园艺学报 ›› 2022, Vol. 49 ›› Issue (4): 801-815.doi: 10.16420/j.issn.0513-353x.2021-0660
收稿日期:
2021-08-26
修回日期:
2022-03-21
出版日期:
2022-04-25
发布日期:
2022-04-24
通讯作者:
肖扬
E-mail:xiaoyang@mail.hzau.edu.cn
基金资助:
SHEN Nan, ZHANG Jingcheng, WANG Chengchen, BIAN Yinbing, XIAO Yang*()
Received:
2021-08-26
Revised:
2022-03-21
Online:
2022-04-25
Published:
2022-04-24
Contact:
XIAO Yang
E-mail:xiaoyang@mail.hzau.edu.cn
摘要:
对香菇子实体发育过程中不同阶段及组织(菌盖和菌柄)进行转录组测序,分析了差异表达基因、基因表达趋势、基因共表达网络及差异可变剪接事件。分析结果表明:在转色菌丝体阶段,大量碳水化合物代谢相关基因上调表达;此外,光受体等信号转导相关基因以及黑色素合成相关基因也上调表达,其可能参与到菌丝转色过程。原基形成过程可能涉及与环境因子感知、核糖体合成、真菌细胞壁重塑、蛋白质降解和染色质修饰等相关基因。与DNA复制和蛋白质降解相关的基因可能在菌盖发育过程中发挥重要作用,而糖苷水解酶基因可能在开伞过程中发挥作用。碳酸酐酶、几丁质酶、GH55家族蛋白和细胞色素P450编码基因可能在菌柄伸长过程中发挥作用。
中图分类号:
沈楠, 张荆城, 王成晨, 边银丙, 肖扬. 香菇子实体发育过程中的转录组研究[J]. 园艺学报, 2022, 49(4): 801-815.
SHEN Nan, ZHANG Jingcheng, WANG Chengchen, BIAN Yinbing, XIAO Yang. Studies on Transcriptome During Fruiting Body Development of Lentinula edodes[J]. Acta Horticulturae Sinica, 2022, 49(4): 801-815.
图1 用于转录组测序的香菇不同发育阶段样品 MY:转色菌丝;PR:原基;D1PI:幼嫩子实体菌盖;D1ST:幼嫩子实体菌柄;D2PI:开伞前的成熟子实体菌盖;D2ST:开伞前的成熟子实体菌柄;MFPI:开伞后的成熟子实体菌盖;MFST:开伞后的成熟子实体菌柄。下同。
Fig. 1 Samples from different development stages of Lentinula edodes for transcriptome sequencing MY:Mycelium with brown film;PR:Primordium;D1PI:Pileus of young fruiting body;D1ST:Stipe of young fruiting body;D2PI:Pileus of mature fruiting body before pileus opening;D2ST:Stipe of mature fruiting body before pileus opening;MFPI:Pileus of mature fruiting body after pileus opening;MFST:Stipe of mature fruiting body after pileus opening. The same below.
图2 香菇相邻发育阶段及同一阶段不同组织(菌盖和菌柄)之间的差异表达基因数量 样品代号与图1一致。
Fig. 2 The number of DEGs between two adjacent developmental stages or tissues(pileus and stipe)at the same stage The code names of samples are consistent with those in Fig. 1.
图3 显著基因表达模式中基因显著富集的GO条目及表达量热图 表达模式方框内左上角的数字代表表达模式的编号,左下角的数字代表该表达模式中的基因数量。样品代号与图1一致。
Fig. 3 The enriched GO terms and heatmap of gene expression of genes in significant profiles In the profile box,the number in the upper left corner represents the profile number and the number in the bottom left corner represents the number of genes in it. The code names of samples are consistent with those in Fig. 1.
图4 基因共表达模块与香菇各发育阶段或组织的相关性 样品代号与图1一致。
Fig. 4 The relationships between gene co-expression modules and different development stages or tissues in Lentinula edodes The code names of samples are consistent with those in Fig. 1.
图5 香菇不同发育阶段或组织的差异可变剪接事件的数量(A)和差异剪接基因及差异表达基因数量(B) 样品代号与图1一致。
Fig. 5 The number of DASEs(A),DSGs and DEGs(B)between adjacent stages or tissues at the same stage The code names of samples are consistent with those in Fig. 1.
