园艺学报 ›› 2022, Vol. 49 ›› Issue (3): 641-654.doi: 10.16420/j.issn.0513-353x.2020-1021
收稿日期:
2021-04-02
修回日期:
2021-12-14
出版日期:
2022-03-25
发布日期:
2022-03-25
通讯作者:
陈昕
E-mail:chenxinzhou@hotmail.com
基金资助:
TANG Chenqian, QIU Zhixin, TAN Chao, QIAN Yuming, CHEN Xin*()
Received:
2021-04-02
Revised:
2021-12-14
Online:
2022-03-25
Published:
2022-03-25
Contact:
CHEN Xin
E-mail:chenxinzhou@hotmail.com
摘要:
采用高通量测序技术分析了陕甘花楸(Sorbus koehneana)的叶绿体全基因组,并探讨其与爪瓣花楸(S. unguiculata)的关系。陕甘花楸叶绿体基因组全长159 873 bp,GC含量为36.60%,呈典型的四分体结构,包含1个小单拷贝区(SSC,19 218 bp)、1个大单拷贝区(LSC,87 899 bp)和1对反向重复序列(IRa和IRb,26 378 bp);共注释到108个基因,包括76个蛋白编码基因,4个rRNA基因,28个tRNA基因;检测到47个简单重复序列(SSR)和48个分散重复序列(INE)。花楸属植物叶绿体基因组在大小、基因类型、密码子、内含子和GC含量等方面高度保守,但不同的重复序列和位于非编码区的12个变异热点区域可用作后续物种遗传多样性和亲缘关系研究。系统发育分析结果显示陕甘花楸位于花楸属复叶亚属,与爪瓣花楸和钝齿花楸(S. helenae)亲缘关系较近;不支持将爪瓣花楸作为陕甘花楸的异名处理,建议恢复爪瓣花楸物种名称。
中图分类号:
汤晨茜, 仇志欣, 檀超, 钱羽铭, 陈昕. 陕甘花楸叶绿体基因组及其与爪瓣花楸的系统关系[J]. 园艺学报, 2022, 49(3): 641-654.
TANG Chenqian, QIU Zhixin, TAN Chao, QIAN Yuming, CHEN Xin. Sorbus koehneana(Rosaceae):Its Complete Chloroplast Genome and Phylogenetic Relationship with S. unguiculata[J]. Acta Horticulturae Sinica, 2022, 49(3): 641-654.
基因功能 Function of gene | 基因分类 Group of genes | 基因代码 Code | 基因 Gene |
---|---|---|---|
自我复制 Self replication | rRNA | rrn | rrn4.5c,rrn5c,rrn16c,rrn23c |
tRNA | trn | trnA-UGCac,trnC-GCA,trnD-GUC,trnE-UUC,trnF-GAA,trnfM-CAU,trnG-UCC,trnH-GUG,trnI-CAUc,trnI-GAUac,trnK-UUUa,trnL-CAAc,trnL-UAAa,trnL-UAG,trnM-CAU,trnN-GUUc,trnP-UGG,trnQ-UUG,trnR-ACGc,trnR-UCU,trnS-GCU,trnS-UGA,trnT-GGU,trnT-UGU,trnV-GACc,trnV-UACa,trnW-CCA,trnY-GUA | |
核糖体小亚基 Ribosomal proteins(SSU) | rps | rps2,rps3,rps4,rps7c,rps8,rps11,rps12acd,rps14,rps15,rps16a,rps18,rps19 | |
核糖体大亚基 Ribosomal proteins(LSU) | rpl | rpl2ac,rpl14,rpl16a,rpl20,rpl22,rpl23ac,rpl32,rpl33,rpl336 | |
RNA 聚合酶亚基RNA polymerase | rpo | rpoA,rpoB,rpoC1a,rpoC2 | |
光合作用 Genes for photosynthesis | 光合系统Ⅰ Photosystem Ⅰ | psa | psaA,psaB,psaJ,psaI |
光合系统Ⅱ Photosystem Ⅱ | psb | psbA,psbB,psbC,psbD,psbE,psbF,psbH,psbI,psbJ,psbK,psbM,psbN,psbT,psbZ | |
细胞色素复合物Cytochrome b/f complex | pet | petA,petBa,petDa,petG,petL,petN | |
ATP合成酶ATP synthase | atp | atpA,atpB,atpE,atpFa,atpH,atpI | |
NADH脱氢酶 Subunits of NADH-dehydrogenase | ndh | ndhAa,ndhBac,ndhC,ndhD,ndhE,ndhF,ndhG,ndhH,ndhI,ndhJ,ndhK | |
二磷酸核酮糖羧化酶大亚基 Subunit of rubisco | rbc | rbcL | |
其他基因 Other genes | 乙酰CoA羧化酶 Subunit of Acetyl-CoA-carboxylase | acc | accD |
膜包被蛋白基因 Envelop membrane protein gene | cem | cemA | |
c型细胞色素合成基因 c-type cytochrom synthesis gene | ccs | ccsA | |
蛋白酶基因Protease gene | clp | clpPb | |
成熟酶基因Maturase gene | mat | matK | |
未知功能 Unknow function | 假想叶绿体读码框 Hypothetical chloroplast reading frames | ycf | ycf1,ycf2c,ycf3b,ycf4 |
表1 陕甘花楸叶绿体基因组注释基因列表
Table 1 List of genes found in Sorbus koehneana chloroplast genome
