园艺学报 ›› 2022, Vol. 49 ›› Issue (2): 281-292.doi: 10.16420/j.issn.0513-353x.2021-0045
宋放, 李子璇, 王策, 王志静, 何利刚, 蒋迎春, 吴黎明(), 白福玺()
收稿日期:
2021-11-09
修回日期:
2022-01-07
出版日期:
2022-02-25
发布日期:
2022-02-28
通讯作者:
吴黎明,白福玺
E-mail:wuliming2005@126.com;baifx@webmail.hzau.edu.cn
基金资助:
SONG Fang, LI Zixuan, WANG Ce, WANG Zhijing, HE Ligang, JIANG Yingchun, WU Liming(), BAI Fuxi()
Received:
2021-11-09
Revised:
2022-01-07
Online:
2022-02-25
Published:
2022-02-28
Contact:
WU Liming,BAI Fuxi
E-mail:wuliming2005@126.com;baifx@webmail.hzau.edu.cn
摘要:
从甜橙基因组中鉴定到12个菌根信号受体蛋白基因CsLYK,分布于chr1、chr2、chr6、chr7、chr8和chr9等6条染色体上。结构域分析表明CsLYK家族基因的3′端含有7个保守motif,且其组合也高度保守;而5′端仅有3个保守motif,且其组合变异较大。另外,CsLYK2、CsLYK3、CsLYK6、CsLYK10和CsLYK12没有内含子,其余7个成员含有1 ~ 19个内含子。系统进化分析将CsLYK基因分为3组,CsLYK2与已经报道的菌根共生信号受体基因PaNFP和SlLYK10处于同一小分支。qRT-PCR分析表明,枳实生苗中12个PtrLYK在根、茎、叶中均有表达,其中PtrLYK10在根系中高量表达,PtrLYK3、PtrLYK7、PtrLYK8、PtrLYK9和PtrLYK12在叶片中高量表达;另外,PtrLYK2在枳根系中的表达受菌根侵染的诱导,且在菌根侵染的早期表达量最高。在拟南芥原生质体中瞬时表达亚细胞定位载体35S-PtrLYK2-CFP,共聚焦荧光显微镜观察发现PtrLYK2定位于细胞膜上。通过苜蓿毛状根瞬时表达启动子表达载体proPtrLYK2::GUS,利用Ds-Red红色荧光报告基因筛选阳性根并接种AM真菌,通过GUS组织化学染色和WGA-488菌根染色发现proPtrLYK2主要在丛枝周围的细胞和根尖细胞表达。这些结果表明PtrLYK2可能在柑橘菌根共生早期的信号识别中发挥重要功能。
中图分类号:
宋放, 李子璇, 王策, 王志静, 何利刚, 蒋迎春, 吴黎明, 白福玺. 柑橘菌根信号受体蛋白基因LYK2的克隆及功能分析[J]. 园艺学报, 2022, 49(2): 281-292.
SONG Fang, LI Zixuan, WANG Ce, WANG Zhijing, HE Ligang, JIANG Yingchun, WU Liming, BAI Fuxi. Cloning and Function Analysis of Mycorrhizal Signaling Receptor Protein Lysin Motif Receptor-like Kinases 2 Gene(LYK2)in Citrus[J]. Acta Horticulturae Sinica, 2022, 49(2): 281-292.