样品 | 功能 Function | 基因编号 | 基因功能注释 |
---|---|---|---|
Sample | Gene ID | Gene annotation | |
MY vs. PR | 碳水化合物代谢相关 Related to carbohydrate metabolism | jgi.p|Lenedo1|1049584 | 糖苷水解酶家族10蛋白 |
Glycoside hydrolase family 10 protein | |||
jgi.p|Lenedo1|1114896 | 内切葡聚糖酶V类似蛋白 | ||
Endoglucanase V-like protein | |||
jgi.p|Lenedo1|1038064 | 糖苷水解酶家族61蛋白 | ||
Glycoside hydrolase family 61 protein | |||
jgi.p|Lenedo1|1159040 | 糖苷水解酶家族95蛋白 | ||
Glycoside hydrolase family 95 protein | |||
jgi.p|Lenedo1|1158159 | 糖苷水解酶家族10蛋白 | ||
Glycoside hydrolase family 10 protein | |||
jgi.p|Lenedo1|464359 | 糖苷水解酶 Glycoside hydrolase | ||
jgi.p|Lenedo1|1073151 | 糖苷水解酶家族18蛋白 | ||
Glycoside hydrolase family 18 protein | |||
环境因子感知及信号转导相关 Related to environmental factor perception and signaling | jgi.p|Lenedo1|1035471 | Rheb小单体GTPase Rheb small monomeric gtpase | |
jgi.p|Lenedo1|1083501 | COP9信号小体复合亚基4 | ||
COP9 signalosome complex subunit 4 | |||
jgi.p|Lenedo1|557311 | 假定水通道蛋白4 Putative aquaporin 4 | ||
细胞壁相关 Related to cell wall | jgi.p|Lenedo1|1053705 | 扩展蛋白 Expansin | |
蛋白合成与降解相关 Related to protein synthesis and degradation | jgi.p|Lenedo1|1100937 | 酸性蛋白酶 Acid protease | |
jgi.p|Lenedo1|1060434 | 40S核糖体蛋白 S7 40S ribosomal protein S7 | ||
jgi.p|Lenedo1|607412 | 核糖体蛋白L4 Ribosomal protein L4 | ||
jgi.p|Lenedo1|1042368 | 三肽基肽酶A Tripeptidyl peptidase A | ||
jgi.p|Lenedo1|1039990 | 26S蛋白酶体亚基 P45 26S proteasome subunit P45 | ||
jgi.p|Lenedo1|1092580 | 泛素结合酶E2 Ubiquitin-conjugating enzyme E2 | ||
jgi.p|Lenedo1|81445 | 肽酶s41家族蛋白 Peptidase s41 family protein | ||
jgi.p|Lenedo1|1033416 | 核糖体蛋白L28e Ribosomal protein L28e | ||
其他功能 Other functions | jgi.p|Lenedo1|1059083 | 细胞色素P450 Cytochrome P450 | |
jgi.p|Lenedo1|1066578 | 细胞色素P450 Cytochrome p450 | ||
PR vs. D1ST | jgi.p|Lenedo1|717494 | MFS转运蛋白 MFS general substrate transporter |
表1 相邻阶段或同一阶段不同组织间同时发生差异表达和差异可变剪接的部分基因
Table1 Part genes both differentially expressed and spliced at adjacent stages or different tissues at the same stage
样品 | 功能 Function | 基因编号 | 基因功能注释 |
---|---|---|---|
Sample | Gene ID | Gene annotation | |
MY vs. PR | 碳水化合物代谢相关 Related to carbohydrate metabolism | jgi.p|Lenedo1|1049584 | 糖苷水解酶家族10蛋白 |
Glycoside hydrolase family 10 protein | |||
jgi.p|Lenedo1|1114896 | 内切葡聚糖酶V类似蛋白 | ||
Endoglucanase V-like protein | |||
jgi.p|Lenedo1|1038064 | 糖苷水解酶家族61蛋白 | ||
Glycoside hydrolase family 61 protein | |||
jgi.p|Lenedo1|1159040 | 糖苷水解酶家族95蛋白 | ||
Glycoside hydrolase family 95 protein | |||
jgi.p|Lenedo1|1158159 | 糖苷水解酶家族10蛋白 | ||
Glycoside hydrolase family 10 protein | |||
jgi.p|Lenedo1|464359 | 糖苷水解酶 Glycoside hydrolase | ||
jgi.p|Lenedo1|1073151 | 糖苷水解酶家族18蛋白 | ||
Glycoside hydrolase family 18 protein | |||
环境因子感知及信号转导相关 Related to environmental factor perception and signaling | jgi.p|Lenedo1|1035471 | Rheb小单体GTPase Rheb small monomeric gtpase | |
jgi.p|Lenedo1|1083501 | COP9信号小体复合亚基4 | ||
COP9 signalosome complex subunit 4 | |||
