园艺学报 ›› 2022, Vol. 49 ›› Issue (4): 709-722.doi: 10.16420/j.issn.0513-353x.2020-1051
• 研究论文 • 下一篇
张晓云1, 唐玉薇1, 王凯1, 张东2,*(), 杨伟伟1,*()
收稿日期:
2021-11-05
修回日期:
2022-01-29
出版日期:
2022-04-25
发布日期:
2022-04-24
通讯作者:
张东,杨伟伟
E-mail:afant@nwsuaf.edu.cn;yangww@shzu.edu.cn
基金资助:
ZHANG Xiaoyun1, TANG Yuwei1, WANG Kai1, ZHANG Dong2,*(), YANG Weiwei1,*()
Received:
2021-11-05
Revised:
2022-01-29
Online:
2022-04-25
Published:
2022-04-24
Contact:
ZHANG Dong,YANG Weiwei
E-mail:afant@nwsuaf.edu.cn;yangww@shzu.edu.cn
摘要:
为了探究苹果冠层枝梢类型对光能截获效率和光合生产力的影响,以苹果短枝型品种‘礼泉短富’和长枝型品种‘丽嘎拉’为试材,利用三维数字化技术结合枝梢和叶片尺度异速生长关系建立枝梢及冠层尺度的三维虚拟植物模型,利用RATP功能结构模型结合虚拟试验系统比较枝梢类型对枝梢形态结构、光能截获效率及枝梢相对比例对冠层光能截获效率和光合生产力的影响。结果表明:枝梢尺度、三维虚拟枝梢对各类枝梢叶片数及叶面积的模拟可满足光能截获分析的要求,但枝梢尺度光能截获模拟会低估长枝梢(> 5 cm)的光能截获效率。双参数的Beta方程可准确模拟各类枝梢叶倾角分布,果台叶片属斜生叶,其他枝梢叶片属水平叶。果台副梢节间长度及平均叶倾角高于营养枝梢,使得其光能截获效率较营养枝梢高8% ~ 14%。‘礼泉短富’叶片聚集度高于‘丽嘎拉’,二者光能截获效率无差异,但后者晴天和阴天条件下的冠层净光合速率和光合量都高于前者。在枝梢数量一定的条件下,果台副梢比例的提高可改善冠层光能截获效率,并提高‘礼泉短富’冠层在阴天条件下的冠层净光合速率及光合量。综上,对单个枝梢,花芽抽生的新梢光能截获效率显著高于叶芽抽生的新梢;花芽比例提高可显著改善冠层光能截获效率,并提高短枝型品种在阴天条件下的光合生产力。
中图分类号:
张晓云, 唐玉薇, 王凯, 张东, 杨伟伟. 苹果冠层枝梢类型对光能截获效率和光合生产力影响的模拟分析[J]. 园艺学报, 2022, 49(4): 709-722.
ZHANG Xiaoyun, TANG Yuwei, WANG Kai, ZHANG Dong, YANG Weiwei. Simulation Analysis of Effects of Shoot Type Composition on Canopy Light Interception Efficiency and Photosynthetic Productivity in Apple Trees[J]. Acta Horticulturae Sinica, 2022, 49(4): 709-722.
变量 Variable | 异速生 长关系 Allometric relation- ship | 系数 Coeffi- cient | 枝梢类型和品种Shoot type and cultivar | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
果台 Bourse | 果台短副梢 Bourse short shoot | 果台长副梢 Bourse long shoot | 营养短枝 Vegetative short shoot | 营养长枝 Vegetative long shoot | ||||||||
礼泉 短富 Liquan Fuji | 丽嘎拉Regal Gala | 礼泉 短富 Liquan Fuji | 丽嘎拉 Regal Gala | 礼泉 短富 Liquan Fuji | 丽嘎拉 Regal Gala | 礼泉 短富 Liquan Fuji | 丽嘎拉 Regal Gala | 礼泉 短富 Liquan Fuji | 丽嘎拉 Regal Gala | |||
枝梢叶数—枝梢长Shoot leaf number-shoot length | SLN = aSLNSL + bSLN | aSLN | 0 | 0 | 0 | 0 | 0.42 | 0.20 | 0 | 1.40 | 0.58 | 0.34 |
bSLN | 6.00 | 6.00 | 6.00 | 8.00 | 4.95 | 8.49 | 10.00 | 6.69 | 7.22 | 9.27 | ||
r2 | ns | ns | ns | ns | 0.86** | 0.72** | ns | 0.66** | 0.93** | 0.93** | ||
枝梢叶面积—枝梢长Shoot leaf area-shoot length | SLA = aSLASL + bSLA | aSLA | 0 | 0 | 0 | 12.13 | 10.92 | 9.63 | 23.14 | 37.01 | 15.08 | 13.38 |
bSLA | 56.83 | 96.71 | 111.50 | 149.80 | 122.90 | 149.00 | 134.00 | 122.00 | 151.60 | 214.20 | ||
r2 | ns | ns | ns | 0.55** | 0.78** | 0.75** | 0.43* | 0.49* | 0.90** | 0.87** | ||
叶柄长—叶片长Petiole length- leaf length | PL = aPLLL + bPL | aPL | 0.33 | 0.36 | 0.38 | 0.21 | 0.43 | 0.17 | 0.26 | 0.24 | 0.23 | 0.16 |
bPL | 0.28 | 0.27 | 0.29 | 2.06 | 0.78 | 2.01 | 1.62 | 1.88 | 1.45 | 2.29 | ||
r2 | 0.63** | 0.55* | 0.66** | 0.43* | 0.58** | 0.48* | 0.61** | 0.59** | 0.42* | 0.31* | ||