基因功能 Function of gene | 基因分类 Group of genes | 基因代码 Code | 基因 Gene |
---|---|---|---|
自我复制 Self replication | rRNA | rrn | rrn4.5c,rrn5c,rrn16c,rrn23c |
tRNA | trn | trnA-UGCac,trnC-GCA,trnD-GUC,trnE-UUC,trnF-GAA,trnfM-CAU,trnG-UCC,trnH-GUG,trnI-CAUc,trnI-GAUac,trnK-UUUa,trnL-CAAc,trnL-UAAa,trnL-UAG,trnM-CAU,trnN-GUUc,trnP-UGG,trnQ-UUG,trnR-ACGc,trnR-UCU,trnS-GCU,trnS-UGA,trnT-GGU,trnT-UGU,trnV-GACc,trnV-UACa,trnW-CCA,trnY-GUA | |
核糖体小亚基 Ribosomal proteins(SSU) | rps | rps2,rps3,rps4,rps7c,rps8,rps11,rps12acd,rps14,rps15,rps16a,rps18,rps19 | |
核糖体大亚基 Ribosomal proteins(LSU) | rpl | rpl2ac,rpl14,rpl16a,rpl20,rpl22,rpl23ac,rpl32,rpl33,rpl336 | |
RNA 聚合酶亚基RNA polymerase | rpo | rpoA,rpoB,rpoC1a,rpoC2 | |
光合作用 Genes for photosynthesis | 光合系统Ⅰ Photosystem Ⅰ | psa | psaA,psaB,psaJ,psaI |
光合系统Ⅱ Photosystem Ⅱ | psb | psbA,psbB,psbC,psbD,psbE,psbF,psbH,psbI,psbJ,psbK,psbM,psbN,psbT,psbZ | |
细胞色素复合物Cytochrome b/f complex | pet | petA,petBa,petDa,petG,petL,petN | |
ATP合成酶ATP synthase | atp | atpA,atpB,atpE,atpFa,atpH,atpI | |
NADH脱氢酶 Subunits of NADH-dehydrogenase | ndh | ndhAa,ndhBac,ndhC,ndhD,ndhE,ndhF,ndhG,ndhH,ndhI,ndhJ,ndhK | |
二磷酸核酮糖羧化酶大亚基 Subunit of rubisco | rbc | rbcL | |
其他基因 Other genes | 乙酰CoA羧化酶 Subunit of Acetyl-CoA-carboxylase | acc | accD |
膜包被蛋白基因 Envelop membrane protein gene | cem | cemA | |
c型细胞色素合成基因 c-type cytochrom synthesis gene | ccs | ccsA | |
蛋白酶基因Protease gene | clp | clpPb | |
成熟酶基因Maturase gene | mat | matK | |
未知功能 Unknow function | 假想叶绿体读码框 Hypothetical chloroplast reading frames | ycf | ycf1,ycf2c,ycf3b,ycf4 |
基因 Gene | 位置 Location | 内含子 I/bp Intron I | 内含子II/bp Intron II | 外显子 I/bp Exon I | 外显子II/bp Exon II | 外显子 III/bp Exon III |
---|---|---|---|---|---|---|
atpF | LSC | 729 | 144 | 411 | ||
petB | LSC | 797 | 5 | 643 | ||
petD | LSC | 724 | 7 | 476 | ||
rpl16 | LSC | 977 | 10 | 398 | ||
rpoC1 | LSC | 741 | 435 | 1 611 | ||
rps16 | LSC | 867 | 40 | 230 | ||
trnL-UAA | LSC | 514 | 37 | 50 | ||
trnV-UAC | LSC | 592 | 39 | 37 | ||
ndhA | SSC | 1 120 | 552 | 540 | ||
ndhB | IR | 669 | 777 | 756 | ||
rpl2 | IR | 686 | 389 | 436 | ||
rps12 | IR | 541 | 231 | 30 | ||
clpP | LSC | 823 | 638 | 71 | 289 | 228 |
ycf3 | LSC | 698 | 745 | 126 | 228 |
表2 陕甘花楸叶绿体基因组中含内含子的基因信息
Table 2 Information of gene introns in the chloroplast genome of Sorbus koehneana
基因 Gene | 位置 Location | 内含子 I/bp Intron I | 内含子II/bp Intron II | 外显子 I/bp Exon I | 外显子II/bp Exon II | 外显子 III/bp Exon III |
---|---|---|---|---|---|---|
atpF | LSC | 729 | 144 | 411 | ||
petB | LSC | 797 | 5 | 643 | ||
petD | LSC | 724 | 7 | 476 | ||
rpl16 | LSC | 977 | 10 | 398 | ||
rpoC1 | LSC | 741 | 435 | 1 611 | ||
rps16 | LSC | 867 | 40 | 230 | ||
trnL-UAA | LSC | 514 | 37 | 50 | ||
trnV-UAC | LSC | 592 | 39 | 37 | ||