jgi.p|Lenedo1|557311 | 假定水通道蛋白4 Putative aquaporin 4 | ||
细胞壁相关 Related to cell wall | jgi.p|Lenedo1|1053705 | 扩展蛋白 Expansin | |
蛋白合成与降解相关 Related to protein synthesis and degradation | jgi.p|Lenedo1|1100937 | 酸性蛋白酶 Acid protease | |
jgi.p|Lenedo1|1060434 | 40S核糖体蛋白 S7 40S ribosomal protein S7 | ||
jgi.p|Lenedo1|607412 | 核糖体蛋白L4 Ribosomal protein L4 | ||
jgi.p|Lenedo1|1042368 | 三肽基肽酶A Tripeptidyl peptidase A | ||
jgi.p|Lenedo1|1039990 | 26S蛋白酶体亚基 P45 26S proteasome subunit P45 | ||
jgi.p|Lenedo1|1092580 | 泛素结合酶E2 Ubiquitin-conjugating enzyme E2 | ||
jgi.p|Lenedo1|81445 | 肽酶s41家族蛋白 Peptidase s41 family protein | ||
jgi.p|Lenedo1|1033416 | 核糖体蛋白L28e Ribosomal protein L28e | ||
其他功能 Other functions | jgi.p|Lenedo1|1059083 | 细胞色素P450 Cytochrome P450 | |
jgi.p|Lenedo1|1066578 | 细胞色素P450 Cytochrome p450 | ||
PR vs. D1ST | jgi.p|Lenedo1|717494 | MFS转运蛋白 MFS general substrate transporter |
图6 香菇子实体发育模式图 样品简称与图1一致。
Fig. 6 A model for the fruiting body development of Lentinula edodes The code names of samples are consistent with those in Fig. 1.
[1] |
Almási E, Sahu N, Krizsán K, Bálint B, Kovács G M, Kiss B, Cseklye J, Drula E, Henrissat B, Nagy I, Chovatia M, Adam C, LaButti K, Lipzen A, Riley R, Grigoriev I V, Nagy L G. 2019. Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae. New Phytologist, 224 (2):902-915.
doi: 10.1111/nph.16032 pmid: 31257601 |
[2] |
Anders S, Pyl P T, Huber W. 2015. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics, 31 (2):166-169.
doi: 10.1093/bioinformatics/btu638 pmid: 25260700 |
[3] |
Arima T, Yamamoto M, Hirata A, Kawano S, Kamada T. 2004. The eln3 gene involved in fruiting body morphogenesis of Coprinus cinereus encodes a putative membrane protein with a general glycosyltransferase domain. Fungal Genetics and Biology, 41 (8):805-812.
doi: 10.1016/j.fgb.2004.04.003 URL |
[4] |
Attaran Dowom S, Rezaeian S, Pourianfar H R. 2019. Agronomic and environmental factors affecting cultivation of the winter mushroom or enokitake:achievements and prospects. Applied Microbiology and Biotechnology, 103 (6):2469-2481.
doi: 10.1007/s00253-019-09652-y URL |
[5] |
Bahn Y S, Mühlschlegel F A. 2006. CO2 sensing in fungi and beyond. Current Opinion in Microbiology, 9 (6):572-578.
doi: 10.1016/j.mib.2006.09.003 URL |
[6] |
Bolger A M, Lohse M, Usadel B. 2014. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics, 30 (15):2114-2120.
doi: 10.1093/bioinformatics/btu170 URL |
[7] |
Boulianne R P, Liu Y, Aebi M., Lu B, Kües U. 2000. Fruiting body development in Coprinus cinereus:regulated expression of two galectins secreted by a non-classical pathway. Microbiology, 146:1841-1853.
doi: 10.1099/00221287-146-8-1841 URL |
[8] |
Cary J W, Harris-Coward P Y, Ehrlich K C, Di Mavungu J D, Malysheva S V, De Saeger S, Dowd P F, Shantappa S, Martens S L, Calvo A M. 2014. Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone,a sclerotium-specific pigment. Fungal Genetics and Biology, 64:25-35.
