[1] |
Aharoni A, Dixit S, Jetter R, Thoenes E, Pereira A A. 2004. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis,alters cuticle properties,and confers drought tolerance when overexpressed in Arabidopsis. The Plant Cell, 16:2463-2480.
doi: 10.1105/tpc.104.022897
URL
|
[2] |
Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H. 1998. Classification and terminology of plant epicuticular waxes. Botanical Journal of the Linnean Society, 126 (3):237-260.
doi: 10.1111/boj.1998.126.issue-3
URL
|
[3] |
Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure J D, Haslam R P, Napier J A, Lessire, Joubes J. 2012. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. The Plant Cell, 24:3106-3118.
doi: 10.1105/tpc.112.099796
pmid: 22773744
|
[4] |
Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A. 2011. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiolgy, 156:29-45.
|
[5] |
Busta L, Hegebarth D, Kroc E, Jetter R. 2017. Changes in cuticular wax coverage and composition on developing Arabidopsis leaves are influenced by wax biosynthesis gene expression levels and trichome density. Planta, 245:297-311.
doi: 10.1007/s00425-016-2603-6
URL
|
[6] |
Debono A, Yeats T H, Rose J K, Bird D, Jetter R, Kunst L, Samuels L. 2009. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell, 21 (4):1230-1238.
doi: 10.1105/tpc.108.064451
pmid: 19366900
|
[7] |
Go Y S, Kim H, Kim H J, Suh M C. 2014. Arabidopsis cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-type transcription factor. The Plant Cell, 26 (4):1666-1680.
doi: 10.1105/tpc.114.123307
URL
|
[8] |
Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, Hofte H, Pauly M, Riechmann J L, Broun P. 2007. The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. The Plant Cell, 19 (4):1278-1294.
doi: 10.1105/tpc.106.047076
URL
|
[9] |
Kim H. 2012. Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2(LTPG2) and overlapping function between LTPG/LTPG1 and LTPG 2 in cuticular wax export or accumulation in Arabidopsis thaliana. Plant and Cell Physiology, 53:1391-1403.
doi: 10.1093/pcp/pcs083
URL
|
[10] |
Kim H, Choi D, Suh M C. 2017. Cuticle ultrastructure,cuticular lipid composition,and gene expression in hypoxia-stressed Arabidopsis stems and leaves. Plant Cell Reports, 36 (6):815-827.
doi: 10.1007/s00299-017-2112-5
URL
|
[11] |
Kim J, Jung J H, Lee S B, Go Y S, Kim H J, Cahoon R, Markham J E, Cahoon E B, Suh M C. 2013. Arabidopsis 3-ketoacyl-coenzyme A synthase 9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes,suberins,sphingolipids,and phospholipids. Plant Physiology, 162:567-580.
doi: 10.1104/pp.112.210450
URL
|
[12] |
Lam P, Zhao L, Eveleigh N, Yu X, Chen L. 2015. The exosome and trans-acting small interfering RNAs regulate cuticular wax biosynthesis during Arabidopsis inflorescence stem development. Plant Physiolgy, 167:323-336.
|
[13] |
Lee S, Go Y, Bae H, Park J, Cho S, Cho H, Lee D, Park O, Hwang I, Suh M. 2009. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition,increased plastoglobules,and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiology, 150:42-54.
doi: 10.1104/pp.109.137745
URL
|
[14] |
Lee S B, Kim H U, Suh M C. 2016. MYB94 and MYB96 additively activate cuticular wax biosynthesis in Arabidopsis. Plant and Cell Physiology, 57:2300-2311.
doi: 10.1093/pcp/pcw147
URL
|
[15] |
Lee S B, Suh M C. 2015. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Reports, 34:557-572.
doi: 10.1007/s00299-015-1772-2
URL
|
[16] |
Liu S, Wang R, Zhang Z, Li Q, Wang L, Wang Y, Zhao Z. 2019. High-resolution mapping of quantitative trait loci controlling main floral stalk length in Chinese cabbage(Brassica rapa L. ssp. pekinensis). BMC Genomics, 20:437.
doi: 10.1186/s12864-019-5810-2
URL
|
[17] |
Liu Z, Fang Z, Zhuang M, Zhang Y, Lv H, Liu Y, Li Z, Sun P, Tang J, Liu D, Zhang Z, Yang L. 2017. Fine-mapping and analysis of Cgl1,a gene conferring glossy trait in cabbage(Brassica oleracea L. var. capitata). Frontiers in Plant Science, 8 (14024):239.