叶面积—叶长2 Leaf area- leaf length2 | LA = aLALL² | aLA | 0.53 | 0.48 | 0.41 | 0.35 | 0.43 | 0.35 | 0.38 | 0.31 | 0.40 | 0.35 |
r2 | 0.98** | 0.98** | 0.98** | 0.97** | 0.99** | 0.97** | 0.97** | 0.97** | 0.97** | 0.98** | ||
叶宽—叶长 Leaf width- leaf length | LW = aLW LL | aLW | 0.76 | 0.69 | 0.61 | 0.52 | 0.62 | 0.54 | 0.58 | 0.50 | 0.58 | 0.53 |
r2 | 0.99** | 0.99** | 0.98** | 0.98** | 0.99** | 0.98** | 0.97** | 0.97** | 0.97** | 0.98** |
表1 枝梢和叶片异速生长关系
Table 1 Allometric relationships at shoot- and leaf-scales
变量 Variable | 异速生 长关系 Allometric relation- ship | 系数 Coeffi- cient | 枝梢类型和品种Shoot type and cultivar | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
果台 Bourse | 果台短副梢 Bourse short shoot | 果台长副梢 Bourse long shoot | 营养短枝 Vegetative short shoot | 营养长枝 Vegetative long shoot | ||||||||
礼泉 短富 Liquan Fuji | 丽嘎拉Regal Gala | 礼泉 短富 Liquan Fuji | 丽嘎拉 Regal Gala | 礼泉 短富 Liquan Fuji | 丽嘎拉 Regal Gala | 礼泉 短富 Liquan Fuji | 丽嘎拉 Regal Gala | 礼泉 短富 Liquan Fuji | 丽嘎拉 Regal Gala | |||
枝梢叶数—枝梢长Shoot leaf number-shoot length | SLN = aSLNSL + bSLN | aSLN | 0 | 0 | 0 | 0 | 0.42 | 0.20 | 0 | 1.40 | 0.58 | 0.34 |
bSLN | 6.00 | 6.00 | 6.00 | 8.00 | 4.95 | 8.49 | 10.00 | 6.69 | 7.22 | 9.27 | ||
r2 | ns | ns | ns | ns | 0.86** | 0.72** | ns | 0.66** | 0.93** | 0.93** | ||
枝梢叶面积—枝梢长Shoot leaf area-shoot length | SLA = aSLASL + bSLA | aSLA | 0 | 0 | 0 | 12.13 | 10.92 | 9.63 | 23.14 | 37.01 | 15.08 | 13.38 |
bSLA | 56.83 | 96.71 | 111.50 | 149.80 | 122.90 | 149.00 | 134.00 | 122.00 | 151.60 | 214.20 | ||
r2 | ns | ns | ns | 0.55** | 0.78** | 0.75** | 0.43* | 0.49* | 0.90** | 0.87** | ||
叶柄长—叶片长Petiole length- leaf length | PL = aPLLL + bPL | aPL | 0.33 | 0.36 | 0.38 | 0.21 | 0.43 | 0.17 | 0.26 | 0.24 | 0.23 | 0.16 |
bPL | 0.28 | 0.27 | 0.29 | 2.06 | 0.78 | 2.01 | 1.62 | 1.88 | 1.45 | 2.29 | ||
r2 | 0.63** | 0.55* | 0.66** | 0.43* | 0.58** | 0.48* | 0.61** | 0.59** | 0.42* | 0.31* | ||
叶面积—叶长2 Leaf area- leaf length2 | LA = aLALL² | aLA | 0.53 | 0.48 | 0.41 | 0.35 | 0.43 | 0.35 | 0.38 | 0.31 | 0.40 | 0.35 |
r2 | 0.98** | 0.98** | 0.98** | 0.97** | 0.99** | 0.97** | 0.97** | 0.97** | 0.97** | 0.98** | ||
叶宽—叶长 Leaf width- leaf length | LW = aLW LL | aLW | 0.76 | 0.69 | 0.61 | 0.52 | 0.62 | 0.54 | 0.58 | 0.50 | 0.58 | 0.53 |
r2 | 0.99** | 0.99** | 0.98** | 0.98** | 0.99** | 0.98** | 0.97** | 0.97** | 0.97** | 0.98** |
品种 Cultivar | 枝梢类型 Shoot type | 实测叶倾角 Measured value | Beta方程参数及叶倾角估计值 Coefficients and estimates of Beta quation | 叶倾角类型 Leaf inclination type | ||||
---|---|---|---|---|---|---|---|---|
平均值/º Mean value | 标准误 Standar deviation | μ | ν | 平均值/º Mean value | 标准误 Standard deviation | |||
礼泉短富 | 果台Bourse | 44.26 a | 21.54 | 1.70 | 1.65 | 44.22 | 24.72 | 斜生叶Plagiophile |
Liquan | 果台长副梢Bourse long shoot | 35.11 c | 19.21 | 2.58 | 1.65 | 35.08 | 20.60 | 水平叶Planophile |
Fuji | 果台短副梢Bourse short shoot | 38.45 b | 22.19 | 1.73 | 1.29 | 38.41 | 18.51 | 水平叶Planophile |