doi: 10.1016/j.fgb.2014.01.001 URL |
[9] |
Cheawchanlertfa P, Cheevadhanarak S, Tanticharoen M, Maresca B, Laoteng K. 2011. Up-regulated expression of desaturase genes of Mucor rouxii in response to low temperature associates with pre-existing cellular fatty acid constituents. Molecular Biology Reports, 38 (5):3455-3462.
doi: 10.1007/s11033-010-0455-x pmid: 21104442 |
[10] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools:an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13 (8):1194-1202.
doi: 10.1016/j.molp.2020.06.009 URL |
[11] |
Eisenman H C, Casadevall A. 2012. Synthesis and assembly of fungal melanin. Applied Microbiology and Biotechnology, 93 (3):931-940.
doi: 10.1007/s00253-011-3777-2 pmid: 22173481 |
[12] |
Ernst J, Bar-Joseph Z. 2006. STEM:a tool for the analysis of short time series gene expression data. BMC Bioinformatics, 7:191.
doi: 10.1186/1471-2105-7-191 URL |
[13] |
Fang S M, Hou X, Qiu K H, He R, Feng X S, Liang X L. 2020. The occurrence and function of alternative splicing in fungi. Fungal Biology Reviews, 34 (4):178-188.
doi: 10.1016/j.fbr.2020.10.001 URL |
[14] |
Gehrmann T, Pelkmans J F, Lugones L G, Wösten H A B, Abeel T, Reinders M J T. 2016. Schizophyllum commune has an extensive and functional alternative splicing repertoire. Scientific Reports, 6 (1):33640.
doi: 10.1038/srep33640 URL |
[15] |
Grützmann K, Szafranski K, Pohl M, Voigt K, Petzold A, Schuster S. 2014. Fungal alternative splicing is associated with multicellular complexity and virulence:a genome-wide multi-species study. DNA Research, 21 (1):27-39.
doi: 10.1093/dnares/dst038 pmid: 24122896 |
[16] |
Huang X, Zhang R, Qiu Y, Wu H, Xiang Q, Yu X, Zhao K, Zhang X, Chen Q, Penttinen P, Gu Y. 2020. RNA-seq profiling showed divergent carbohydrate-active enzymes(cazymes)expression patterns in Lentinula edodes at brown film formation stage under blue light induction. Frontiers in Microbiology, 11:1044.
doi: 10.3389/fmicb.2020.01044 URL |
[17] | Hughes B T, Espenshade P J. 2008. Oxygen-regulated degradation of fission yeast SREBP by Ofd1,a prolyl hydroxylase family member. EMBO J, 27 (10):1491-1501. |
[18] |
Kamada T, Sano H, Nakazawa T, Nakahori K. 2010. Regulation of fruiting body photomorphogenesis in Coprinopsis cinerea. Fungal Genetics and Biology, 47:917-921.
doi: 10.1016/j.fgb.2010.05.003 URL |
[19] |
Kim D, Langmead B, Salzberg S L. 2015. HISAT:a fast spliced aligner with low memory requirements. Nature Methods, 12 (4):357-360.
doi: 10.1038/NMETH.3317 |
[20] | Kim J Y, Kim D Y, Park Y J, Jang M J. 2020. Transcriptome analysis of the edible mushroom Lentinula edodes in response to blue light. PLoS ONE, 15 (3):e0230680. |
[21] | Krizsán K, Almási E, Merényi Z, Sahu N, Virágh M, Kószó T, Mondo S, Kiss B, Bálint B, Kües U, Barry K, Cseklye J, Hegedüs B, Henrissat B, Johnson J, Lipzen A, Ohm R A, Nagy I, Pangilinan J, Yan J, Xiong Y, Grigoriev I V, Hibbett D S, Nagy L G. 2019. Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proceedings of the National Academy of the Sciences of the United States of America, 116 (15):7409-7418. |
[22] |
Langfelder P, Horvath S. 2008. WGCNA:an R package for weighted correlation network analysis. BMC Bioinformatics, 9:559.
doi: 10.1186/1471-2105-9-559 pmid: 19114008 |
[23] |
Luan R, Liang Y, Chen Y, Liu H, Jiang S, Che T, Wong B, Sun H. 2010. Opposing developmental functions of Agrocybe aegerita galectin(AAL) during mycelia differentiation. Fungal Biology, 114 (8):599-608.