登录号 Accession number | 基因 Gene | 正向引物序列(5′-3′) Forward primer sequence | 反向引物序列(5′-3′) Reverse primer sequence |
---|---|---|---|
Cs1g15820.1 | PtrLYK1 | GCAGATTGCACTTGATGCTG | CTTTGCTCGAAAAGCACTGTC |
Cs1g23560.1 | PtrLYK2 | CCACAATTGATGGGAAGGTC | ACTTCACCAGATTGGCATGG |
Cs1g23580.1 | PtrLYK3 | TGTTGGACTTGCCACAACAG | ACGGTGTTGAAAGGAGGTTG |
Cs2g02680.1 | PtrLYK4 | ATCCGATTGAGCTTGGTGAG | GGATGAAAACCAAGCCACTG |
Cs2g20910.1 | PtrLYK5 | AGTCGATTGCGAGGAATGTG | CCCGGAATAAAGACCAAACC |
Cs2g25010.1 | PtrLYK6 | GAACCCCAGTTATGTTCACAGG | AATTGTGGGCTCTCGTTGTC |
Cs6g02700.1 | PtrLYK7 | TTTGAGTGTGGTGGTTGTGG | TGTTGTTGCAGCAAGTAGCC |
Cs6g02710.1 | PtrLYK8 | CCATGGATCTTGAAGGGTTG | TCCTCTGGCACGGAAAATAC |
Cs7g09310.1 | PtrLYK9 | TCACACGAAAGCTCGATACG | TTCCTCAAGCTTCACCAACC |
Cs8g16260.1 | PtrLYK10 | CCCGATGATTTCTCAAGCAG | GGAGATCCCGAATTTCATCC |
Cs9g08050.1 | PtrLYK11 | AATCCCAGTGCCTTTCCTTC | TTTGGCATGGATAGGTGGTC |
orange1.1t04036.1 | PtrLYK12 | TGAAGTGGTGTTGGTGTTGG | CGATGGATACAATCCGTTGC |
Cs1g05000.1 | β-actin | AGAACTATGAACTGCCTGATGGC | GCTTGGAGCAAGTGCTGTGATT |
表1 实时荧光定量PCR引物
Table 1 The primers used for qRT-PCR
登录号 Accession number | 基因 Gene | 正向引物序列(5′-3′) Forward primer sequence | 反向引物序列(5′-3′) Reverse primer sequence |
---|---|---|---|
Cs1g15820.1 | PtrLYK1 | GCAGATTGCACTTGATGCTG | CTTTGCTCGAAAAGCACTGTC |
Cs1g23560.1 | PtrLYK2 | CCACAATTGATGGGAAGGTC | ACTTCACCAGATTGGCATGG |
Cs1g23580.1 | PtrLYK3 | TGTTGGACTTGCCACAACAG | ACGGTGTTGAAAGGAGGTTG |
Cs2g02680.1 | PtrLYK4 | ATCCGATTGAGCTTGGTGAG | GGATGAAAACCAAGCCACTG |
Cs2g20910.1 | PtrLYK5 | AGTCGATTGCGAGGAATGTG | CCCGGAATAAAGACCAAACC |
Cs2g25010.1 | PtrLYK6 | GAACCCCAGTTATGTTCACAGG | AATTGTGGGCTCTCGTTGTC |
Cs6g02700.1 | PtrLYK7 | TTTGAGTGTGGTGGTTGTGG | TGTTGTTGCAGCAAGTAGCC |
Cs6g02710.1 | PtrLYK8 | CCATGGATCTTGAAGGGTTG | TCCTCTGGCACGGAAAATAC |
Cs7g09310.1 | PtrLYK9 | TCACACGAAAGCTCGATACG | TTCCTCAAGCTTCACCAACC |
Cs8g16260.1 | PtrLYK10 | CCCGATGATTTCTCAAGCAG | GGAGATCCCGAATTTCATCC |
Cs9g08050.1 | PtrLYK11 | AATCCCAGTGCCTTTCCTTC | TTTGGCATGGATAGGTGGTC |
orange1.1t04036.1 | PtrLYK12 | TGAAGTGGTGTTGGTGTTGG | CGATGGATACAATCCGTTGC |
Cs1g05000.1 | β-actin | AGAACTATGAACTGCCTGATGGC | GCTTGGAGCAAGTGCTGTGATT |
用途 Purpose | 引物名称 Primer name | 引物序列(5′-3′) Primer sequence |
---|---|---|
PtrLYK2 CDS序列扩增 Amplification of coding sequence of PtrLYK2 | PtrLYK2-F | ATGGCAATTTCTTCTCTTTCCT |
PtrLYK2-R | GCGAGCTGTGACTGGACTAA | |
PtrLYK2启动子序列扩增 Amplification of promoter sequence of PtrLYK2 | proPtrLYK2-F | GATAGAACACTTTGCGGTC |
proPtrLYK2-R | TGGTACAAATGTTCTTTTGT |
表2 PtrLYK2基因CDS和启动子扩增引物
Table 2 The primers used for cloning CDS and promoter sequence of PtrLYK2
用途 Purpose | 引物名称 Primer name | 引物序列(5′-3′) Primer sequence |
---|---|---|
PtrLYK2 CDS序列扩增 Amplification of coding sequence of PtrLYK2 | PtrLYK2-F | ATGGCAATTTCTTCTCTTTCCT |
PtrLYK2-R | GCGAGCTGTGACTGGACTAA | |