营养长枝Vegetative long shoot | 27.96 e | 15.40 | 4.35 | 1.96 | 27.93 | 21.86 | 水平叶Planophile | |
营养短枝Vegetative short shoot | 32.89 d | 18.40 | 2.86 | 1.81 | 32.85 | 21.92 | 水平叶Planophile | |
丽嘎拉 | 果台Bourse | 43.19 a | 19.45 | 2.26 | 2.08 | 43.14 | 20.90 | 斜生叶Plagiophile |
Regal | 果台长副梢Bourse long shoot | 34.05 c | 16.78 | 3.58 | 2.18 | 34.01 | 18.42 | 水平叶Planophile |
Gala | 果台短副梢Bourse short shoot | 35.22 c | 17.60 | 3.18 | 2.05 | 35.19 | 20.74 | 水平叶Planophile |
营养长枝Vegetative long shoot | 30.79 d | 16.00 | 4.02 | 2.09 | 30.75 | 20.18 | 水平叶Planophile | |
营养短枝Vegetative short shoot | 32.20 d | 17.43 | 3.29 | 1.83 | 32.16 | 21.61 | 水平叶Planophile |
表2 ‘礼泉短富’和‘丽嘎拉’不同类型枝梢实测叶倾角均值和标准误及Beta方程参数和估计值
Table 2 Means and standard deviations for leaf inclination and estimates of two-parameters Beta equation for all shoot types in‘Liquan Fuji’and‘Regal Gala’apple trees,respectively
品种 Cultivar | 枝梢类型 Shoot type | 实测叶倾角 Measured value | Beta方程参数及叶倾角估计值 Coefficients and estimates of Beta quation | 叶倾角类型 Leaf inclination type | ||||
---|---|---|---|---|---|---|---|---|
平均值/º Mean value | 标准误 Standar deviation | μ | ν | 平均值/º Mean value | 标准误 Standard deviation | |||
礼泉短富 | 果台Bourse | 44.26 a | 21.54 | 1.70 | 1.65 | 44.22 | 24.72 | 斜生叶Plagiophile |
Liquan | 果台长副梢Bourse long shoot | 35.11 c | 19.21 | 2.58 | 1.65 | 35.08 | 20.60 | 水平叶Planophile |
Fuji | 果台短副梢Bourse short shoot | 38.45 b | 22.19 | 1.73 | 1.29 | 38.41 | 18.51 | 水平叶Planophile |
营养长枝Vegetative long shoot | 27.96 e | 15.40 | 4.35 | 1.96 | 27.93 | 21.86 | 水平叶Planophile | |
营养短枝Vegetative short shoot | 32.89 d | 18.40 | 2.86 | 1.81 | 32.85 | 21.92 | 水平叶Planophile | |
丽嘎拉 | 果台Bourse | 43.19 a | 19.45 | 2.26 | 2.08 | 43.14 | 20.90 | 斜生叶Plagiophile |
Regal | 果台长副梢Bourse long shoot | 34.05 c | 16.78 | 3.58 | 2.18 | 34.01 | 18.42 | 水平叶Planophile |
Gala | 果台短副梢Bourse short shoot | 35.22 c | 17.60 | 3.18 | 2.05 | 35.19 | 20.74 | 水平叶Planophile |
营养长枝Vegetative long shoot | 30.79 d | 16.00 | 4.02 | 2.09 | 30.75 | 20.18 | 水平叶Planophile | |
营养短枝Vegetative short shoot | 32.20 d | 17.43 | 3.29 | 1.83 | 32.16 | 21.61 | 水平叶Planophile |
图3 各类枝梢三维虚拟图像和基于三维虚拟冠层的‘礼泉短富’和‘丽嘎拉’冠层净光合速率模拟值示意图
Fig. 3 Representations of 3D virtual shoot for vegetative long shoot,vegetative short shoot,bourse long shoot,bourse short shoot and bourse at shoot scale and modeled canopy net photosynthesis rate based on 3D virtual canopies for‘Liquan Fuji’ and‘Regal Gala’apple trees,respectively
图4 各类枝梢模拟叶片数量、叶面积与光能截获效率STAR值与观测值比较 图d、i和o的纵坐标为对应变量的模拟值。
Fig. 4 Comparisons between simulated shoot leaf number,shoot leaf area and shoot silhouette to total area ratio(STAR)from virtual shoots and those values from observed data for all shoot types in‘Liquan Fuji’and‘Regal Gala’apple trees,respectively Tittles for y-axes for figure d,i and o were simulated values.