ndhA | SSC | 1 120 | 552 | 540 | ||
ndhB | IR | 669 | 777 | 756 | ||
rpl2 | IR | 686 | 389 | 436 | ||
rps12 | IR | 541 | 231 | 30 | ||
clpP | LSC | 823 | 638 | 71 | 289 | 228 |
ycf3 | LSC | 698 | 745 | 126 | 228 |
氨基酸 Amino acid | 密码子 Codon | RSCU | 数量 Number | 氨基酸 Amino acid | 密码子 Codon | RSCU | 数量 Number | 氨基酸 Amino acid | 密码子 Codon | RSCU | 数量 Number | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
苯丙氨酸Phe | UUU | 1.29 | 932 | 脯氨酸Pro | CCU | 1.50 | 375 | 谷氨酸Glu | GAA | 1.46 | 957 | ||
UUC | 0.71 | 516 | CCC | 0.75 | 186 | GAG | 0.54 | 350 | |||||
亮氨酸Leu | UUA | 1.92 | 857 | CCA | 1.18 | 294 | 半胱氨酸Cys | UGU | 1.44 | 245 | |||
UUG | 1.20 | 537 | CCG | 0.57 | 143 | UGC | 0.56 | 95 | |||||
CUU | 1.28 | 571 | 苏氨酸Thr | ACU | 1.57 | 509 | 色氨酸Trp | UGG | 1.00 | 457 | |||
CUC | 0.41 | 182 | ACC | 0.71 | 232 | 精氨酸Arg | CGU | 1.20 | 317 | ||||
CUA | 0.79 | 351 | ACA | 1.24 | 402 | CGC | 0.41 | 107 | |||||
CUG | 0.40 | 179 | ACG | 0.48 | 156 | CGA | 1.37 | 361 | |||||
异亮氨酸Ile | AUU | 1.47 | 1 082 | 丙氨酸Ala | GCU | 1.82 | 591 | CGG | 0.49 | 128 | |||
AUC | 0.59 | 435 | GCC | 0.65 | 212 | AGA | 1.83 | 482 | |||||
AUA | 0.94 | 696 | GCA | 1.10 | 358 | AGG | 0.70 | 184 | |||||
甲硫氨酸Met | AUG | 1.00 | 591 | GCG | 0.43 | 140 | 络氨酸Tyr | UAU | 1.57 | 780 | |||
缬氨酸Val | GUU | 1.47 | 493 | 组氨酸His | CAU | 1.52 | 466 | UAC | 0.43 | 214 | |||
GUC | 0.44 | 149 | CAC | 0.48 | 146 | 甘氨酸Gly | GGU | 1.29 | 551 | ||||
GUA | 1.52 | 511 | 谷氨酰胺Gln | CAG | 1.52 | 698 | GGC | 0.41 | 177 | ||||
GUG | 0.56 | 189 | CAA | 0.48 | 218 | GGA | 1.61 | 687 | |||||
丝氨酸Ser | UCU | 1.64 | 561 | 天冬酰胺Asn | AAU | 1.51 | 961 | GGG | 0.69 | 293 | |||
UCC | 0.99 | 338 | AAC | 0.49 | 313 | 终止子 | UAA | 1.17 | 65 | ||||
UCA | 1.19 | 407 | 赖氨酸Lys | AAA | 1.47 | 1 027 | Terminator | UAG | 0.86 | 48 | |||
UCG | 0.61 | 209 | AAG | 0.53 | 373 | UGA | 0.97 | 54 | |||||
AGU | 1.14 | 389 | 天冬氨酸Asp | GAU | 1.61 | 846 | |||||||
AGC | 0.44 | 151 | GAC | 0.39 | 202 | ||||||||
总计Total | 25 726 |
表3 陕甘花楸的相对同义密码子使用度
Table 3 Relative Synonymous Codon Usage of Sorbus koehneana
氨基酸 Amino acid | 密码子 Codon | RSCU | 数量 Number | 氨基酸 Amino acid | 密码子 Codon | RSCU | 数量 Number | 氨基酸 Amino acid | 密码子 Codon | RSCU | 数量 Number | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
苯丙氨酸Phe | UUU | 1.29 | 932 | 脯氨酸Pro | CCU | 1.50 | 375 | 谷氨酸Glu | GAA | 1.46 | 957 | ||
UUC | 0.71 | 516 | CCC | 0.75 | 186 | GAG | 0.54 | 350 | |||||
亮氨酸Leu | UUA | 1.92 | 857 | CCA | 1.18 | 294 | 半胱氨酸Cys | UGU | 1.44 | 245 | |||
UUG | 1.20 | 537 | CCG | 0.57 | 143 | UGC | 0.56 | 95 | |||||
CUU | 1.28 | 571 | 苏氨酸Thr | ACU | 1.57 | 509 | 色氨酸Trp | UGG | 1.00 | 457 | |||
CUC | 0.41 | 182 | ACC | 0.71 | 232 | 精氨酸Arg | CGU | 1.20 | 317 | ||||
CUA | 0.79 | 351 | ACA | 1.24 | 402 | CGC | 0.41 | 107 | |||||