|
[18] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25:402-408.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[19] |
McFarlane H E, Shin J J H, Bird D A, Samuels A L. 2010. Arabidopsis ABCG transporters,which are required for export of diverse cuticular lipids,dimerize in different combinations. The Plant Cell, 22:3066-3075.
doi: 10.1105/tpc.110.077974
pmid: 20870961
|
[20] |
McFarlane H E, Watanabe Y, Yang W, Huang Y, Ohlrogge J, Samuels A L. 2014. Golgi- and trans-Golgi network-mediated vesicle trafficking is required for wax secretion from epidermal cells. Plant Physiolgy, 164:1250-1260.
|
[21] |
Mu Xiangli, Wang Chao, Wang Shuai. 2013. Observation of ultra microstructure of wax-less mutant epicuticular wax on Cabbage. Chinese Vegetable,(4):32. (in Chinese)
|
|
牟香丽, 王超, 王帅. 2013. 甘蓝无蜡质突变体叶表皮蜡质超微结构观察. 中国蔬菜,(4):32.
|
[22] |
Ni Z, Xin M, Hu Z, Yao Y, Wang T, Liu X, Xing J, Peng H, Zhang Y, Zhou D. 2018. GCN5 contributes to stem cuticular wax biosynthesis by histone acetylation of CER3 in Arabidopsis. Journal of Experimental Botany, 69 (12):2911-2922.
doi: 10.1093/jxb/ery077
URL
|
[23] |
Oshima Y, Shikata M, Koyama T, Ohtsubo N, Mitsuda N, Ohme-Takagi M. 2013. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. The Plant Cell, 25:1609-1624.
doi: 10.1105/tpc.113.110783
URL
|
[24] |
Park C S, Go Y S, Suh M C. 2016. Cuticular wax biosynthesis is positively regulated by WRINKLED4,an AP2/ERF-type transcription factor,in Arabidopsis stems. The Plant Journal, 88:257-270.
doi: 10.1111/tpj.2016.88.issue-2
URL
|
[25] |
Pu Y, Gao J, Guo Y, Liu T, Zhu L, Xu P, Yi B, Wen J, Tu J, Ma C, Fu T, Zou J, Shen J. 2013. A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in Brassica napus. BMC Plant Biology, 13:215.
doi: 10.1186/1471-2229-13-215
URL
|
[26] |
Raffaele S, Vailleau F, Léger A, Joubes J, Miersch O, Huard C, Blee E, Mongrand S, Domergue F, Roby D. 2008. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. The Plant Cell, 20:752-767.
doi: 10.1105/tpc.107.054858
URL
|
[27] |
Rowland O, Domergue F. 2012. Plant fatty acyl reductases:enzymes generating fatty alcohols for protective layers with potential for industrial applications. Plant Science, 193-194:28-38.
doi: S0168-9452(12)00095-7
pmid: 22794916
|
[28] |
Shao Meini, Hao Xin, Cui Na, Qu Bo, Guan Ping, Jia Weikang, Xu Yufeng. 2020. Effects of epicuticular waxes on the physiological characteristics of blue-leaf Hosta. Acta Horticulturae Sinica, 47 (7):1401-1411. (in Chinese)
|
|
邵美妮, 郝鑫, 崔娜, 曲波, 关萍, 贾伟康, 许玉凤. 2020. 蓝叶类型玉簪叶片表皮蜡质对光合生理的影响. 园艺学报, 47 (7):1401-1411.
|
[29] |
Todd J, Post-Beittenmiller D, Jaworski J G. 1999. KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. The Plant Journal, 17:119-130.
doi: 10.1046/j.1365-313X.1999.00352.x
URL
|
[30] |
Xue Y, Xiao S, Kim J, Lung S, Chen L, Tanner J A, Suh M C, Chye M L. 2014. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. Journal of Experimental Botany, 65:5473-5483.
doi: 10.1093/jxb/eru304
URL
|
[31] |
Yeats T H, Rose J K. 2008. The biochemistry and biology of extracellular plant lipid-transfer proteins(LTPs). Protein Science, 17 (2):191-198.
doi: 10.1110/ps.073300108
URL
|
[32] |
Zhang X, Liu Z, Wang P, Wang Q, Yang S, Feng H. 2013. Fine mapping of BrWax1,a gene controlling cuticular wax biosynthesis in Chinese cabbage(Brassica rapa L. ssp. pekinensis). Molecular Breeding, 32 (4):867-874.
doi: 10.1007/s11032-013-9914-0
URL
|
[33] |
Zhao L, Kunst L. 2016. SUPERKILLER complex components are required for the RNA exosome-mediated control of cuticular wax biosynthesis in Arabidopsis inflorescence stems. Plant Physiology, 171:960-973.
|