品种 Cultivar | 树高/cm Tree Height | 干周/cm Trunk circumstance | 叶面积/m2 Leaf area | 叶面积指数/ (m2 · m-2) LAI | 叶面积密度/(m2 · m-3)Leaf area density | 叶片分散度 Leaf dispersion | 单株枝量 Shoot number per tree |
---|---|---|---|---|---|---|---|
礼泉短富Liquan Fuji | 310.00 ± 8.15 a | 32.75 ± 2.87 a | 24.74 ± 2.74 a | 4.22 ± 0.191 a | 4.73 ± 0.22 a | 0.44 ± 0.02 a | 1 099 ± 119 a |
丽嘎拉 Regal Gala | 314.00 ± 6.26 a | 27.73 ± 2.36 b | 24.41 ± 3.27 a | 4.17 ± 0.114 a | 4.65 ± 0.21 a | 0.48 ± 0.03 b | 805 ± 120 b |
表3 ‘礼泉短富’和‘丽嘎拉’冠层结构信息
Table 3 Summary of canopy structural parameters for‘Liquan Fuji’and‘Regal Gala’apple trees,respectively
品种 Cultivar | 树高/cm Tree Height | 干周/cm Trunk circumstance | 叶面积/m2 Leaf area | 叶面积指数/ (m2 · m-2) LAI | 叶面积密度/(m2 · m-3)Leaf area density | 叶片分散度 Leaf dispersion | 单株枝量 Shoot number per tree |
---|---|---|---|---|---|---|---|
礼泉短富Liquan Fuji | 310.00 ± 8.15 a | 32.75 ± 2.87 a | 24.74 ± 2.74 a | 4.22 ± 0.191 a | 4.73 ± 0.22 a | 0.44 ± 0.02 a | 1 099 ± 119 a |
丽嘎拉 Regal Gala | 314.00 ± 6.26 a | 27.73 ± 2.36 b | 24.41 ± 3.27 a | 4.17 ± 0.114 a | 4.65 ± 0.21 a | 0.48 ± 0.03 b | 805 ± 120 b |
图6 ‘礼泉短富’和‘丽嘎拉’苹果枝类组成 P值为非参数卡方测验结果,图中同一类枝梢不同小写字母表示两品种间差异显著(P < 0.05)。
Fig. 6 Fractions of shoots number for each shoot type for‘Liquan Fuji’and‘Regal Gala’apple trees,respectively P value was obtained from Chi-square test. Different lowercase letters for the same shoot type indicate significant differences between two cultivars at 0.05 level.