CUG | 0.40 | 179 | ACG | 0.48 | 156 | CGA | 1.37 | 361 | |||||
异亮氨酸Ile | AUU | 1.47 | 1 082 | 丙氨酸Ala | GCU | 1.82 | 591 | CGG | 0.49 | 128 | |||
AUC | 0.59 | 435 | GCC | 0.65 | 212 | AGA | 1.83 | 482 | |||||
AUA | 0.94 | 696 | GCA | 1.10 | 358 | AGG | 0.70 | 184 | |||||
甲硫氨酸Met | AUG | 1.00 | 591 | GCG | 0.43 | 140 | 络氨酸Tyr | UAU | 1.57 | 780 | |||
缬氨酸Val | GUU | 1.47 | 493 | 组氨酸His | CAU | 1.52 | 466 | UAC | 0.43 | 214 | |||
GUC | 0.44 | 149 | CAC | 0.48 | 146 | 甘氨酸Gly | GGU | 1.29 | 551 | ||||
GUA | 1.52 | 511 | 谷氨酰胺Gln | CAG | 1.52 | 698 | GGC | 0.41 | 177 | ||||
GUG | 0.56 | 189 | CAA | 0.48 | 218 | GGA | 1.61 | 687 | |||||
丝氨酸Ser | UCU | 1.64 | 561 | 天冬酰胺Asn | AAU | 1.51 | 961 | GGG | 0.69 | 293 | |||
UCC | 0.99 | 338 | AAC | 0.49 | 313 | 终止子 | UAA | 1.17 | 65 | ||||
UCA | 1.19 | 407 | 赖氨酸Lys | AAA | 1.47 | 1 027 | Terminator | UAG | 0.86 | 48 | |||
UCG | 0.61 | 209 | AAG | 0.53 | 373 | UGA | 0.97 | 54 | |||||
AGU | 1.14 | 389 | 天冬氨酸Asp | GAU | 1.61 | 846 | |||||||
AGC | 0.44 | 151 | GAC | 0.39 | 202 | ||||||||
总计Total | 25 726 |
图2 陕甘花楸与11种复叶亚属叶绿体基因组重复序列的比较
Fig. 2 Comparison of repeat sequences in chloroplast genomes distribution in Sorbus koehneana and other 11 species of Subg. Sorbus
类型 Type | 重复序列 SSR repeat sequence | 重复次数 Number of copies | 总计 Total | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |||
单核苷酸(34) Mononucleotide | A | 6 | 4 | 3 | 2 | 1 | 1 | 1 | 18 | ||||||||||||||
T | 3 | 1 | 4 | 3 | 3 | 1 | 1 | 16 | |||||||||||||||
二核苷酸(4) Dinucleotide | AT | 2 | 2 | ||||||||||||||||||||
TA | 2 | 2 | |||||||||||||||||||||
三核苷酸(0) Trinucleotide | 0 | ||||||||||||||||||||||
四核苷酸(7) Tetranucleotide | AATA | 1 | 1 | ||||||||||||||||||||
TTAT | 1 | 1 | |||||||||||||||||||||
TTTA | 5 | 5 | |||||||||||||||||||||
五核苷酸(2) Pentanucleotide | AATGT | 1 | 1 | ||||||||||||||||||||
TCCAA | 1 | 1 |
表4 陕甘花楸的叶绿体基因组简单重复序列
Table 4 Number of SSRs identified in the chloroplast genome of Sorbus koehneana
类型 Type | 重复序列 SSR repeat sequence | 重复次数 Number of copies | 总计 Total | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |||
单核苷酸(34) Mononucleotide | A | 6 | 4 | 3 | 2 | 1 | 1 | 1 | 18 | ||||||||||||||
T | 3 | 1 | 4 | 3 | 3 | 1 | 1 | 16 | |||||||||||||||
二核苷酸(4) Dinucleotide | AT | 2 | 2 | ||||||||||||||||||||
TA | 2 | 2 | |||||||||||||||||||||
三核苷酸(0) Trinucleotide | 0 | ||||||||||||||||||||||
四核苷酸(7) Tetranucleotide | AATA | 1 | 1 | ||||||||||||||||||||
TTAT | 1 | 1 | |||||||||||||||||||||
TTTA | 5 | 5 | |||||||||||||||||||||
五核苷酸(2) Pentanucleotide | AATGT | 1 | 1 | ||||||||||||||||||||
TCCAA | 1 | 1 |
图4 基于最大简约法、最大似然法和贝叶斯推断构建的49种植物系统进化树 分支上的数字代表各方法的支持率:ML/MP/BI。
Fig. 4 Phylogenetic tree of 49 species based on maximum parsimony,maximum likelihood and Bayesian inference Numbers at nodes are values for bootstrap support:ML/MP/BI.
