园艺学报 ›› 2022, Vol. 49 ›› Issue (1): 23-40.doi: 10.16420/j.issn.0513-353x.2020-0969
李莹1,2, 孟宪巍1,2, 马志航2, 刘孟军1,2,**(), 赵锦3,**(
)
收稿日期:
2021-04-06
修回日期:
2021-05-26
出版日期:
2022-01-25
发布日期:
2022-01-24
通讯作者:
刘孟军,赵锦
E-mail:lmj1234567@aliyun.com;zhaojinbd@126.com
基金资助:
LI Ying1,2, MENG Xianwei1,2, MA Zhihang2, LIU Mengjun1,2,**(), ZHAO Jin3,**(
)
Received:
2021-04-06
Revised:
2021-05-26
Online:
2022-01-25
Published:
2022-01-24
Contact:
LIU Mengjun,ZHAO Jin
E-mail:lmj1234567@aliyun.com;zhaojinbd@126.com
摘要:
与其他果树相比,枣树具有童期短、成花快的特征。已有研究表明,多个microRNA(miRNA)家族参与植物阶段转变和开花时间调控等过程。研究枣树阶段转变相关的miRNA家族对果树童期调控具有重要意义。以枣实生后代植株不同发育阶段(节位)的当年生枝(枣吊)为材料,通过Small RNA测序,在童期、过渡期和成年期等3个时期鉴定出27个miRNA家族的58个已知miRNA和23个新miRNA,其中44个差异表达的miRNA包括32个已知miRNA和12个新miRNA;然后,从中筛选出不同时期显著差异表达的6个miRNA,即zjmiR156a-5p、zjmiR156j、zjmiR172c、zjmiR172e-3p、zjmiRnovel-16和zjmiRnovel-71,通过TargetFinder软件预测出它们的15个关键靶基因,其主要参与成花、转录调控和生物合成等过程;利用实时荧光定量PCR分析验证了12个miRNA及15个关键靶基因确实在枣树阶段转变中差异表达,并存在正调控或负调控关系,其中2个新miRNA(zjmiRnovel-16和zjmiRnovel-71)可能分别通过光周期和糖代谢途径影响阶段转变。
中图分类号:
李莹, 孟宪巍, 马志航, 刘孟军, 赵锦. 枣树阶段转变相关microRNA家族的鉴定及其表达分析[J]. 园艺学报, 2022, 49(1): 23-40.
LI Ying, MENG Xianwei, MA Zhihang, LIU Mengjun, ZHAO Jin. Identification and Expression Analysis of MicroRNA Families Associated with Phase Transition in Chinese Jujube[J]. Acta Horticulturae Sinica, 2022, 49(1): 23-40.
图1 枣实生树不同发育阶段枝条取样部位 童期枝条:过渡期枝条以下、靠近根茎部的不具备开花能力的脱落性二次枝;过渡期枝条:以始花节位为节点,认为始花节位以下2 ~ 3节的二次枝;成年期枝条:始花节位及以上的二次枝。
Fig. 1 Sampling site of mother-bearing shoots at different development stages of jujube Juvenile period secondary branches:The secondary branches without flowering ability,below the transitional branches and close to the cotyledon part;Transition period secondary branches:The secondary branches,2-3 sections below the node of initial flowering site;Adult period secondary branches:The initial flowering nodes and above are the adult period.
miRNA名称 miRNA name | 引物序列(5′-3′) Primer sequence | miRNA名称 miRNA name | 引物序列(5′-3′) Primer sequence | |
---|---|---|---|---|
zjmiR156a-5p | TGGCTGGGTGACAGAAGAGAGT | zjmiRnovel-16 | GGTTAGTGATCCTCCGGAAGATC | |
zjmiR156j | GGCTGGGTGACAGAAGAGAGA | zjmiRnovel-71 | TTGAAGTGTTTGGGGGAACC | |
zjmiR172c | TGAGAATCTTGATGATGCTGCAG | zjmiRnovel-35 | GGCTGCCTCTTGTCTTTCATG | |
zjmiR172e-3p | TGGAATCTTGATGATGCTGCAT | zjmiRnovel-17 | TGCATTTGCACCTGCACCT | |
zjmiR160a-5p | TGCCTGGCTCCCTGTATGC | zjmiR845a | TCGGCTCTGATACCAATTGATG | |
zjmiR157a-5p | CGGTTGACAGAAGATAGAGAGCAC | U6 | GGGACATCCGATAAAATTG | |
zjmiR396b-5p | TGGTTCCACAGCTTTCTTGAACTT | U6 | CCAATTTTATCGGATGTCC |
表 1 miRNA荧光定量PCR引物序列
Table 1 Primer sequences of miRNA for qRT-PCR
miRNA名称 miRNA name | 引物序列(5′-3′) Primer sequence | miRNA名称 miRNA name | 引物序列(5′-3′) Primer sequence | |
---|---|---|---|---|
zjmiR156a-5p | TGGCTGGGTGACAGAAGAGAGT | zjmiRnovel-16 | GGTTAGTGATCCTCCGGAAGATC | |
zjmiR156j | GGCTGGGTGACAGAAGAGAGA | zjmiRnovel-71 | TTGAAGTGTTTGGGGGAACC | |