品种 Cultivar | STAR值 Silhouette to total area ratio | 冠层净光合速率/(mmol · CO2 · m-2 · d-1) Canopy net photosynthesis rate | 冠层日光合量/(mol · CO2 · d-1) Canopy daily total photosynthesis | ||
---|---|---|---|---|---|
晴天 Sunny day | 阴天 Cloudy day | 晴天Sunny day | 阴天Cloudy day | ||
礼泉短富 Liquan Fuji | 0.25 ± 0.01 a | 185.41 ± 8.12 b | 32.05 ± 8.24 b | 4.91 ± 0.24 b | 0.83 ± 0.14 b |
丽嘎拉 Regal Gala | 0.26 ± 0.01 a | 202.83 ± 0.33 a | 79.11 ± 0.72 a | 5.49 ± 0.62 a | 2.15 ± 0.23 a |
表4 ‘礼泉短富’和‘丽嘎拉’苹果冠层光能截获效率STAR值、净光合速率和日光合量
Table 4 Canopy silhouette to total area ratio(STAR),canopy photosynthesis rate and canopy daily photosynthesis in sunny and cloudy days for‘Liquan Fuji’and‘Regal Gala’apple trees,respectively
品种 Cultivar | STAR值 Silhouette to total area ratio | 冠层净光合速率/(mmol · CO2 · m-2 · d-1) Canopy net photosynthesis rate | 冠层日光合量/(mol · CO2 · d-1) Canopy daily total photosynthesis | ||
---|---|---|---|---|---|
晴天 Sunny day | 阴天 Cloudy day | 晴天Sunny day | 阴天Cloudy day | ||
礼泉短富 Liquan Fuji | 0.25 ± 0.01 a | 185.41 ± 8.12 b | 32.05 ± 8.24 b | 4.91 ± 0.24 b | 0.83 ± 0.14 b |
丽嘎拉 Regal Gala | 0.26 ± 0.01 a | 202.83 ± 0.33 a | 79.11 ± 0.72 a | 5.49 ± 0.62 a | 2.15 ± 0.23 a |
图7 果台副梢和营养枝梢转换后冠层光能截获效率相对变化及晴天和阴天冠层净光合速率和日光合量的相对变化
Fig. 7 Relative changes of canopy silhouette to total area ratio(STAR)and net photosynthesis rate and total photosynthesis under sunny and cloudy conditions,by modifying relative fractions between bourse shoots and vegetative shoots, for‘Liquan Fuji’and‘Regal Gala’,respectively
[1] | Adam B, Donès N, Sinoquet H. 2002. VegeSTAR-software to compute light interception and canopy photosynthesis from images of 3D digitized plants. Version 4. 0. UMR PIAF INRA-UBP,Clermont-Ferrand. |
[2] |
Chen D, Pallas B, Martinez S, Wang Y, Costes E. 2019. Neoformation and summer arrest are common sources of tree plasticity in response to water stress of apple cultivars. Annals of Botany, 123 (5):877-890.
doi: 10.1093/aob/mcy224 URL |
[3] |
Costes E. 2003. Winter bud content according to position in 3-year-old branching systems of‘Granny Smith’apple. Annals of Botany, 92 (4):581-588.
pmid: 12922977 |
[4] | Costes E, Lauri P É, Regnard J. 2006. Analyzing fruit tree architecture:implications for tree management and fruit production. Horticultural Reviews, 32:1-61. |
[5] |
da Silva D, Han L, Faivre R, Costes E. 2014. Influence of the variation of geometrical and topological traits on light interception efficiency of apple trees:sensitivity analysis and metamodelling for ideotype definition. Annals of Botany, 114 (4):739-752.
doi: 10.1093/aob/mcu034 URL |
[6] | de Wit C T. 1965. Photosynthesis of leaf canopies. Wageningen:Pudoc. |
[7] | den Dulk J A. 1989. The interpretation of remote sensing:a feasibility study[Ph. D. Dissertation]. The Netherlands:Landbouwuniversiteit te Wageningen. |
[8] | Donès N, Adam B, Sinoquet H. 2006. PiafDigit-software to drive a Polhemus Fastrak 3 SPACE 3D digitizer and for the acquisition of plant architecture. Version 1.1. UMR PIAF INRA-UBP,Clermont-Ferrand. |
[9] | Dong Ran-ran, An Gui-yang, Zhao Zheng-yang, Mei Li-xin, Li Min-min. 2013. Comparison of light interception ability and growth and yield of different apple tree shapes on dwarf rootstock. Scientia Agricultura Sinica, 46 (9):1867-1873. (in Chinese) |
董然然, 安贵阳, 赵政阳, 梅立新, 李敏敏. 2013. 不同树形矮化自根砧苹果的冠内光照及其生长和产量比较. 中国农业科学, 46 (9):1867-1873. | |
[10] |
Duursma R, Falster D, Valladares F, Sterck F, Pearcy R, Lusk C, Sendall K, Nordenstahl M, Houter N, Atwell B. 2012. Light interception efficiency explained by two simple variables:a test using a diversity of small- to medium-sized woody plants. New Phytologist, 193 (2):397-408.
doi: 10.1111/j.1469-8137.2011.03943.x pmid: 22066945 |
[11] | Fanwoua J, Bairam E, Delaire M, Buck-Sorlin G. 2014. The role of branch architecture in assimilate production and partitioning:the example of apple(Malus domestica). Frontiers in Plant Science, 5:338. |
[12] |
Foster T, Johnston R, Seleznyova A. 2003. A morphological and quantitative characterization of early floral development in apple(Malus × domestica Borkh.). Annals of Botany, 92 (2):199-206.