doi: 10.1016/j.funbio.2010.05.001 URL |
[24] |
Manachère G. 1980. Conditions essential for controlled fruiting of macromycetes - a review. Transactions of the British Mycological Society, 75 (2):255-270.
doi: 10.1016/S0007-1536(80)80088-X URL |
[25] |
Muraguchi H, Fujita T, Kishibe Y, Konno K, Ueda N, Nakahori K, Yanagi S O, Kamada T. 2008. The exp1 gene essential for pileus expansion and autolysis of the inky cap mushroom Coprinopsis cinerea(Coprinus cinereus)encodes an HMG protein. Fungal Genetics and Biology, 45 (6):890-896.
doi: 10.1016/j.fgb.2007.11.004 pmid: 18164224 |
[26] |
Muraguchi H, Kamada T. 1998. The ich1 gene of the mushroom Coprinus cinereus is essential for pileus formation in fruiting. Development, 125 (16):3133-3141.
pmid: 9671586 |
[27] |
Muraguchi H, Kamada T. 2000. A mutation in the eln2 gene encoding a cytochrome P 450 of Coprinus cinereus affects mushroom morphogenesis. Fungal Genetics and Biology, 29 (1):49-59.
pmid: 10779399 |
[28] | Muraguchi H, Umezawa K, Niikura M, Yoshida M, Kozaki T, Ishii K, Sakai K, Shimizu M, Nakahori K, Sakamoto Y, Choi C, Ngan C Y, Lindquist E, Lipzen A, Tritt A, Haridas S, Barry K, Grigoriev I V, Pukkila P J. 2015. Strand-specific RNA-seq analyses of fruiting body development in Coprinopsis cinerea. PLoS ONE, 10 (10):e0141586. |
[29] | Nagy L G, Kovács G M, Krizsán K. 2018. Complex multicellularity in fungi:evolutionary convergence,single origin,or both?Biological Reviews of the Cambridge Philosophical Society, 93 (4):1778-1794. |
[30] |
Nehls U, Dietz S. 2014. Fungal aquaporins:cellular functions and ecophysiological perspectives. Applied Microbiology and Biotechnology, 98 (8):8835-8851.
doi: 10.1007/s00253-014-6049-0 URL |
[31] |
Ohm R A, Aerts D, Wösten H A B, Lugones L G. 2013. The blue light receptor complex WC-1/ 2 of Schizophyllum commune is involved in mushroom formation and protection against phototoxicity. Environmental Microbiology, 15 (3):943-955.
doi: 10.1111/j.1462-2920.2012.02878.x URL |
[32] |
Ohm R A, de Jong J F, Lugones L G, Aerts A, Kothe E, Stajich J E, de Vries R P, Record E, Levasseur A, Baker S E, Bartholomew K A, Coutinho P M, Erdmann S, Fowler T J, Gathman A C, Lombard V, Henrissat B, Knabe N, Kues U, Lilly W W, Lindquist E, Lucas S, Magnuson J K, Piumi F, Raudaskoski M, Salamov A, Schmutz J, Schwarze F W M R, vanKuyk P A, Horton J S, Grigoriev I V, Wösten H A B. 2010. Genome sequence of the model mushroom Schizophyllum commune. Nature Biotechnology, 28 (9):957-963.
doi: 10.1038/nbt.1643 |
[33] | Pe P P W, Naing A H, Chung M Y, Park K I, Kim C K. 2019. The role of antifreeze proteins in the regulation of genes involved in the response of Hosta capitata to cold. 3 Biotech, 9 (9):335. |
[34] | Pelkmans J F, Lugones L G, Wösten H A B. 2016. Fruiting body formation in basidiomycetes//Wendland J. Growth,differentiation and sexuality. The mycota(A comprehensive treatise on fungi as experimental systems for basic and applied research),Vol 1. Switzerland:Springer:387-405. |
[35] |
Pelkmans J F, Patil M B, Gehrmann T, Reinders M J T, Wösten H A B, Lugones L G. 2017. Transcription factors of Schizophyllum commune involved in mushroom formation and modulation of vegetative growth. Scientific Reports, 7:310.