[1] |
Aldasoro J J, Aedo C, Garmendia F M, delaHoz F P, Navarro C. 2004. Revision of Sorbu subgenera Aria and Torminaria(Rosaceae-Maloideae). Systematic Botany Monographs, 69:1-148.
doi: 10.2307/25027918 URL |
[2] |
Amiryousefi A, Hyvönen J, Poczai P. 2018. IRscope:an online program to visualize the junction sites of chloroplast genomes. Bioinformatics, 34(17):3030-3031.
doi: 10.1093/bioinformatics/bty220 pmid: 29659705 |
[3] |
Barrett C F, Baker W J, Comer J R, Conran J G, Lahmeyer S C, Leebens-Mack J H, Li J, Lim G S, MayfieldJones D R, Perez L, Medinz J, Pires J C, Santos C, Stevenson D W, Zomlefer W B, Davis J I. 2016. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytologist, 209:855-870.
doi: 10.1111/nph.13617 pmid: 26350789 |
[4] |
Beier S, Thiel T, Münch T, Scholz U, Mascher M. 2017. MISA-web:a web server for microsatellite prediction. Bioinformatics, 33(16):2583-2585.
doi: 10.1093/bioinformatics/btx198 URL |
[5] |
Chris M, Michael B, Schwartz J R, Alexander P, Rubin E M, Frazer K A, Pachter L S, Inna D. 2000. VISTA:visualizing global DNA sequence alignments of arbitrary length. Bioinformatics, 16(11):1046-1047.
doi: 10.1093/bioinformatics/16.11.1046 URL |
[6] |
Chumley T W, Palmer J D, Mower J P, Fourcade H M, Calie P J, Boore J L, Jansen R K. 2006. The complete chloroplast genome sequence of Pelargonium × hortorum:organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Molecular Biology and Evolution, 23:2175-2190.
doi: 10.1093/molbev/msl089 URL |
[7] | Dong Qing-hua, Wang Xi-cheng, Zhao Mi-zhen, Song Chang-nian, Ge An-jing, Wang Jing. 2011. Development of EST-derived SSR markers and their application in strawberry genetic diversity analysis. Scientia Agricultura Sinica, 44(17):3603-3612. (in Chinese) |
董清华, 王西成, 赵密珍, 宋长年, 葛安静, 王静. 2011. 草莓EST-SSR 标记开发及在品种遗传多样性分析中的应用. 中国农业科学, 44(17):3603-3612. | |
[8] |
Doyle J J, Doyle J L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry, 19:11-15.
doi: 10.1016/0031-9422(80)85004-7 URL |
[9] |
Dugas D V, Hernandez D, Koenen E J M, Schwarz E, Straub S, Hughes C E, Jansen R K, Nageswara R M, Staats M, Trujillo J T. 2015. Mimosoid legume plastome evolution:IR expansion,tandem repeat expansions,and accelerated rate of evolution in clpP. Scientific Reports, 5:16958.
doi: 10.1038/srep16958 URL |
[10] |
Firetti F, Zuntini A R, Gaiarsa J W, Oliveira R S, Lohmann L G, Van Sluys M A. 2017. Complete chloroplast genome sequences contribute toplant species delimitation:a case study of the Anemopaegma species complex. American Journal of botany, 104:1493-1509.
doi: 10.3732/ajb.1700302 URL |
[11] | Fonseca L H M, Lohmann L G. 2017. Plastome rearrangements in the“Adenocalymma-Neojobertia”clade(Bignonieae,Bignoniaceae)and its phylogenetic implications. Frontiers in Plant Science, 8:1-13. |
[12] | Gabrielian E. 1978. The genus Sorbus L. in western Asia and the Himalayas. USA:Academy of Sciences of the Armenian SSR:1-264. |
[13] | Gao Yuan, Wang Da-jiang, Wang Kun, Li Lian-wen, Piao Ji-cheng. 2020. Genetic diversity of Malus Mill. based on the sequences of chloroplast fragments. Acta Agriculturae Boreali-sinica: 35(6):33-42. (in Chinese) |
高源, 王大江, 王昆, 李连文, 朴继成. 2020. 基于叶绿体片段序列的苹果属植物遗传多样性研究. 华北农学报: 35(6):33-42. | |
[14] | Greiner S, Lehwark P, Bock R. 2019. Organellar Genome DRAW(OGDRAW)version 1.3.1:expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research, 47:59-64. |
[15] |
Guisinger M M, Chumley T W, Kuehl J V, Boore J L, Jansen R K. 2010. Implications of the plastid genome sequence of Typha(Typhaceae,Poales) for understanding genome evolution in Poaceae. Journal of Molecular Evolution, 70(2):149-166.
doi: 10.1007/s00239-009-9317-3 pmid: 20091301 |
[16] |
Jin J J, Yu W B, Yang J B, Song Y, dePamphilis C W, Yi T S, Li D Z. 2020. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21(1):1-31.
