[1] |
Ahn S J, Shin R, Schachtman D P. 1992. 2004. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+uptake. Plant Physiology, 134 (3):1135-1145.
doi: 10.1104/pp.103.034660
URL
|
[2] |
Alexander G. 2007. Plant KT/KUP/HAK potassium transporter:single family-multiple functions. Annals of Botany,(6):1035-1041.
pmid: 17495982
|
[3] |
Anderson J A, Huprikar S S, Kochian L V, Lucas W J, Gaber R F. 1992. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 89 (9):3736-3740.
doi: 10.1073/pnas.89.9.3736
URL
|
[4] |
Bañuelos M A, Garciadeblas B, Cubero B. 2002. Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiology, 130 (2):784-795.
pmid: 12376644
|
[5] |
Chai W W, Wang W Y, Cui Y N, Wang S M. 2019. Research progress of function on KUP/HAK/KT family in plants. Plant Physiology Journal, 55 (12):1747-1761.
|
[6] |
Chen G, Hu Q D, Luo L, Yang T Y, Zhang S. 2015. Rice potassium transporter OsHAK 1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant,Cell & Environment, 38 (12):2747-2765.
|
[7] |
Chen G, Liu C, Gao Z Y, Yu Z, Jiang H, Zhu J, Ren D, Yu L, Xu G, Qian Q. 2017. OsHAK1,a high-affinity potassium transporter,positively regulates responses to drought stress in rice. Frontiers in Plant Science, 8:1885.
doi: 10.3389/fpls.2017.01885
URL
|
[8] |
Chen X Y, Liu X D, Mao W W, Zhang X R, Chen S L, Zhan K H, Bi H H, Xu H X. 2018. Genome-wide identification and analysis of HAK/KUP/KT potassium transporters gene family in wheat(Triticum aestivum L.). International Journal of Molecular Sciences, 19:12.
doi: 10.3390/ijms19010012
URL
|
[9] |
Davies C, Shin R, Liu W, Thomas M R, Schachtman, 2006. Transporters expressed during grape berry(Vitis vinifera L.)development are associated with an increase in berry size and berry potassium accumulation. Journal of Experimental Botany, 57 (12):3209-3216.
doi: 10.1093/jxb/erl091
URL
|
[10] |
Elumalai R P, Nagpal P, Reed J W. 2002. A mutation in the Arabidopsis KT2/KUP 2 potassium transporter gene affects shoot cell expansion. The Plant Cell Online, 14 (1):119-131.
doi: 10.1105/tpc.010322
URL
|
[11] |
Epstein E, Rains D W, Elzam O E. 1963. Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad USA, 499 (5):684-692.
|
[12] |
Gierth M, Schroeder P M I. 2005. The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel con to K+ uptake kontributiinetics in Arabidopsis roots. Plant Physiology, 137 (3):1105-1114.
doi: 10.1104/pp.104.057216
URL
|
[13] |
Gomez-Porras J L, Riaño-Pachón Diego Mauricio, Benito Begoña, Haro Rosario, Sklodowski Kamil, Rodríguez-Navarro Alonso, Dreyer Ingo. 2012. Phylogenetic analysis of K+ transporters in bryophytes,lycophytes,and flowering plants indicates a specialization of vascular plants. Frontiers in Plant Science, 3:167.
doi: 10.3389/fpls.2012.00167
pmid: 22876252
|
[14] |
Gupta M, Qiu X, Wang L, Xie W, Zhang C, Xiong L, Lian X, Zhang Q. 2008. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice(Oryza sativa). Molecular Genetics & Genomics, 280 (5):437-452.
|
[15] |
Hasanuzzaman M, Bhuyan M H M B, Nahar K, Hossain M S, Fujita M. 2018. Potassium:a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8:31.
doi: 10.3390/agronomy8030031
URL
|
[16] |
Hu B, Jin J, Guo A Y, He Z, Ge G. 2014. GSDS 2.0:an upgraded gene feature visualization server. Bioinformatics, 31(8):1296.
doi: 10.1093/bioinformatics/btu817
URL
|
[17] |
Lacombe B. 2000. A shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. The Plant Call Online, 12 (6):837-851.
|
[18] |
Li W, Xu G, Alli A, Abdel L. 2018. Plant HAK/KUP/KT K+ transporters:function and regulation. Seminars in Cell & Developmental Biology, 74:133-141.
|
[19] |
Ling Qiuping, Zeng Qiaoying, Hu Fei, Wu Jiayun, Fan Lina, Li Qiwei, Qi Yongwen. 2017. Cloning and expression analysis of potassium transporter SsHAK2 in sugarcane(Saccharum species hybrid). Journal of Agricultural Biotechnology, 25 (3):378-385. (in Chinese)
|
|
凌秋平, 曾巧英, 胡斐, 吴嘉云, 樊丽娜, 李奇伟, 齐永文. 2017. 甘蔗钾转运蛋白基因SsHAK2的克隆及表达特性分析. 农业生物技术学报, 25 (3):378-385.
|
[20] |
Ma Li-juan, Ma Yu, He Hong-hong, Liang Guo-ping, Wang Peng, Chen Bai-hong, Mao Juan. 2019. Identification and expression analysis of grape HAK gene family. Acta Agriculturae Boreali-Occidentalis Sinica, 28 (6):922-934. (in Chinese)
|
|
马丽娟, 马钰, 何红红, 梁国平, 万鹏, 陈佰鸿, 毛娟. 2019. 葡萄HAK基因家族的鉴定与表达分析. 西北农业学报, 28 (6):922-934.