pmid: 12805080 |
[13] | Gao Deng-tao, Han Ming-yu, Li Bing-zhi, Zhang Lin-sen, Bai Ru. 2006. The characteristic of light distribution in apple tree canopy using WinsCanopy2004a. Acta Agriculturae Boreali-occidentalis Sinica, 15 (3):166-170. (in Chinese) |
高登涛, 韩明玉, 李丙智, 张林森, 白茹. 2006. 冠层分析仪在苹果树冠结构光学特性方面的研究. 西北农业学报, 15 (3):166-170. | |
[14] | Goren R, Huberman M, Goldschmidt E E. 2004. Girdling:physiological and horticultural aspects. Horticultural Reviews, 30:1-36. |
[15] | Lei Xiang-dong, Chang Min, Lu Yuan-chang, Zhao Tian-zhong. 2006. A review on growth modelling and visualization for virtual trees. Scientia Silvae Sinicae, 42 (11):123-131. (in Chinese) |
雷相东, 常敏, 陆元昌, 赵天忠. 2006. 虚拟树木生长建模及可视化研究综述. 林业科学, 42 (11):123-131. | |
[16] | Li Minji, Zhang Qiang, Li Xingliang, Zhou Beibei, Yang Yuzhang, Zhou Jia, Zhang Junke, Wei Qinping. 2018. Effects of five different dwarfing interstocks of SH on growth,light distribution,yield and fruit quality in‘Fuji’apple trees. Acta Horticulturae Sinica, 45 (10):1999-2007. (in Chinese) |
李民吉, 张强, 李兴亮, 周贝贝, 杨雨璋, 周佳, 张军科, 魏钦平. 2018. SH系矮化中间砧对‘富士’苹果树体生长、产量和果实品质的影响. 园艺学报, 45 (10):1999-2007. | |
[17] |
Lin L, Niu Z M, Jiang C D, Yu L, Wang H N, Qiao M Y. 2022. Influences of open-central canopy on photosynthetic parameters and fruit quality of apples(Malus × domestica)in the loess plateau of China. Horticultural Plant Journal, 8 (2):133-142.
doi: 10.1016/j.hpj.2021.03.008 URL |
[18] | Ngao J, Adam B, Saudreau M. 2017. Intra-crown spatial variability of leaf temperature and stomatal conductance enhanced by drought in apple tree as assessed by the RATP model. Agricultural and Forest Meteorology, 237:340-354. |
[19] |
Pallas B, da Silva D, Valsesia P, Yang W, Guillaume O, Lauri P-E, Vercambre G, Génard M, Costes E. 2016. Simulation of carbon allocation and organ growth variability in apple tree by connecting architectural and source-sink models. Annals of Botany, 118 (2):317-330.
doi: 10.1093/aob/mcw085 URL |
[20] | Pisek J, Sonnentag O, Richardson A D, Mõttus M. 2013. Is the spherical leaf inclination angle distribution a valid assumption for temperate and boreal broadleaf tree species? Agricultural and Forest Meteorology, 169:186-194. |
[21] | Polhemus. 2012. 3Space Fastrak User’s Manual,Revision F, 560:57. |
[22] | R Development Core Team. 2019. R:A language and environment for statistical computing. R Foundation for Statistical Computing,Vienna,Austria. http://www.R-project.org/ . |
[23] | Reig G, Lordan J, Miranda S M, Hoying S, Fargione M, Reginato G, Donahue D J, Francescatto P, Fazio G, Robinson T. 2019. Long-term performance of‘Gala’,‘Fuji’and‘Honeycrisp’apple trees grafted on Geneva® rootstocks and trained to four production systems under New York State climatic conditions. Scientia Horticulturae, 244:277-293. |
[24] |
Reyes F, Pallas B, Pradal C, Vaggi F, Zanotelli D, Tagliavini M, Gianelle D, Costes E. 2018. MuSCA:a multi-scale model to explore carbon allocation in plants. Annals of Botany, 126 (4):571-585.
doi: 10.1093/aob/mcz122 URL |
[25] | Sheng Zhao-jiang, Zhu Jun, Xia Guo-hai. 1985. Study on bourse shoots in apple trees. Journal of Laiyang Agriculture College,(1):81-94. (in Chinese) |
生兆江, 祝军, 夏国海. 1985. 苹果果台副梢的研究. 莱阳农学院学报,(1):81-94. | |
[26] | Shi Xiangbin, Liu Fengzhi, Cheng Cungang, Wang Xiaodi, Ji Xiaohao, Wang Baoliang, Zheng Xiaocui, Wang Haibo. 2018. Effects of different new shoots spacing on canopy light environment and fruit quality of grapevine under protected cultivation. Acta Horticulturae Sinica, 45 (3):436-446. (in Chinese) |
史祥宾, 刘凤之, 程存刚, 王孝娣, 冀晓昊, 王宝亮, 郑晓翠, 王海波. 2018. 设施葡萄不同新梢间距处理对冠层光环境及果实品质的影响. 园艺学报, 45 (3):436-446. | |
[27] | Sinoquet H, Le Roux X, Adam B, Ameglio T, Daudet F A. 2001. RATP: a model for simulating the spatial distribution of radiation absorption,transpiration and photosynthesis within canopies:application to an isolated tree crown. Plant,Cell & Environment, 24 (4):395-406. |
[28] |
Song Kai, Wei Qin-ping, Yue Yu-ling, Wang Xiao-wei, Zhang Ji-xiang. 2010. Effects of different pruning modes on the light distribution characters and fruit yield and quality in densely planted‘Red Fuji’apple orchard. Chinese Journal of Applied Ecology, 21 (5):1224-1230. (in Chinese)
pmid: 20707105 |
宋凯, 魏钦平, 岳玉苓, 王小伟, 张继祥. 2010. 不同修剪方式对‘红富士’苹果密植园树冠光分布特征与产量品质的影响. 应用生态学报, 21 (5):1224-1230.