doi: 10.1038/s41598-017-00483-3 pmid: 28331193 |
[36] |
Perez Di Giorgio J, Soto G, Alleva K, Jozefkowicz C, Amodeo G, Muschietti J P, Ayub N D. 2014. Prediction of aquaporin function by integrating evolutionary and functional analyses. The Journal of Membrane Biology, 247 (2):107-125.
doi: 10.1007/s00232-013-9618-8 URL |
[37] | Pöggeler S, Nowrousian M, Teichert I, Beier A, Kück U. 2018. Fruiting-body development in ascomycetes//Kües U,Fischer R. Growth,differentiation and sexuality. The mycota(A comprehensive treatise on fungi as experimental systems for basic and applied research),Vol 1. Berlin:Springer:325-355. |
[38] |
Purschwitz J, Muller S, Kastner C, Schoser M, Haas H, Espeso E A, Atoui A, Calvo A M, Fischer R. 2008. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Current Biology, 18 (4):255-259
doi: 10.1016/j.cub.2008.01.061 pmid: 18291652 |
[39] | Rio D C, Ares M, Hannon G J, Nilsen T W. 2010. Purification of RNA using TRIzol(TRI Reagent). Cold Spring Harb Protoc,doI: 10.1101/pdb.prot5439. |
[40] |
Robinson C H. 2001. Cold adaptation in Arctic and Antarctic fungi. New Phytologist, 151 (2):341-353.
doi: 10.1046/j.1469-8137.2001.00177.x URL |
[41] |
Robinson M D, McCarthy D J, Smyth G K. 2010. edgeR:a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26 (1):139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308 |
[42] | Royse D J, Baars J, Tan Q. 2017. Current overview of mushroom production in the world:technology and applications//Diego C Z,Pardo-Giménez A. Edible and medicinal mushrooms:technology and applications. Hoboken:Wiley:5-13. |
[43] |
Sakamoto Y, Minato K, Nagai M, Mizuno M, Sato T. 2005. Characterization of the Lentinula edodes exg2 gene encoding a lentinan-degrading exo-β-1,3-glucanase. Current Genetics, 48 (3):195-203.
pmid: 16133343 |
[44] | Sakamoto Y, Nakade K, Sato S, Yoshida K, Miyazaki K, Natsume S, Konno N. 2017. Lentinula edodes genome survey and postharvest transcriptome analysis. Applied and Environmental Microbiology, 83 (10):e02990-16. |
[45] |
Sano H, Kaneko S, Sakamoto Y, Sato T, Shishido K. 2009. The basidiomycetous mushroom Lentinula edodes white collar-2 homolog PHRB,a partner of putative blue-light photoreceptor PHRA,binds to a specific site in the promoter region of the L. edodes tyrosinase gene. Fungal Genetics and Biology, 46 (4):333-341.
doi: 10.1016/j.fgb.2009.01.001 URL |
[46] |
Shimoda C, Uehira M, Kishida M, Fujioka H, Iino Y, Watanabe Y, Yamamoto M. 1987. Cloning and analysis of transcription of the mei2 gene responsible for initiation of meiosis in the fission yeast Schizosaccharomyces pombe. Journal of Bacteriology, 169 (1):93-96.
pmid: 3025190 |
[47] |
Showalter A M. 1993. Structure and function of plant cell wall proteins. Plant Cell, 5 (1):9-23.
pmid: 8439747 |
[48] | Song H Y, Kim D H, Kim J M. 2018. Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes. Scientific Reports, 8 (1):8983. |
[49] | Song Linli, Xing Xiaoke, Guo Shunxing. 2018. Morphological process and regulation mechanisms of fruiting body differentiation in macrofungi:a review. Mycosystema, 37:671-684. (in Chinese) |
宋林丽, 邢晓科, 郭顺星. 2018. 大型真菌子实体发生的形态学过程及调控机制. 菌物学报, 37:671-684. | |
[50] |
Tang L H, Jian H H, Song C Y, Bao D P, Shang X D, Wu D Q, Tan Q, Zhang X H. 2013. Transcriptome analysis of candidate genes and signaling pathways associated with light-induced brown film formation in Lentinula edodes. Applied Microbiology and Biotechnology, 97 (11):4977-4989.
doi: 10.1007/s00253-013-4832-y URL |
[51] |
Tao Y X, Chen R L, Yan J J, Long Y, Tong Z J, Song H B, Xie B G. 2019. A hydrophobin gene,Hyd9,plays an important role in the formation of aerial hyphae and primordia in Flammulina filiformis. Gene, 706 (20):84-90.