|
[21] |
Ma Li-ying. 2011. Comparative analysis of HAK/KUP/KT gene family in Arabidopsis thaliana and PaHAK1 in Phytolacca acinosa[M. D. Dissertation]. Changsha: Hunan Agricultural University. (in Chinese)
|
|
马立英. 2011. 商陆高亲和性K+转运体基因PaHAK1的克隆及其功能的初步分析[博士论文]. 长沙: 湖南农业大学.
|
[22] |
Maathuis F J M. 2006. The role of monovalent cation transporters in plant responses to salinity. Journal of Experimental Botany, 57 (5):1137-1147.
pmid: 16263900
|
[23] |
Magali L. 2002. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30 (1):325-327.
|
[24] |
Mäser P, Thomine S, Schroeder J I, Ward J M, Guerinot M L. 2001. Phylogenetic relationships within cation transporter families of arabidopsis1. Plant Physiology, 126 (4):1646-1667.
pmid: 11500563
|
[25] |
Nieves-Cordones M, Alemán F, Martínez V, Rubio F. 2010. The arabidopsis thaliana HAK 5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions. Molecular Plant, 3 (2):326-333.
doi: 10.1093/mp/ssp102
pmid: 20028724
|
[26] |
Osakabe Y, Arinaga N, Umezawa T, KatsuraS, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Seo SU, Abo M. 2013. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell, 25 (2):609-624.
doi: 10.1105/tpc.112.105700
URL
|
[27] |
Qi J G, Sun S M, Yang L, Li M J, Ma F W, Zou Y J. 2019. Potassium uptake and transport in apple roots under drought stress. Horticultural Plant Journal, 5 (1):10-16.
doi: 10.1016/j.hpj.2018.10.001
URL
|
[28] |
Qi Z, Hampton C R, Ryoung S, Barkla B J, White P J, Schachtman D P. 2008. The high affinity K+ transporter AtHAK 5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. Journal of Experimental Botany, 59 (3):595-607.
doi: 10.1093/jxb/erm330
URL
|
[29] |
Qin G H, Ming C Y, Tang H B, Guyot, 2017. The pomegranate(Punica granatum L.)genome and the genomics of punicalagin biosynthesis. Plant Journal, 91 (6):1108-1128.
doi: 10.1111/tpj.13625
URL
|
[30] |
Quintero F J, Garciadeblás B, Rodríguez-Navarro A. 1996. The SAL 1 gene of Arabidopsis,encoding an enzyme with 3'(2'),5'-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities,increases salt tolerance in yeast. Plant Cell, 8 (3):529-537.
pmid: 8721754
|
[31] |
Rodríguez-Navarro A. 2000. Potassium transport in fungi and plants. Biochimica Et Biophysica Acta, 1469 (1):1-30.
pmid: 10692635
|
[32] |
Rubio F, Guillermo E Santa-aría, Alonso Rodríguez-Navarro. 2010. Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiologia Plantarum, 109 (1):34-43.
doi: 10.1034/j.1399-3054.2000.100106.x
URL
|
[33] |
Santa-Maria G E, Rubio F, Dubcovsky J, Rodriguez-Navarro A. 1998. The HAK 1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. The Plant Cell, 9 (12):2281-2289.
|
[34] |
Shen Y, Shen L, Shen Z, Jing W, Ge H, Zhao J, Zhang W. 2015. The potassium transporter OsHAK 21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell & Environment, 38 (12):2766-2799.
|
[35] |
Shen Yue. 2015. Functional analyses ofpotassium transporter OsHAK21 and channel OsKs in response to salt stress in rice[Ph. D. Dissertation]. Nanjing:Nanjing Agricultural University. (in Chinese)
|
|
沈悦. 2015. 水稻钾转运蛋白OsHAK21和通道蛋白OsKx响应盐胁迫的功能研究[博士论文]. 南京: 南京农业大学.
|
[36] |
Rigas S, Ditengou F A, Ljung K, Daras G, Tietz O, Palme K, Hatzopoulos P. 2012. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex. New Phytologist, 197 (4):1130-1141.
doi: 10.1111/nph.12092
URL
|
[37] |
Véry A-A, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H. 2014. Molecular biology of K+ transport across the plant cell membrane:what do we learn from comparison between plant species? Journal of Plant Physiology, 171 (9):748-769.
|
[38] |
Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Grabov A. 2004. Potassium carrier TRH 1 is required for auxin transport in Arabidopsis roots. Plant Journal for Cell & Molecular Biology, 40 (4):523-535.
|
[39] |
Wang Y, Wu W H. 2013. Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 64 (1):451-476.
doi: 10.1146/annurev-arplant-050312-120153
URL
|
[40] |
Wang Y Z, Lv J H, Chen D, Zhang J, Qi K J, Cheng R, Zhang H P, Zhang S L. 2018. Genome-wide identification,evolution,and expression analysis of the KT/HAK/KUP family in pear. Genome,61: gen-2017-0254.
|
[41] |
Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L. 2014. The role of a potassium transporter OsHAK 5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiology, 166 (2):945-959.
doi: 10.1104/pp.114.246520
URL
|
[42] |
Youn-Jeong N, Phan L S, Mikiko K, Hitoshi S, Rie N, Ryoung S, Ivan B. 2012. Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis. PLoS One, 7 (10):e47797.
doi: 10.1371/journal.pone.0047797
URL
|
[43] |
Zhang Z, Zhang J, Chen Y, Li R, Wei J. 2012. Genome-wide analysis and identification of HAK potassium transporter gene family in maize(Zea mays L.). Molecular Biology Reports, 39 (8):8465-8473.
doi: 10.1007/s11033-012-1700-2
URL
|