 赤霉素应答元件cis-Acting element involved in gibberellin-responsive | + | + | - |
TATA-box | 核心启动子元件Core promoter elements | + | + | + |
TCA-element | 水杨酸应答元件cis-Acting element involved in salicylic acid responsiveness | + | - | - |
TGACG-motif | 茉莉酸甲酯应答元件cis-Acting element involved in the MeJA-responsiveness | - | + | + |
图4 过表达cin-MIR396a拟南芥抗性筛选(A)与PCR验证(B) M:Marker 2000;1:重组质粒;2:野生型拟南芥;3:阴性对照;4 ~ 10:转化植株。
Fig. 4 Resistance screening(A)and PCR verification(B)of Arabidopsis thaliana overexpressing cin-MIR396a M:Marker 2000;1:Recombinant plasmid;2:Wild-type Arabidopsis;3:Negative control;4-10:Transformed plant.
图5 过表达拟南芥株系(OE1 ~ OE7)中miR396a的表达分析 * 表明在α = 0. 05 水平差异显著;** 表明在α = 0.01 水平差异显著。WT:野生型;OE1 ~ OE7:过表达株系。下同。
Fig. 5 Expression analysis of miR396a in transgenic Arabidopsis(OE1-OE7) * indicates that the difference is significant at the α = 0.05 level;** indicates that the difference is significant at the α = 0.01 level. WT:Wild type;OE1-OE7:Overexpression strains. The same below.
图6 过表达cin-MIR396a拟南芥(OE4、OE6、OE7)在不同盐浓度处理下的发芽情况
Fig. 6 Germination of Arabidopsis(OE4,OE6,OE7)overexpressing cin-MIR396a under different salt concentrations
图7 过表达cin-MIR396a拟南芥(OE4、OE6、OE7)在300 mol · L-1 NaCl处理下的形态特征
Fig. 7 Morphological characteristics of overexpressing cin-MIR396a Arabidopsis(OE4,OE6,OE7)under 300 mol · L-1 NaCl treatment
图8 300 mol · L-1 NaCl胁迫8 d对转基因拟南芥(OE4、OE6、OE7)MDA含量(A)和相对电导率(B)的影响
Fig. 8 Effects of 300 mol · L-1 NaCl stress treatment for 8 d on MDA content(A)and relative conductivity(B)of transgenic Arabidopsis(OE4,OE6,OE7)
[1] |
Bao M L, Bian H W, Zha Y L, Li F Y, Sun Y Z, Bai B, Chen Z H, Wang J H, Zhu M Y, Han N. 2014. miR396a-mediated basic Helix-Loop-Helix transcription factor bHLH74 repression acts as a regulator for root growth in Arabidopsis seedlings. Plant Cell Physiol, 55:1343-1353.
doi: 10.1093/pcp/pcu058 URL |
[2] |
Cao D Y, Wang J, Ju Z, Liu Q Q, Li S, Tian H Q, Fu D Q, Zhu H L, Luo Y B, Zhu B Z. 2016. Regulations on growth and development in tomato cotyledon,flower and fruit via destruction of miR396 with short tandem target mimic. Plant Sci, 247:1-12.
doi: 10.1016/j.plantsci.2016.02.012 URL |
[3] |
Casadevall R, Rodriguez R E, Debernardi J M, Palatnik J F, Casati P. 2013. Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves. Plant Cell, 25:3570-3583.
doi: 10.1105/tpc.113.117473 URL |
[4] |
Chandran V, Wang H, Gao F, Cao X L, Chen Y P, Li G B, Zhu Y, Yang X M, Zhang L L, Zhao Z X, Zhao J H, Wang Y G, Li S C, Fan J, Li Y, Zhao J Q, Li S Q, Wang W M. 2019. miR396-OsGRFs module balances growth and rice blast disease-resistance. Front Plant Sci, 9:1999.
doi: 10.3389/fpls.2018.01999 URL |
[5] |
Chen L, Luan Y S, Zhai J M. 2015. Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Reports, 34:2013-2025.