doi: 10.1016/j.gene.2019.04.067 URL |
[52] |
Tao Y X, Xie B G, Yang Z Y, Chen Z H, Chen B Z, Deng Y J, Jiang Y J, Peer A F. 2013. Identification and expression analysis of a new glycoside hydrolase family 55 exo-β-1,3-glucanase-encoding gene in Volvariella volvacea suggests a role in fruiting body development. Gene, 527 (1):154-160.
doi: 10.1016/j.gene.2013.05.071 URL |
[53] |
Turner E M. 1977. Development of excised sporocarps of Agaricus bisporus and its control by CO2. Transactions of the British Mycological Society, 69 (2):183-186.
doi: 10.1016/S0007-1536(77)80035-1 URL |
[54] |
Vetchinkina E, Kupryashina M, Gorshkov V, Ageeva M, Gogolev Y, Nikitina V. 2017. Alteration in the ultrastructural morphology of mycelial hyphae and the dynamics of transcriptional activity of lytic enzyme genes during basidiomycete morphogenesis. Journal of Microbiology, 55 (4):280-288.
doi: 10.1007/s12275-017-6320-z pmid: 28124773 |
[55] |
Wang Q, Guo M, Xu R, Zhang J, Bian Y, Xiao Y. 2019. Transcriptional changes on blight fruiting body of Flammulina velutipes caused by two new bacterial pathogens. Frontiers in Microbiology, 10:2845.
doi: 10.3389/fmicb.2019.02845 URL |
[56] |
Wang Y, Zeng X, Liu W. 2018. De novo transcriptomic analysis during Lentinula edodes fruiting body growth. Gene, 641:326-334.
doi: 10.1016/j.gene.2017.10.061 URL |
[57] | Wang Zhuo ren, Liu Qi yan, Xiao Yang, Wu Qian, Bian Yin bing. 2010. Grey correlational and ISSR analyses of Lentinula edodes hybrids. Mycosystema, 29 (2):267-272. (in Chinese) |
王卓仁, 刘启燕, 肖扬, 吴茜, 边银丙. 2010. 香菇单孢杂交子代群体灰色关联度和ISSR分析. 菌物学报, 29 (2):267-272. | |
[58] |
Wösten H A B, van Wetter M A, Lugones L G, van der Mei H C, Busscher H J, Wessels J G H. 1999. How a fungus escapes the water to grow into the air. Current Biology, 9 (2):85-88.
pmid: 10021365 |
[59] |
Wu W, Zong J, Wei N, Cheng J, Zhou X, Cheng Y, Chen D, Guo Q, Zhang B, Feng Y. 2018. CASH:a constructing comprehensive splice site method for detecting alternative splicing events. Briefings in Bioinformatics, 19 (5):905-917.
doi: 10.1093/bib/bbx034 URL |
[60] |
Yoo S I, Lee H Y, Markkandan K, Moon S, Ahn Y J, Ji S, Ko J, Kim S J, Ryu H, Hong C P. 2019. Comparative transcriptome analysis identified candidate genes involved in mycelium browning in Lentinula edodes. BMC Genomics, 20 (1):121.
doi: 10.1186/s12864-019-5509-4 URL |
[61] |
Yu G, Wang L G, Han Y, He Q Y. 2012. clusterProfiler:an R package for comparing biological themes among gene clusters. Omics-A Journal of Integrative Biology, 16 (5):284-287.
doi: 10.1089/omi.2011.0118 URL |
[62] |
Zerai D B, Fitzsimmons K M,and Collier R J. 2010. Transcriptional response of delta-9-desaturase gene to acute and chronic cold stress in Nile Tilapia,Oreochromis niloticus. Journal of the World Aquaculture Society, 41 (5):800-806.