PtrLYK2启动子序列扩增 Amplification of promoter sequence of PtrLYK2 | proPtrLYK2-F | GATAGAACACTTTGCGGTC |
proPtrLYK2-R | TGGTACAAATGTTCTTTTGT |
图3 LYK基因家族的系统进化树 Cs:柑橘;Sl:番茄;At:拟南芥;Pa:糙叶山黄麻;Gm:大豆;Lj:百脉根;Os:水稻;Pt:杨树;Vv:葡萄;Mt:苜蓿。
Fig. 3 The phylogenetic tree of LYK family genes Cs:Citrus sinensis;Sl:Solanum lycopersicum;At:Arabidopsis thaliana;Pa: Parasponia andersonii;Gm:Glycine max;Lj:Lotus japonicus;Os:Oryza sativa;Pt:Populus trichocarpa;Vv:Vitis vinifera;Mt:Medicago truncatula.
图5 菌根真菌侵染不同时期枳根系PtrLYK2的表达分析
Fig. 5 The expression analysis of PtrLYK2 during different mycorrhizal infection periods in the roots of Poncirus trifoliate
图7 PtrLYK2启动子的GUS组织化学染色(A、B)和丛枝菌根真菌的WGA-488染色(C) A:proPtrLYK2:GUS在根尖细胞表达;B:proPtrLYK2:GUS在丛枝细胞及周围细胞表达;C:丛枝菌根真菌的丛枝细胞(Ar)WGA-488染色。
Fig. 7 The GUS histochemical staining of the PtrLYK2 promoter(A,B)and WGA-488 staining of arbuscular mycorrhizal fungi(C) A:proPtrLYK2:GUS was expressed in the root tip cells;B:proPtrLYK2:GUS was expressed in the arbuscules and cells around arbuscules;C:The WGA-488 staining of arbuscules(Ar)of arbuscular mycorrhizal fungi.
[1] |
Bago B, Pfeffer P E, Shachar-Hill Y. 2000. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology, 124:949-958.
pmid: 11080273 |
[2] | Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S. 2009. MEME SUITE:tools for motif discovery and searching. Nucleic Acids Research, 37:W202-W208. |
[3] | Bono J J, Fliegmann J, Gough C, Anna P B, Benoit L, Maria A K, Dörte K H, Frank L W T, René G, Julie V C, Theodorus W J G. 2019. Expression and function of the Medicago truncatula lysin motif receptor-like kinase(LysM‐RLK)gene family in the legume-rhizobia symbiosis. The Model Legume Medicago Truncatula, 6 (8):439-447. |
[4] |
Buendia L, Wang T, Girardin A, Lefebvre B. 2016. The LysMreceptor-like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato. New Phytologist, 210:184-195.
doi: 10.1111/nph.13753 pmid: 26612325 |
[5] | Chen C, Chen H, He Y, Xia R. 2018. TBtools,a toolkit for biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv, https://doi.org/10.1101/289660. |
[6] | Cheng Y, Guo W, Yi H, Pang X, Deng X. 2003. An efficient protocol for genomic DNA extraction from Citrus species. Plant Lecular Biology Reporter, 21:177-178. |
[7] |
Choi J, William S, Uta P. 2018. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annual Review of Phytopathology, 56:135-160.
doi: 10.1146/phyto.2018.56.issue-1 URL |
[8] |
Combier J P, Billy F D, Gamas P, Niebel A, Rivas S. 2008. Trans-regulation of the expression of the transcription factor MtHAP2-1 by a uORF controls root nodule development. Genes & Development, 22:1549-1559.
doi: 10.1101/gad.461808 URL |
[9] |
Den C R O, Streng A, De M S, Cao Q Q, Polone E, Liu W, Ammiraju J S S, Kudrna D, Wing R, Untergasser A, Bisseling T, Geurts R. 2011. LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science, 331 (6019):909-912.