doi: 10.1007/s00299-015-1847-0 pmid: 26242449 |
[6] |
Debernardi J M, Mecchia M A, Vercruyssen L, Smaczniak C, Kaufmann K, Inze D, Rodriguez R E, Palatnik J F. 2014. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. Plant J, 79:413-426.
doi: 10.1111/tpj.12567 URL |
[7] |
Feng L, Xia R, Liu Y L. 2019. Comprehensive characterization of miRNA and PHAS loci in the diploid strawberry(Fragaria vesca)genome. Horticultural Plant Journal, 5 (6):255-267.
doi: 10.1016/j.hpj.2019.11.004 URL |
[8] |
Giacomelli J I, Weigel D, Chan R L, Manavella P A. 2012. Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytologist, 195:766-773.
doi: 10.1111/j.1469-8137.2012.04259.x pmid: 22846054 |
[9] |
Hu M Y, Shi Z G, Zhang Z B, Zhang Y J, Li H. 2012. Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regul, 68:177-188.
doi: 10.1007/s10725-012-9705-3 URL |
[10] |
Jones-Rhoades M W, Bartel D P. 2004. Computational identification of plant MicroRNAs and their targets,including a stress-induced miRNA. Mol Cell, 14:787-799.
pmid: 15200956 |
[11] |
Liebsch D, Palatnik J F. 2020. MicroRNA miR396,GRF transcription factors and GIF co-regulators:a conserved plant growth regulatory module with potential for breeding and biotechnology. Curr Opin Plant Biol, 53:31-42.
doi: 10.1016/j.pbi.2019.09.008 URL |
[12] | Lin S, Sun M. 2017. Analysis of physiological response and salt tolerance mechanism of Crossostephium chinense and four species of Chrysanthemum under salt stress. Acta Botanica Boreali-Occidentalia Sinica, 37:1137-1144. |
[13] |
Manavella P A, Yang S W, Palatnik J. 2019. Keep calm and carry on:miRNA biogenesis under stress. Plant J, 99:832-843.
doi: 10.1111/tpj.14369 |
[14] |
Noon J B, Hewezi T, Baum T J. 2019. Homeostasis in the soybean miRNA396-GRF network is essential for productive soybean cyst nematode infections. J Exp Bot, 70:1653-1668.
doi: 10.1093/jxb/erz022 URL |
[15] |
Samad A F A, Nazaruddin N, Jani J, Ismail I. 2020. Identification and analysis of microRNAs responsive to abscisic acid and methyl jasmonate treatments in Persicaria minor. Sains Malays, 49:1245-1272.
doi: 10.17576/jsm-2020-4906-04 URL |
[16] |
Song C, Liu Y F, Song A P, Dong G Q, Zhao H B, Sun W, Ramakrishnan S, Wang Y, Wang S B, Li T Z, Niu Y, Jiang J F, Dong B, Xia Y, Chen S M, Hu Z G, Chen F D, Chen S L. 2018. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of Chrysanthemum flowers and medicinal traits. Mol Plant, 11:1482-1491.
doi: S1674-2052(18)30308-3 pmid: 30342096 |
[17] | Su Liyao, Wang Peiyu, Jiang Mengqi, Huang Shuqi, Xue Xiaodong, Liu Mengyu, Xiao Xuechen, Lai Chunwang, Zhang Zihao, Chen Yukun, Lai Zhongxiong, Lin Yuling. 2021. The activity verification of pri-miR319a encode regulatory peptide in Dimocarpus longan. Acta Horticulturae Sinica, 48 (5):908-920. (in Chinese) |
苏立遥, 王培育, 蒋梦琦, 黄倏祺, 薛晓东, 刘梦雨, 肖学宸, 赖春旺, 张梓浩, 陈裕坤, 赖钟雄, 林玉玲. 2021. 龙眼pri-miR319a 编码短肽活性的研究. 园艺学报, 48 (5):908-920. | |
[18] |
Sun Y, Gao H, Guan Z, Chen S, Fang W, Chen F. 2012. Analysis of shade-tolerance and determination of evaluation indicators of shadetolerance in seedlings of Chrysanthemum grandiflorum and its closely related genera. Acta Ecologica Sinica, 32:1908-1916.