doi: 10.1111/j.1749-7345.2010.00422.x URL |
[63] | Zhang J C, Shen N, Li C, Xiang X J, Liu G L, Gui Y, Patev S, Hibbett D S, Barry K, Andreopoulos W, Lipzen A, Riley R, He G F, Yan M, Grigoriev I V, Kwan H S, Cheung M K, Bian Y B, Xiao Y. 2021. Population genomics provides insights into the genetic basis of adaptive evolution in the mushroom-forming fungus Lentinula edodes. Journal of Advanced Research,doi: 10.1016/j.jare.2021.09.008. |
[64] | Zhao Chunqiao, Xie Fang, Wu Pingmin. 2021. Advance in researching the effects of environmental factors on sexual development of edible fungus. Chinese Agricultural Science Bulletin, 30:87-92. (in Chinese) |
赵春巧, 谢放, 吴萍民. 2014. 环境因素对食用菌有性发育影响的研究进展. 中国农学通报, 30:87-92. | |
[65] | Zhou J, Kang L, Liu C, Niu X, Wang X, Liu H, Zhang W, Liu Z, Latge J P, Yuan S. 2019. Chitinases play a key role in stipe cell wall extension in the mushroom Coprinopsis cinerea. Applied and Environmental Microbiology, 85 (15):e00532-19. |
[1] | 蒋 彧, 涂勋良, 何俊蓉. 国兰叶色突变体叶片差异表达基因分析[J]. 园艺学报, 2023, 50(2): 371-381. |
[2] | 蔺海娇, 梁雨晨, 李玲, 马军, 张璐, 兰振颖, 苑泽宁. 薰衣草CBF途径相关耐寒基因挖掘与调控网络分析[J]. 园艺学报, 2023, 50(1): 131-144. |
[3] | 赵雪艳, 王琪, 王莉, 王方圆, 王庆, 李艳. 基于比较转录组的延胡索组织差异性表达分析[J]. 园艺学报, 2023, 50(1): 177-187. |
[4] | 周徐子鑫, 杨威, 毛美琴, 薛彦斌, 马均. 金边红苞凤梨叶色突变体色素鉴定及类胡萝卜素合成限速基因筛选[J]. 园艺学报, 2022, 49(5): 1081-1091. |
[5] | 夏铭, 李经纬, 罗章瑞, 祖贵东, 王娅, 张万萍. 外源褪黑素影响萝卜生长及对链格孢菌抗性的机理研究[J]. 园艺学报, 2022, 49(3): 548-560. |
[6] | 张瑞, 张夏燚, 赵婷, 王双成, 张仲兴, 刘博, 张德, 王延秀. 基于转录组分析垂丝海棠响应盐碱胁迫的分子机制[J]. 园艺学报, 2022, 49(2): 237-251. |
[7] | 邓娇, 苏梦月, 刘雪莲, 欧克芳, 户正荣, 杨平仿. 基于转录组分析揭示双色花莲‘大洒锦’花色形成机理[J]. 园艺学报, 2022, 49(2): 365-377. |
[8] | 乔军, 王利英, 刘婧, 李素文. 基于转录组测序的茄子萼下果色光敏相关基因表达分析[J]. 园艺学报, 2022, 49(11): 2347-2356. |
[9] | 王荣花, 王树彬, 刘栓桃, 李巧云, 张志刚, 王立华, 赵智中. 大白菜花茎蜡粉近等基因系转录组分析[J]. 园艺学报, 2022, 49(1): 62-72. |
[10] | 徐红霞, 周慧芬, 李晓颖, 姜路花, 陈俊伟. 低温胁迫下枇杷不同发育阶段的花果转录组比较分析[J]. 园艺学报, 2021, 48(9): 1680-1694. |
[11] | 刘剑锋, 孙莹, 魏珩, 贺红利, 张兴政, 程云清. 榛子胚珠不同发育阶段circRNA的分析与鉴定[J]. 园艺学报, 2021, 48(6): 1053-1066. |
[12] | 李贵生. 猕猴桃‘金艳'和‘红阳'果实转录组的比较分析[J]. 园艺学报, 2021, 48(6): 1183-1196. |
[13] | 兰黎明, 罗昌国, 王三红. 基于转录组测序的湖北海棠抗白粉病机制分析[J]. 园艺学报, 2021, 48(5): 860-872. |
[14] | 鱼尚奇, 张锐, 郭众仲, 宋岩, 付嘉智, 武鹏雨, 马治浩. 核桃内果皮硬化期生长素动态变化及差异表达基因分析[J]. 园艺学报, 2021, 48(3): 487-504. |
[15] | 陈晨, 刘程惠, 石立佳, 姜爱丽, 胡文忠. 硫化氢控制鲜切苹果褐变的可变剪切基因分析[J]. 园艺学报, 2021, 48(11): 2121-2132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司