pmid: 20707105 |
|
[29] |
Stephan J, Sinoquet H, Donès N, Haddad N, Talhouk S, Lauri P É. 2008. Light interception and partitioning between shoots in apple cultivars influenced by training. Tree Physiology, 28 (3):331-342.
pmid: 18171657 |
[30] |
Willaume M, Lauri P É, Sinoquet H. 2004. Light interception in apple trees influenced by canopy architecture manipulation. Trees-structure and Function, 18 (6):705-713.
doi: 10.1007/s00468-004-0357-4 URL |
[31] |
Woods H A, Saudreau M, Pincebourde S. 2018. Structure is more important than physiology for estimating intracanopy distributions of leaf temperatures. Ecology and Evolution, 8 (10):5206-5218.
doi: 10.1002/ece3.4046 URL |
[32] |
Xing L, Zhang D, Zhao C, Li Y, Ma J, An N, Han M. 2016. Shoot bending promotes flower bud formation by mi RNA‐mediated regulation in apple(Malus domestica Borkh.). Plant Biotechnology Journal, 14 (2):749-770.
doi: 10.1111/pbi.12425 URL |
[33] | Xing Li-bo, Zhang Xiao-yun, Song Xiao-min, Song Chun-hui, Han Ming-yu, Zhao Cai-ping, Li Gao-chao. 2013. Effects of spraying PBO on flowering rate and carbohydrate accumulation of‘Fuji’apple trees. Agricultural Research in the Arid Areas, 31 (3):118-126. (in Chinese) |
邢利博, 张晓云, 宋晓敏, 宋春晖, 韩明玉, 赵彩平, 李高潮. 2013. PBO喷施对矮化富士幼树成花及碳水化合物积累的影响. 干旱地区农业研究, 31 (3):118-126. | |
[34] |
Yang W, Chen X, Saudreau M, Zhang X, Zhang M, Liu H, Costes E, Han M. 2016. Canopy structure and light interception partitioning among shoots estimated from virtual trees:comparison between apple cultivars grown on different interstocks on the Chinese Loess Plateau. Trees-Structure and Function, 30 (5):1723-1734.
doi: 10.1007/s00468-016-1403-8 URL |
[35] |
Yang W, Ma X, Ma D, Shi J, Hussain S, Han M, Costes E, Zhang D. 2021. Modeling canopy photosynthesis and light interception partitioning among shoots in bi-axis and single-axis apple trees(Malus domestica Borkh.). Trees-Structure and Function, 35 (3):845-861.
doi: 10.1007/s00468-021-02085-z URL |
[36] | Yu Lu, Niu Zimian, Lin Lu, Jiang Chuangdao, Wang Hongning, Xie Peng, Li Zhiqiang, Guo Jinming. 2020. Effect of tree-shape of‘Yuluxiang’pear on light energy interception and photosynthetic characteristics. Acta Horticulturae Sinica, 47 (1):11-22. (in Chinese) |
蔚露, 牛自勉, 林琭, 姜闯道, 王红宁, 谢鹏, 李志强, 郭晋鸣. 2020. 小冠开心形和细型主干形‘玉露香’梨光能截获与光合作用差异. 园艺学报, 47 (1):11-22. | |
[37] | Zhang Ji-xiang, Wei Qin-ping, Zhang Jing, Wang Lian-xin, Sun Xie-ping, Wang Cui-ling, Song Kai. 2010. Leaf area index estimated with plant canopy analyzer in apple orchards and analysis of its reliability. Acta Horticulturae Sinica, 37 (2):185-192. (in Chinese) |
张继祥, 魏钦平, 张静, 王连新, 孙协平, 王翠玲, 宋凯. 2010. 利用冠层分析仪测算苹果园叶面积指数及其可靠性分析. 园艺学报, 37 (2):185-192. | |
[38] | Zhang Qiang, Wei Qin-ping, Wang Xiao-wei, Shang Zhi-hua, Liu Jun, Liu Song-zhong, Sun Zhi-hong. 2010. Effects of shoot numbers and distributionin canopy on yields and qualities of‘Fuji’apple with standard rootstock. Acta Horticulturae Sinica, 37 (8):1205-1212. (in Chinese) |
张强, 魏钦平, 王小伟, 尚志华, 刘军, 刘松忠, 孙志鸿. 2010. 乔砧富士苹果树冠枝梢数量和分布对产量与品质的影响. 园艺学报, 37 (8):1205-1212. | |
[39] |
Zhu J, Génard M, Poni S, Gambetta G A, Vivin P, Vercambre G, Trought M C T, Ollat N, Delrot S, Dai Z. 2019. Modelling grape growth in relation to whole-plant carbon and water fluxes. Journal of Experimental Botany, 70 (9):2505-2521.