doi: 10.1186/s13059-019-1906-x URL |
[17] | Jung S, Abbott A, Jesudurai C, Tomkins J, Main D. 2005. Frequency,type,distribution and annotation of simple sequence repeats in Rosaceae ESTs. Functional Integrative Genomics,(3):136-143. |
[18] |
Katoh K, Standley D M. 2013. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Molecular Biology and Evolution, 30(4):772-780.
doi: 10.1093/molbev/mst010 URL |
[19] |
Khakhlova O, Bock R. 2006. Elimination of deleterious mutations in plastid genome by gene conversion. Plant Journal, 46(1):85-94.
pmid: 16553897 |
[20] | Koehne E. 1913. Plantae Wilsonianae:an enumeration of the woody plants collected in western China for the Arnold Arboretum of Harvard University during the years 1907,1908,and 1910. Cambridge: Cambridge University Press:457-483. |
[21] |
Kurtz S, Choudhuri J V, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. 2001. REPuter:the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research, 29(22):4633-4642.
pmid: 11713313 |
[22] |
Li M, Tetsuo O T, Gao Y D, Xu B, Zhu Z M, Ju W B, Gao X F. 2017. Molecular phylogenetics and historical biogeography of Sorbus sensu stricto(Rosaceae). Molecular Phylogenetics and Evolution, 111:76-86.
doi: 10.1016/j.ympev.2017.03.018 URL |
[23] |
Li N, Sun M H, Jiang Z S, Shu H R, Zhang S Z. 2016. Genome-wide analysis of the synonymous codon usage patterns in apple. Journal of Integrative Agriculture, 15(5):983-991.
doi: 10.1016/S2095-3119(16)61333-3 URL |
[24] | Li Qian, Guo Qiqiang, Gao Chao, Li Huie. 2021. Characterization of complete chloroplast genome of Camellia weiningensis in Weining,Guizhou Province. Acta Horticulturae Sinica, 47(4):779-787. (in Chinese) |
李倩, 郭其强, 高超, 李慧娥. 2020. 贵州威宁红花油茶的叶绿体基因组特征分析. 园艺学报, 47(4):779-787. | |
[25] | Li Ruo-yu, Zhang Xiao-dan, Ma Xin-yi, Guo Rui, Yan Shao-bin, Jin Guang, Zhou Ping. 2020. Analyses of codon usage patterns and codon usage bias in peach(Prunus persica). Molecular Plant Breeding, 19(3):799-807. (in Chinese) |
李若愚, 张小丹, 马昕怡, 郭瑞, 颜少宾, 金光, 周平. 2020. 桃基因密码子使用模式及其偏好性分析. 分子植物育种, 19(3):799-807. | |
[26] | Li Yongtan, Zhang Jun, Huang Yali, Fan Jianmin, Zhang Yiwen, Zuo Lihui. 2020. Analysis of chloroplast genome of Pyrus betulaefolia. Acta Horticulturae Sinica, 47(6):1021-1032. (in Chinese) |
李泳潭, 张军, 黄亚丽, 范建敏, 张益文, 左力辉. 2020. 杜梨叶绿体基因组分析. 园艺学报, 47(6):1021-1032. | |
[27] | Lu L T, Spongberg S A. 2003. Sorbus Linnaeus//Wu Z Y,Raven P H,Hong D Y. Flora of China,Vol. 9. Beijing: Science Press;USA:Missouri Botanical Garden Press:144-170. |
[28] |
Matthew K, Richard M, Amy W, Steven S H, Matthew C, Shane S, Simon B, Alex C, Sidney M, Chris D, Tobias T, Bruce A, Peter M, Alexei D. 2012. Geneious basic:an integrated and extend-able desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28:1647-1649.
doi: 10.1093/bioinformatics/bts199 pmid: 22543367 |
[29] | McAllister H. 2005. The genus Sorbus Mountain Ash and other Rowans. London:Royal Botanical Gardens:1-252. |
[30] |
Meade J C, Shah P H, Lushbaugh W B . 1997. Trichomonas vaginalis:analysis of codon usage. Experimental Parasitology, 87:73-74.
pmid: 9287961 |
[31] |
Phipps J B, Robertson K R, Smith P G, Rohrer J R. 1990. A checklist of the subfamily Maloideae(Rosaceae). Canadian Journal of Botany, 68(10):2209-2269.
doi: 10.1139/b90-288 URL |
[32] |
Posada D, Crandall K A. 1998. MODELTEST:testing the model of DNA substitution. Bioinformatics, 14:817-818.
doi: 10.1093/bioinformatics/14.9.817 pmid: 9918953 |
[33] |
Potter D, Eriksson T, Evans R C, Oh S, Smedmark J E E, Morgan D R, Kerr M, Robertson K R, Arsenault M, Dickinson T A, Campbell C S. 2007. Phylogeny and classification of Rosaceae. Plant Systematics and Evolution, 266(1-2):5-43.
doi: 10.1007/s00606-007-0539-9 URL |
[34] |
Qu X J, Moore M J, Li D Z, Yi T S. 2019. PGA:a software package for rapid,accurateand flexible batch annotation of plastomes. Plant Methods, 15(1):1-12.