doi: 10.1126/science.1198181 URL |
[10] | Deng Xiu-xin, Shu Huai-rui, Hao Yu-jin, Xu Qiang, Han Ming-yu, Zhang Shao-ling, Duan Chang-qing, Jiang Quan, Yi Gan-jun, Chen Hou-bin. 2018. Review on the development of fruit tree discipline in the past century. Journal of Agriculture,(8):24-34. (in Chinese) |
邓秀新, 束怀瑞, 郝玉金, 徐强, 韩明玉, 张绍铃, 段常青, 姜全, 易干军, 陈厚彬. 2018. 果树学科百年发展回顾. 农学学报,(8):24-34. | |
[11] | El-Gebal S, Mistry J, Bateman A, Eddy S R, Luciani A, Potter S C, Qureshi M, Richardson L J, Salazar G A, Smart A, Sonnhammer E L L, Hirsh L, Paladin L, Piovesan D, Tosatto S C E, Finn R D. 2019. The Pfam protein families database in 2019. Nucleic Acids Research, 47:D427-D432. |
[12] | Gao Mei, Xin Jian-kang, Jiang Shan. 2021. Bioinformatics analysis of lysin motif receptor-like kinase gene family in Physcomitrella patens. Guihaia, 41 (6):979-988. (in Chinese) |
高梅, 辛健康, 姜山. 2021. 小立碗藓LysM型类受体激酶基因家族生物信息学分析. 广西植物, 41 (6):979-988. | |
[13] | Ge Shibei, Jiang Xiaochun, Wang Lingyu, Yu Jingquan, Zhou Yanhong. 2020. Recent advances in the role and mechanism of arbuscular mycorrhiza-induced improvement of abiotic stress tolerance in horticultural plants. Acta Horticulturae Sinica, 47 (9):1752-1776. (in Chinese) |
葛诗蓓, 姜小春, 王羚羽, 喻景权, 周艳虹. 2020. 园艺植物丛枝菌根抗非生物胁迫的作用机制研究进展. 园艺学报, 47 (9):1752-1776. | |
[14] |
Indrasumunar A, Wilde J, Hayashi S, Li D, Gresshoff P. 2015. Functional analysis of duplicated Symbiosis Receptor Kinase(SymRK)genes during nodulation and mycorrhizal infection in soybean(Glycine max). Journal of Plant Physiology, 176:157-168.
doi: 10.1016/j.jplph.2015.01.002 pmid: 25617765 |
[15] |
Ivashuta S, Liu J, Liu J, Lohar D P, Haridas S, Bucciarelli B, Vandenbosch K A, Vance C P, Harrison M J, Gantt J S. 2005. RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell, 17:2911-2921.
pmid: 16199614 |
[16] |
Jiang Y N, Xie Q J, Wang W X, Yang J, Zhang X W, Yu Na, Zhou Y, Wang E T. 2018. Medicago AP2-domain transcription factor WRI5a is a master regulator of lipid biosynthesis and transfer during mycorrhizal symbiosis. Molecular Plant, 11 (11):1344-1359.
doi: S1674-2052(18)30301-0 pmid: 30292683 |
[17] |
Karimi M, Inzé D, Depicker A. 2002. GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 7 (5):193-195.
doi: 10.1016/S1360-1385(02)02251-3 URL |
[18] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X:molecular evolutionary genetics analysis across computing Platforms. Molecular Biology Evolution, 35:1547-1549.
doi: 10.1093/molbev/msy096 URL |
[19] |
Kutschera U, Briggs W R. 2012. Root phototropism:from dogma to the mechanism of blue light perception. Planta, 235 (3):443-452.
doi: 10.1007/s00425-012-1597-y pmid: 22293854 |
[20] |
Lian X Y, Zhao X Y, Zhao Q, Wang G L, Li Y Y, Hao Y J. 2021. MdDREB2A in apple is involved in the regulation of multiple abiotic stress responses. Horticultural Plant Journal, 7 (3):197-208.