doi: 10.1093/jxb/ery367 URL |
[1] | 于婷婷, 李 欢, 宁源生, 宋建飞, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果GRAS全基因组鉴定及其对生长素的响应分析[J]. 园艺学报, 2023, 50(2): 397-409. |
[2] | 韩晓蕾, 张彩霞, 刘 锴, 杨 安, 严家帝, 李武兴, 康立群, 丛佩华. 中熟苹果新品种‘中苹优蕾’[J]. 园艺学报, 2022, 49(S2): 1-2. |
[3] | 韩晓蕾, 张彩霞, 刘 锴, 严家帝, 李武兴, 康立群, 丛佩华. 中熟苹果新品种‘苹优2号’[J]. 园艺学报, 2022, 49(S1): 1-2. |
[4] | 王 强, 丛佩华, 刘肖烽. 晚熟苹果新品种‘华优甜娃’[J]. 园艺学报, 2022, 49(S1): 3-4. |
[5] | 王 强, 丛佩华, 刘肖烽. 中熟苹果新品种‘华优宝蜜’[J]. 园艺学报, 2022, 49(S1): 5-6. |
[6] | 杨 玲, 丛佩华, 王 强, 李武兴, 康立群. 中熟鲜食苹果新品种‘华丰’[J]. 园艺学报, 2022, 49(S1): 7-8. |
[7] | 丁志杰, 包金波, 柔鲜古丽, 朱甜甜, 李雪丽, 苗浩宇, 田新民. 新疆野苹果与‘元帅’‘金冠’的叶绿体基因组比对研究[J]. 园艺学报, 2022, 49(9): 1977-1990. |
[8] | 高彦龙, 吴玉霞, 张仲兴, 王双成, 张瑞, 张德, 王延秀. 苹果ELO家族基因鉴定及其在低温胁迫下的表达分析[J]. 园艺学报, 2022, 49(8): 1621-1636. |
[9] | 郑晓东, 袭祥利, 李玉琪, 孙志娟, 马长青, 韩明三, 李少旋, 田义轲, 王彩虹. 油菜素内酯对盐碱胁迫下平邑甜茶幼苗生长的影响及调控机理研究[J]. 园艺学报, 2022, 49(7): 1401-1414. |
[10] | 夏炎, 黄松, 武雪莉, 刘一琪, 王苗苗, 宋春晖, 白团辉, 宋尚伟, 庞宏光, 焦健, 郑先波. 基于宏病毒组测序技术的苹果病毒病鉴定与分析[J]. 园艺学报, 2022, 49(7): 1415-1428. |
[11] | 刘照霞, 张鑫, 王璐, 马玉婷, 陈倩, 朱占玲, 葛顺峰, 姜远茂. 肥料穴施位点对苹果细根生长、15N吸收利用及产量品质的影响[J]. 园艺学报, 2022, 49(7): 1545-1556. |
[12] | 马维峰, 李艳梅, 马宗桓, 陈佰鸿, 毛娟. 苹果POD家族基因的鉴定与MdPOD15的功能分析[J]. 园艺学报, 2022, 49(6): 1181-1199. |
[13] | 冯琛, 黄学旺, 李兴亮, 周佳, 李天红. 不同苹果矮化砧穗组合的抗旱性比较研究[J]. 园艺学报, 2022, 49(5): 945-957. |
[14] | 于波, 秦嗣军, 吕德国. 适量稳定供锌促进平邑甜茶幼苗生长和氮的吸收利用[J]. 园艺学报, 2022, 49(3): 473-481. |
[15] | 相立, 赵蕾, 王玫, 吕毅, 王艳芳, 沈向, 陈学森, 尹承苗, 毛志泉. 苹果MdWRKY74的克隆和功能分析[J]. 园艺学报, 2022, 49(3): 482-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司