doi: 10.5846/stxb201103010250 URL |
[19] | Sunitha S, Loyola R, Alcalde J A, Arce-Johnson P, Matus J T, Rock C D. 2019. The role of UV-B light on small RNA activity during grapevine berry development. G3-Genes Genom Genet, 9:769-787. |
[20] |
Szczygiel-Sommer A, Gaj M D. 2019. The miR396-GRF regulatory module controls the embryogenic response in Arabidopsis via an auxin-related pathway. Int J Mol Sci, 20 (20):5221.
doi: 10.3390/ijms20205221 URL |
[21] |
Wang R, Han X K, Xu S, Xia B, Jiang Y M, Xue Y, Wang R. 2019. Cloning and characterization of a tyrosine decarboxylase involved in the biosynthesis of galanthamine in Lycoris aurea. PeerJ, 7:e6729.
doi: 10.7717/peerj.6729 URL |
[22] | Wei Yan-hong, Liu Zhen, Li Ke, Meng Yuan, Wang Hui, Mao Jiang-ping, Ma Dou-dou, Li Shao-huan, Ma Juan-juan, Lu Xian, Zhang Dong. 2020. Genome-wide identification and expression analysis of miR396 family during adventitious root development in apple. Acta Horticulturae Sinica, 47 (7):1237-1252. (in Chinese) |
韦燕红, 刘桢, 李珂, 孟媛, 汪蕙, 毛江萍, 马豆豆, 李少欢, 马娟娟, 卢显, 张东. 2020. 苹果miR396家族鉴定及在不定根发育过程中的表达分析. 园艺学报, 47 (7) :1237-1252. | |
[23] | Yao Lixiao, He Yongrui, Chen Shanchun. 2020. Research advances of citrus microRNAs in plant development and stress resistance. Acta Horticulturae Sinica, 47 (5):995-1008. (in Chinese) |
姚利晓, 何永睿, 陈善春. 2020. microRNA参与柑橘生长发育和抗逆的研究进展. 园艺学报, 47 (5):995-1008. | |
[24] | Yu S, Wang J W. 2020. The crosstalk between MicroRNAs and gibberellin signalling in plants. Plant & Cell Physiology, 61 (11):1880-1890. |
[25] |
Yuan S R, Zhao J M, Li Z G, Hu Q, Yuan N, Zhou M, Xia X X, Noorai R, Saski C, Li S G, Luo H. 2019. MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass. Horticulture Research, 6 (1) :1-13.
doi: 10.1038/s41438-018-0066-6 URL |
[26] | Zhai J, Luan Y, Cui J. 2013. Evolution and Function Analysis of miR396 Gene Family. Bulletin of Botanical Research, 33:421-428. |
[27] |
Zhang X N, Li X, Liu J H. 2014. Identification of conserved and novel cold-responsive MicroRNAs in trifoliate orange(Poncirus trifoliata (L.) Raf.)using high-throughput sequencing. Plant Molecular Biology Reporter, 32:328-341.
doi: 10.1007/s11105-013-0649-1 URL |
[28] | Zhang Xiaoyi, Hong Yuhui, Zhang Yuanyuan, Luan Yushi. 2021. Preliminary study on the role of sly-miR166b and its target genes in tomato resistance to late blight. Acta Horticulturae Sinica, 48 (8):1595-1604. (in Chinese) |
张晓艺, 洪雨慧, 张媛媛, 栾雨时. 2021. Sly-miR166b及其靶基因在番茄抗晚疫病中的作用初探. 园艺学报, 48 (8):1595-1604. | |
[29] |
Zhao Y, Lu Z, He L. 2014. Effects of saline-alkaline stress on seed germination and seedling growth of Sorghum bicolor(L.)moench. Applied Biochemistry and Biotechnology, 173:1680-1691.