doi: 10.1186/s13007-018-0385-5 URL |
[35] |
Reim S, Lochschmidt F, Proft A, Höfer M. 2020. Genetic integrity is still maintained in natural populations of the indigenous wild apple species Malus sylvestris(Mill.)in Saxony as demonstrated with nuclear SSR and chloroplast DNA markers. Ecology and Evolution, 10:11798-11809.
doi: 10.1002/ece3.v10.20 URL |
[36] | Rono P C, Dong X, Yang J X, Mutie F M, A. Oulo M, Malombe I, M. Kirika P, Hu G W, Wang Q F. 2020. Initial complete chloroplast genomes of Alchemilla(Rosaceae): comparative analysis and phylogenetic relationships. Frontiers in Genetics, 11:560368. |
[37] |
Ronquist F, Teslenko M, Mark P, Ayres D L, Darling A, Höhna S, Larget B, Liu L, Suchard M A, Huelsenbeck J P. 2012. MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61:539-542.
doi: 10.1093/sysbio/sys029 pmid: 22357727 |
[38] | Smith D R, Keeling P J. 2015. Mitochondrial and plastid genome architecture:reoccurring themes,but significant differences at the extremes. Proceedings of the National Academy of Sciences of the United States of America, 112:10177-10184. |
[39] |
Stamatakis A. 2014. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30:1312-1313.
doi: 10.1093/bioinformatics/btu033 URL |
[40] |
Sun J H, Shi S, Li J L, Jing Y, Wang L, Yang X Y, Guo L, Zhou S L, Sun F J. 2018. Phylogeny of Maleae(Rosaceae)based on multiple chloroplast regions:implications to genera Circumscription. BioMed Research International,doi: 10.1155/2018/7627191.
doi: 10.1155/2018/7627191 URL |
[41] |
Sun J H, Wang Y H, Liu Y L, Xu C, Yuan Q J, Guo L P, Huang L Q. 2020. Evolutionary and phylogenetic aspects of the chloroplast genome of Chaenomeles species. Scientific Reports, 10(1):11466.
doi: 10.1038/s41598-020-58234-w URL |
[42] |
Thode V A, Lohmann L G. 2019. Comparative chloroplast genomics at low taxonomic levels:a case study using Amphilophium(Bignonieae,Bignoniaceae). Frontiers in Plant Science, 10:1-17.
doi: 10.3389/fpls.2019.00001 URL |
[43] | Wang Guo-xun, Zhang Ming-li. 2011. A molecular phylogeny of Sorbus(Rosaceae) based on ITS sequence. Acta Horticulturae Sinica, 38(12):2387-2394. (in Chinese) |
王国勋, 张明理. 2011. 应用核DNA ITS序列探讨广义花楸属(Sorbus L.)属下系统关系. 园艺学报, 38(12):2387-2394. | |
[44] |
Wang L, Guo Z H, Shang Q H, Sa W, Wang L. 2021. The complete chloroplast genome of Prunus triloba var. plena and comparative analysis of Prunus species:genome structure,sequence divergence,and phylogenetic analysis. Brazilian Journal of Botany, 44:85-95.
doi: 10.1007/s40415-020-00685-6 URL |
[45] | Wang Q, Niu Z Y, Li J B, Zhu K L, Chen X. 2020a. The complete chloroplast genome sequence of the Chinese endemic species Sorbus setschwanensis(Rosaceae)and its phylogenetic analysis. Nordic Journal of Botany, 38(2):1-11. |
[46] |
Wang W, Yang T, Wang H L, Li Z J, Ni J W, Su S, Xu X Q. 2020b. Comparative and phylogenetic analyses of the complete chloroplast genomes of six almond species(Prunus spp. L.). Scientific Reports, 10(1):10137.
doi: 10.1038/s41598-019-56728-w URL |
[47] |
Wick R R, Schultz M B, Justin Z, Holt K E. 2015. Bandage:interactive visualization of de novo genome assemblies. Bioinformatics, 31(20):3350-3352.
doi: 10.1093/bioinformatics/btv383 URL |
[48] |
Wicke S, Schneeweiss G M, dePamphilis C W, Müller K F, Quandt D. 2011. The evolution of the plastid chromosome in land plants:gene content,gene order,gene function. Plant Molecular Biology, 76:273-297.