doi: 10.1016/j.hpj.2021.03.006 URL |
[21] |
Liao D H, Sun X, Wang N, Song F M, Liang Y. 2018. Tomato-LysM receptor-like kinase SlLYK12 is involved in arbuscular mycorrhizal symbiosis. Front. Plant Science, 9:1004.
doi: 10.3389/fpls.2018.01004 URL |
[22] |
Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R. 2004. RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. Journal of Experimental Botany, 55:983-992.
pmid: 15073217 |
[23] |
Lin K, Limpens E, Zhang Z H, Ivanov S, Saunders D G O, Mu D S, Pang E L, Cao H F, Cha H, Lin T, Zhou Q, Shang Y, Li Y, Sharma T, Velzen R V, Ruijter N D, Aanen D K, Win J, Kamoun S, Bisseling T, Geurts R, Huang S W. 2014. Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. PLoS Genetics, 10 (1):e1004078.
doi: 10.1371/journal.pgen.1004078 URL |
[24] | Liu Run-jin, Chen Ying-long. 2007. Mycorrhizology. Beijing: Science Press. (in Chinese) |
刘润进, 陈应龙. 2007. 菌根学. 北京: 科学出版社. | |
[25] | Liu Yan-jing, Sun Gui-lian, Zhou Qin, Zou Xue-mei, Huang Xiao-long. 2020. Bioinformatics analysis of the FvLysM gene family of strawberry in the forest. Molecular Plant Breeding,https://kns.cnki.net/kcms/detail/46.1068.S.20201209.1055.006.html. (in Chinese) |
刘艳晶, 孙贵连, 周琴, 邹雪梅, 黄小龙. 2020. 森林草莓FvLysM基因家族的生物信息学分析. 分子植物育种,https://kns.cnki.net/kcms/detail/46.1068.S.20201209.1055.006.html. | |
[26] |
Lohmann G V, Shimoda Y, Nielsen M W, Jørgensen F G, Grossmann C, Sandal N, Sørensen K, Thirup S, Madsen L H, Tabata S, Sato S, Stougaard J, Radutoiu S. 2010. Evolution and regulation of the Lotus japonicus LysM receptor gene family. Molecular Plant Microbe Interaction, 23 (4):510-521.
doi: 10.1094/MPMI-23-4-0510 URL |
[27] |
Miyata K, Hayafune M, Kobae Y, Kaku H, Nishizawa Y, Masuda Y, Shibuya N, Nakagawa T. 2016. Evaluation of the role of the LysM receptor-like kinase,OsLYK2/OsRLK2for AM symbiosis in rice. Plant Cell Physiology, 57:2283-2290.
doi: 10.1093/pcp/pcw144 URL |
[28] |
Miyata K, Kozaki T, Kouzai Y, Ozawa K, Ishii K, Asamizu E, Okabe Y, Umehara Y, Miyamoto A, Kobae Y, Akiyama K, Kaku H, Nishizawa Y, Shibuya N, Nakagawa T. 2014. The bifunctional plant receptor,OsCERK1,regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiology, 55:1864-1872.
doi: 10.1093/pcp/pcu129 URL |
[29] |
Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer M J, Karl L, Floss D S, Harrison M J, Parniske M, Gutjahr C. 2016. A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1to regulate arbuscule branching. Current Biology, 26 (8):987-998.
doi: 10.1016/j.cub.2016.01.069 pmid: 27020747 |
[30] |
Radhakrishnan G V, Keller J, Rich M K, Vernié T, Mbadinga D L M, Vigneron N, Cottret L, Clemente H S, Libourel C, Cheema J, Linde A M, Eklund D M, Cheng S F, Wong G K S, Lagercrantz U, Li F W, Oldroyd G E D, Delaux P M. 2020. An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nature Plants, 6 (3):280-289.
doi: 10.1038/s41477-020-0613-7 pmid: 32123350 |
[31] |
Shu B, Wang P, Xia R X. 2015. Characterisation of the phytase gene in trifoliate orange(Poncirus trifoliata (L.) Raf.)seedlings. Scientia Horticulturae, 194:222-229.
doi: 10.1016/j.scienta.2015.08.028 URL |
[32] |
Smith S E, Smith F A. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth:new paradigms fromcellular toecosystem scales. Annual Review of Plant Biology, 62:227-250.