doi: 10.1007/s12010-014-0956-5 URL |
[1] | 任 菲, 卢苗苗, 刘吉祥, 陈信立, 刘道凤, 眭顺照, 马 婧. 蜡梅胚胎晚期丰富蛋白基因CpLEA的表达及抗性分析[J]. 园艺学报, 2023, 50(2): 359-370. |
[2] | 林元秘, 朱文姣, 陈敏, 薛春梅, 晋芳宇, 朱羽平, 蒋欣玥, 叶凌峰, 倪姝南伶, 杨清. miR396b负调控茄子对黄萎病的防御反应[J]. 园艺学报, 2022, 49(8): 1713-1722. |
[3] | 刘众杰, 郑婷, 赵方贵, 傅伟红, 诸葛雅贤, 张志昌, 房经贵. 葡萄砧木对渗透胁迫的抗性差异及生理响应机理[J]. 园艺学报, 2022, 49(5): 984-994. |
[4] | 相立, 赵蕾, 王玫, 吕毅, 王艳芳, 沈向, 陈学森, 尹承苗, 毛志泉. 苹果MdWRKY74的克隆和功能分析[J]. 园艺学报, 2022, 49(3): 482-492. |
[5] | 杨妮, 万绮雯, 李逸民, 韩妙华, 滕瑞敏, 刘洁霞, 庄静. 外源亚精胺对盐胁迫下茶树光合特性及关键酶基因表达的影响[J]. 园艺学报, 2022, 49(2): 378-394. |
[6] | 朱俊飞, 李鑫, 董康挺, 唐志菲, 边秀举, 王丽宏, 李会彬, 孙鑫博. 转匍匐翦股颖AsHSP26.8a拟南芥株系的光合作用研究[J]. 园艺学报, 2021, 48(8): 1619-1625. |
[7] | 陈皓炜, 陈梦娇, 王雅慧, 张榕蓉, 王欣蕊, 徐志胜, 谭国飞, 熊爱生. 盐胁迫下胡萝卜肉质根中木质素响应机理研究[J]. 园艺学报, 2021, 48(1): 153-161. |
[8] | 韦燕红,刘 桢,李 珂,孟 媛,汪 蕙,毛江萍,马豆豆,李少欢,马娟娟,卢 显,张 东*. 苹果miR396家族鉴定及在不定根发育过程中的表达分析[J]. 园艺学报, 2020, 47(7): 1237-1252. |
[9] | 赵凯茜,丁 茜,王跃进*. 中国野生毛葡萄芪合酶基因VqSTS11和VqSTS23调控抗白粉病的研究[J]. 园艺学报, 2020, 47(7): 1264-1276. |
[10] | 秦雅琪,胡桂兵,赵杰堂*. 发根农杆菌介导的荔枝LcMYB1转化烟草叶片的研究[J]. 园艺学报, 2020, 47(4): 635-642. |
[11] | 李运合, 刘 敏, 刘建东, 吴青松. 杧果MiPGP1和MiPGP2的表达分析及其对拟南芥不定根形成的影响[J]. 园艺学报, 2020, 47(12): 2317-2330. |
[12] | 郑福超1,耿兴敏1,*,岳远征1,苏家乐2,贾新平2. 盐胁迫下杜鹃差异表达基因的cDNA-SCoT分析[J]. 园艺学报, 2019, 46(6): 1192-1200. |
[13] | 朱早兵,虞夏清*,翟于菲,王盼乔,赵勤政,李 季,娄群峰,陈劲枫*. 黄瓜microRNA171的克隆与功能分析[J]. 园艺学报, 2019, 46(5): 864-876. |
[14] | 路 静,马齐军,康 慧,李文浩,刘亚静,郝玉金,由春香*. 苹果糖转运蛋白基因MdSWEET1在番茄中异源表达提高其耐盐性[J]. 园艺学报, 2019, 46(3): 433-443. |
[15] | 刘秀霞,梁宇宁,张伟伟,霍艳红,冯守千,邱化荣,何晓文,吴树敬*,陈学森* . 超表达MdFLS2的拟南芥fls2突变体识别细菌鞭毛蛋白,提高对轮纹病菌的抗性[J]. 园艺学报, 2018, 45(5): 827-844. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司