zjmiR172c | TGAGAATCTTGATGATGCTGCAG | zjmiRnovel-35 | GGCTGCCTCTTGTCTTTCATG | |
zjmiR172e-3p | TGGAATCTTGATGATGCTGCAT | zjmiRnovel-17 | TGCATTTGCACCTGCACCT | |
zjmiR160a-5p | TGCCTGGCTCCCTGTATGC | zjmiR845a | TCGGCTCTGATACCAATTGATG | |
zjmiR157a-5p | CGGTTGACAGAAGATAGAGAGCAC | U6 | GGGACATCCGATAAAATTG | |
zjmiR396b-5p | TGGTTCCACAGCTTTCTTGAACTT | U6 | CCAATTTTATCGGATGTCC |
miRNA名称 miRNA name | 靶基因 Gene | 引物名称 Primer | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reversed primer |
---|---|---|---|---|
zjmiR156a-5p | LOC107411088 | GE1 | TCACTCTAAACGACCCGCAC | GAAGGCACGGAGGATATCGG |
LOC107411586 | TC4M | GTCACAGAGCCCGACATTCA | TTCCAGTTGGCAGGGTTGTT | |
LOC107420411 | GPT2 | TTCGTCTGGTGGGTTGTAGC | GAAGGTGCCGAGGATAGCAA | |
zjmiR156j | LOC107414106 | ERF105-like | ACGTCGTCGGAGAGTAAGGA | AGGTGACAAAGGAGGCACAC |
LOC107425063 | SPL | GCAATGCTGACTTGACCGAC | TACGACGCTCATTGTGTCCA | |
zjmiR172c | LOC107411289 | AP2c | AGAGCCTATGATCGAGCTGC | TCCCATTCGAGCTTCCCATC |
zjmiR172e-3p | LOC107413613 | AP2e | TTAGGTGGGTTCGACACTGC | CCGACGAAGTATCAGCACGA |
zjmiRnovel-16 | LOC107416596 | PIF4-like | TAGCAGGGTGTCCAGCAATG | TCTGATTGCCTCCGCCTTTT |
LOC107416597 | PIF4 | GAGTCAACGGTCGGGTTCAA | ATTGGTGCCATCCCACTTCC | |
LOC107415240 | ELF 3 | TGCTGAAGGAAGGGATGCTC | ATTGTGCGGTACAACCCTGA | |
LOC107420622 | CO-LIKE7-like | AGAGGCAAGCGTGTTGAGAT | GAACCGGCCCTTCATACGAG | |
zjmiRnovel-71 | LOC107422007 | cro-GT1 | GCTACCGTGTTCGGCATCTA | CCATGAACGTGGGAAGGTCA |
LOC107422008 | cro-GT2 | CGGACCGTTGATTCAGTCCA | GTGGCTTTGGTAACACGCAG | |
LOC107418233 | NFYA7 | AAGCTGGAGTTCCTTTGCCA | CCGCTTTTGCACGAGATTGT | |
LOC107412400 | RLK1 | GCGCAACAAAGTGGAACCTT | GCATTTGTGCACAGGAGAGC |
表2 靶基因荧光定量PCR引物
Table 2 qRT-PCR primers of target genes
miRNA名称 miRNA name | 靶基因 Gene | 引物名称 Primer | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reversed primer |
---|---|---|---|---|
zjmiR156a-5p | LOC107411088 | GE1 | TCACTCTAAACGACCCGCAC | GAAGGCACGGAGGATATCGG |
LOC107411586 | TC4M | GTCACAGAGCCCGACATTCA | TTCCAGTTGGCAGGGTTGTT | |
LOC107420411 | GPT2 | TTCGTCTGGTGGGTTGTAGC | GAAGGTGCCGAGGATAGCAA | |
zjmiR156j | LOC107414106 | ERF105-like | ACGTCGTCGGAGAGTAAGGA | AGGTGACAAAGGAGGCACAC |
LOC107425063 | SPL | GCAATGCTGACTTGACCGAC | TACGACGCTCATTGTGTCCA | |
zjmiR172c | LOC107411289 | AP2c | AGAGCCTATGATCGAGCTGC | TCCCATTCGAGCTTCCCATC |
zjmiR172e-3p | LOC107413613 | AP2e | TTAGGTGGGTTCGACACTGC | CCGACGAAGTATCAGCACGA |
zjmiRnovel-16 | LOC107416596 | PIF4-like | TAGCAGGGTGTCCAGCAATG | TCTGATTGCCTCCGCCTTTT |
LOC107416597 | PIF4 | GAGTCAACGGTCGGGTTCAA | ATTGGTGCCATCCCACTTCC | |
LOC107415240 | ELF 3 | TGCTGAAGGAAGGGATGCTC | ATTGTGCGGTACAACCCTGA | |
LOC107420622 | CO-LIKE7-like | AGAGGCAAGCGTGTTGAGAT | GAACCGGCCCTTCATACGAG | |
zjmiRnovel-71 | LOC107422007 | cro-GT1 | GCTACCGTGTTCGGCATCTA | CCATGAACGTGGGAAGGTCA |
LOC107422008 | cro-GT2 | CGGACCGTTGATTCAGTCCA | GTGGCTTTGGTAACACGCAG | |