doi: 10.1146/arplant.2011.62.issue-1 URL |
[33] |
Smith S E, Smith F A, Jakobsen I. 2004. Functional diversity in arbuscular mycorrhizal(AM)symbioses:the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responsesin growth or total P uptake. New Phytologist, 162:511-524.
doi: 10.1111/nph.2004.162.issue-2 URL |
[34] |
Sun W J, Ji X L, Song L Q, Wang X F, You C X, Hao Y J. 2021. Functional identification of MdSMXL8.2,the homologous gene of strigolactones pathway repressor protein gene in Malus × domestica. Horticultural Plant Journal, 7 (4):275-285.
doi: 10.1016/j.hpj.2021.01.001 URL |
[35] |
Wu Q S, He J D, Srivastava A K, Zou Y, Kuča K. 2019. Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiology, 39 (7):1149-1158.
doi: 10.1093/treephys/tpz039 URL |
[36] |
Xiao J, Hu C, Chen Y, Yang B, Hua J. 2014. Effects of low magnesium and an arbuscular mycorrhizal fungus on the growth,magnesium distribution and photosynthesis of two citrus cultivars. Scientia Horticulturae, 177:14-20.
doi: 10.1016/j.scienta.2014.07.016 URL |
[37] |
Xu Q, Chen L L, Ruan X N, Chen D J, Zhu A D, Chen C L, Bertrand D, Jiao W B, Hao B H, Lyon M P, Chen J J, Gao S, Xing F, Lan H, Chang J W, Ge X H, Lei Y, Hu Q, Miao Y, Wang L, Xiao S X, Biswas M K, Zeng W F, Guo F, Cao H B, Yang X M, Xu X W, Cheng Y J, Xu J, Liu J H, Luo O J H, Tang Z H, Guo W W, Kuang H H, Zhang H Y, Roose M L, Nagarajan N, Deng X X. 2013. The draft genome of sweet orange(Citrus sinensis). Nature Genetics, 45:59-66.
doi: 10.1038/ng.2472 URL |
[38] |
Yang S, Grønlund M, Jakobsen I, Grotemeyer M S, Rentsch D, Miyao A, Hirochik H, Kumar C S, Sundaresan V, Salamin N, Catausan S, Mattes N, Heuer S, Paszkowskia U. 2012. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family. Plant Cell, 24:4236-4251.
doi: 10.1105/tpc.112.104901 URL |
[39] |
Yoo S D, Cho Y H, Sheen J. 2007. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nature Protocols, 2 (7):1565.
doi: 10.1038/nprot.2007.199 URL |
[40] | Zeng Li, Li Jianfu, Liu Jianfu, Wang Mingyuan. 2014. Effects of AM fungi inoculation on citrus fruit quality under natural conditions. Journal of Southwest Agricultural Sciences, 27 (5):2101-2105. (in Chinese) |
曾理, 李建福, 刘建福, 王明元. 2014. 自然条件下接种AM真菌对柑橘果实品质的影响. 西南农业学报, 27 (5):2101-2105. | |
[41] |
Zhang W E, Pan X J, Zhao Q, Zhao T. 2021. Plant growth,antioxidative enzyme,and cadmium tolerance responses to cadmium stress in Canna orchioides. Horticultural Plant Journal, 7 (3):256-266.
doi: 10.1016/j.hpj.2021.03.003 URL |
[42] |
Zhang X, Dong W, Sun J, Feng F, Deng Y, He Z, Oldoyd G E D, Wang E. 2015. The receptor kinase CERK1has dual functions insymbiosis and immunity signaling. Plant Journal, 81:258-267.
doi: 10.1111/tpj.2015.81.issue-2 URL |
[43] |
Zipfel C, Oldoyd G E D. 2017. Plant signaling in symbiosis and immunity. Nature, 543 (7645):328-336.