doi: 10.1007/s11103-011-9762-4 URL |
[49] | Wilgenbusch J C, Swofford D. 2003. Inferring evolutionary trees with PAUP*. Current Protocols in Bioinformatics, 6(4):1-28. |
[50] | Wu Wei-feng, Chen Ming-jie, Chen Fa-xing. 2020. Codon bias analysis of Prunus salicina‘Huangguan’malate transporter ALMT4,ALMT9 and tDT genes. Journal of Agricultural Biotechnology, 28(1):42-57. (in Chinese) |
巫伟峰, 陈明杰, 陈发兴. 2020. ‘皇冠李’苹果酸转运体基因ALMT4、ALMT9和tDT密码子偏好性分析. 农业生物技术学报, 28(1):42-57. | |
[51] | Yan Xiu-qin, Lu Min, An Hua-ming. 2015. Analysis on SSR information in transcriptome and development of molecular markers in Rosa roxburghii. Acta Horticulturae Sinica, 42(2):341-349. (in Chinese) |
鄢秀芹, 鲁敏, 安华明. 2015. 刺梨转录组SSR信息分析及其分子标记开发. 园艺学报, 42(2):341-349. | |
[52] | Yang Yameng, Jiao Jian, Fan Xiucai, Zhang Ying, Jiang Jianfu, Li Min, Liu Chonghuai. 2019. Complete chloroplast genome sequence and characteristics analysis of Vitis ficifolia. Acta Horticulturae Sinica, 46(4):635-648. (in Chinese) |
杨亚蒙, 焦健, 樊秀彩, 张颖, 姜建福, 李民, 刘崇怀. 2019. 桑叶葡萄叶绿体基因组及其特征分析. 园艺学报, 46(4):635-648. | |
[53] | Yü De-jun, Guan Ke-jian. 1963. Taxa Nova Rosacearum Sinicarum(Ⅰ). Journal of Systematics and Evolution, 8(3):202-235. (in Chinese) |
俞德浚, 关克俭. 1963. 中国蔷薇科植物分类之研究(一). 植物分类学报, 8(3):202-235. | |
[54] | Yü De-jun, Lu Ling-di. 1974. Spiraea,Dichotomanthes,Cotoneaster,Sorbus,Chaenomeles. Flora of China//Yü Te-tisun. Flora Republicae Popularis,Sinicae,Vol. 36. Beijing: Science Press:283-344. (in Chinese) |
俞德浚, 陆玲娣. 1974. 绣线菊属,牛筋条属,栒子属,花楸属,木瓜海棠属//俞德浚. 中国植物志,第36卷. 北京: 科学出版社:283-344. | |
[55] |
Zhang M Y, Fan L, Liu Q Z, Song Y, Wei S W, Zhang S L, Wu J. 2014. A novel set of EST-derived SSR markers for pear and cross-species transferability in Rosaceae. Plant Molecular Biology Reporter, 32:290-302.
doi: 10.1007/s11105-013-0638-4 URL |
[56] | Zhang S D, Jin J J, Chen S Y, Chase M W, Soltis D E, Li H T, Yang J B, Li D Z, Yi T S. 2017. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytologist, 214:13-55. |
[57] | Zheng Yi, Zhang Hui, Wang Qinmei, Gao Yue, Zhang Zhihong, Sun Yuxin. 2020. Complete chloroplast genome sequence of Clivia miniata and its characteristics. Acta Horticulturae Sinica, 47(12):2439-2450. (in Chinese) |
郑祎, 张卉, 王钦美, 高悦, 张志宏, 孙玉新. 2020. 大花君子兰叶绿体基因组及其特征. 园艺学报, 47(12):2439-2450. |
[1] | 丁志杰, 包金波, 柔鲜古丽, 朱甜甜, 李雪丽, 苗浩宇, 田新民. 新疆野苹果与‘元帅’‘金冠’的叶绿体基因组比对研究[J]. 园艺学报, 2022, 49(9): 1977-1990. |
[2] | 蒋思思, 袁军, 周文君, 钮根花, 周俊琴. 薄壳山核桃(Carya illinoinensis)叶绿体基因组及其特征分析[J]. 园艺学报, 2022, 49(8): 1772-1784. |
[3] | 宋芸, 贾孟君, 曹亚萍, 李政, 贺嘉欣, 王勇飞, 张鑫瑞, 乔永刚. 连翘叶绿体基因组特征分析[J]. 园艺学报, 2022, 49(1): 187-199. |
[4] | 李泳潭,张 军*,黄亚丽,范建敏,张益文,左力辉. 杜梨叶绿体基因组分析[J]. 园艺学报, 2020, 47(6): 1021-1032. |
[5] | 李 倩1,郭其强2,高 超2,李慧娥1,*. 贵州威宁红花油茶的叶绿体基因组特征分析[J]. 园艺学报, 2020, 47(4): 779-787. |
[6] | 郑 祎, 张 卉, 王钦美, 高 悦, 张志宏, 孙玉新. 大花君子兰叶绿体基因组及其特征[J]. 园艺学报, 2020, 47(12): 2439-2450. |
[7] | 杨亚蒙1,焦 健2,樊秀彩1,张 颖1,姜建福1,李 民1,刘崇怀1,*. 桑叶葡萄叶绿体基因组及其特征分析[J]. 园艺学报, 2019, 46(4): 635-648. |
[8] | 王国勋;张明理;. 应用核DNA ITS序列探讨广义花楸属(Sorbus L.)属下系统关系[J]. 园艺学报, 2011, 38(12): 2387-2394. |
[9] | 郑冬梅;张明理. 运用形态特征和分支、表征方法探讨广义花楸属( Sorbus L. ) 属下分类关系[J]. 园艺学报, 2007, 34(3): 723-728. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司