doi: 10.1038/nature22009 URL |
[44] | Zuo Cunwu, Zhang Weina, Mao Juan, Jiang Xuefeng, Ma Zonghuan, Su Jing, Chen Baihong. 2017. Identification and expression of apple LysM receptor kinase genes. Acta Horticulturae Sinica, 44 (4):733-742. (in Chinese) |
左存武, 张卫娜, 毛娟, 姜雪峰, 马宗桓, 苏静, 陈佰鸿. 2017. 苹果LysM类受体激酶基因家族鉴定与表达分析. 园艺学报, 44 (4):733-742. |
[1] | 叶子茂, 申晚霞, 刘梦雨, 王 彤, 张晓楠, 余 歆, 刘小丰, 赵晓春, . R2R3-MYB转录因子CitMYB21对柑橘类黄酮生物合成的影响[J]. 园艺学报, 2023, 50(2): 250-264. |
[2] | 于婷婷, 李 欢, 宁源生, 宋建飞, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果GRAS全基因组鉴定及其对生长素的响应分析[J]. 园艺学报, 2023, 50(2): 397-409. |
[3] | 蒋靖东, 韦壮敏, 王楠, 朱晨桥, 叶俊丽, 谢宗周, 邓秀新, 柴利军. 山金柑四倍体资源的发掘与鉴定[J]. 园艺学报, 2023, 50(1): 27-35. |
[4] | 袁馨, 徐云鹤, 张雨培, 单楠, 陈楚英, 万春鹏, 开文斌, 翟夏琬, 陈金印, 甘增宇. 猕猴桃后熟过程中ABA响应结合因子AcAREB1调控AcGH3.1的表达[J]. 园艺学报, 2023, 50(1): 53-64. |
[5] | 杜玉玲, 杨凡, 赵娟, 刘书琪, 龙超安. 新鱼腥草素钠对柑橘指状青霉的抑菌作用[J]. 园艺学报, 2023, 50(1): 145-152. |
[6] | 李镇希, 潘睿翾, 许美容, 郑正, 邓晓玲. 柑橘黄龙病菌双重实时荧光PCR检测方法的建立[J]. 园艺学报, 2023, 50(1): 188-196. |
[7] | 朱凯杰, 张哲惠, 曹立新, 向舜德, 叶俊丽, 谢宗周, 柴利军, 邓秀新, . 棕色晚熟脐橙新品种‘宗橙’[J]. 园艺学报, 2022, 49(S1): 41-42. |
[8] | 朱世平, 文荣中, 王媛媛, 曾 杨. 特晚熟柑橘新品种‘金乐柑’[J]. 园艺学报, 2022, 49(S1): 43-44. |
[9] | 王沙, 张心慧, 赵玉洁, 李变变, 招雪晴, 沈雨, 董建梅, 苑兆和. 石榴花青苷合成相关基因PgMYB111的克隆与功能分析[J]. 园艺学报, 2022, 49(9): 1883-1894. |
[10] | 董桑婕, 葛诗蓓, 李岚, 贺丽群, 范飞军, 齐振宇, 喻景权, 周艳虹. 不同光质补光对辣椒幼苗生长、丛枝菌根共生和磷吸收的影响[J]. 园艺学报, 2022, 49(8): 1699-1712. |
[11] | 郑林, 王帅, 刘语诺, 杜美霞, 彭爱红, 何永睿, 陈善春, 邹修平. 柑橘响应黄龙病菌侵染的NAC基因的克隆及表达分析[J]. 园艺学报, 2022, 49(7): 1441-1457. |
[12] | 杨海健, 张云贵, 周心智. 柑橘新品种‘云贵脆橙’[J]. 园艺学报, 2022, 49(7): 1611-1612. |
[13] | 张凯, 麻明英, 王萍, 李益, 金燕, 盛玲, 邓子牛, 马先锋. 柑橘HSP20家族基因鉴定及其响应溃疡病菌侵染表达分析[J]. 园艺学报, 2022, 49(6): 1213-1232. |
[14] | 李文婷, 李翠晓, 林小清, 郑永钦, 郑正, 邓晓玲. 基于STR位点对广东省柑橘溃疡病菌种群遗传结构的分析[J]. 园艺学报, 2022, 49(6): 1233-1246. |
[15] | 麻明英, 郝晨星, 张凯, 肖桂华, 苏翰英, 文康, 邓子牛, 马先锋. 甜橙SWEET2a促进柑橘溃疡病菌侵染[J]. 园艺学报, 2022, 49(6): 1247-1260. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司