LOC107418233 | NFYA7 | AAGCTGGAGTTCCTTTGCCA | CCGCTTTTGCACGAGATTGT | |
LOC107412400 | RLK1 | GCGCAACAAAGTGGAACCTT | GCATTTGTGCACAGGAGAGC |
样本类型 Sample type | 童期Juvenile period | 过渡期Transition period | 成年期Adult period | |||
---|---|---|---|---|---|---|
种类(%) Category | 数量(%) Number | 种类(%) category | 数量(%) Number | 种类(%) category | 数量(%) Number | |
已知miRNA Known miRNA | 121(0.03) | 22 367(0.33) | 152(0.04) | 36 906(0.57) | 167(0.04) | 34 796(0.35) |
rRNA | 118 138(31.30) | 5 535 824(82.23) | 112 531(32.56) | 5 295 448(81.29) | 134 295(28.46) | 8 073 860(80.84) |
tRNA | 4 740(1.26) | 181 112(2.69) | 4 537(1.31) | 152 992(2.35) | 5 847(1.24) | 340 580(3.41) |
snRNA | 965(0.26) | 4 027(0.06) | 1 007(0.29) | 4 148(0.06) | 1 328(0.28) | 7 269(0.07) |
snoRNA | 576(0.15) | 1 674(0.02) | 487(0.14) | 1 550(0.02) | 699(0.15) | 2 483(0.02) |
重复序列 Repeat | 14 323(3.80) | 37 164(0.55) | 13 090(3.79) | 33 685(0.52) | 17 230(3.65) | 48 302(0.48) |
NAT | 69 876(18.51) | 340 047(5.05) | 62 771(18.16) | 433 170(6.65) | 89 355(18.94) | 579 299(5.80) |
新miRNA Novel miRNA | 61(0.02) | 4 221(0.06) | 67(0.02) | 8 903(0.14) | 78(0.02) | 9 116(0.09) |
exon:+ | 25 350(6.72) | 52 607(0.78) | 22 878(6.62) | 54 968(0.84) | 38 512(8.16) | 86 381(0.86) |
exon:- | 2 263(0.60) | 12 125(0.18) | 2 841(0.82) | 20 279(0.31) | 3 489(0.74) | 24 477(0.25) |
intron:+ | 6 317(1.67) | 48 369(0.72) | 5 486(1.59) | 34 062(0.52) | 8 825(1.87) | 79 221(0.79) |
intron:- | 3 386(0.90) | 11 592(0.17) | 2 934(0.85) | 9 272(0.14) | 4 064(0.86) | 18 475(0.18) |
其他Other | 131 297(34.79) | 481 402(7.15) | 116 873(33.81) | 429 158(6.59) | 167 937(35.59) | 683 147(6.84) |
总和Total | 377 413 | 6 732 531 | 345 654 | 6 514 541 | 471 826 | 9 987 406 |
表3 Small RNA的种类和数量
Table 3 The kind and quantity of small RNA
样本类型 Sample type | 童期Juvenile period | 过渡期Transition period | 成年期Adult period | |||
---|---|---|---|---|---|---|
种类(%) Category | 数量(%) Number | 种类(%) category | 数量(%) Number | 种类(%) category | 数量(%) Number | |
已知miRNA Known miRNA | 121(0.03) | 22 367(0.33) | 152(0.04) | 36 906(0.57) | 167(0.04) | 34 796(0.35) |
rRNA | 118 138(31.30) | 5 535 824(82.23) | 112 531(32.56) | 5 295 448(81.29) | 134 295(28.46) | 8 073 860(80.84) |
tRNA | 4 740(1.26) | 181 112(2.69) | 4 537(1.31) | 152 992(2.35) | 5 847(1.24) | 340 580(3.41) |
snRNA | 965(0.26) | 4 027(0.06) | 1 007(0.29) | 4 148(0.06) | 1 328(0.28) | 7 269(0.07) |
snoRNA | 576(0.15) | 1 674(0.02) | 487(0.14) | 1 550(0.02) | 699(0.15) | 2 483(0.02) |
重复序列 Repeat | 14 323(3.80) | 37 164(0.55) | 13 090(3.79) | 33 685(0.52) | 17 230(3.65) | 48 302(0.48) |
NAT | 69 876(18.51) | 340 047(5.05) | 62 771(18.16) | 433 170(6.65) | 89 355(18.94) | 579 299(5.80) |
新miRNA Novel miRNA | 61(0.02) | 4 221(0.06) | 67(0.02) | 8 903(0.14) | 78(0.02) | 9 116(0.09) |
exon:+ | 25 350(6.72) | 52 607(0.78) | 22 878(6.62) | 54 968(0.84) | 38 512(8.16) | 86 381(0.86) |
exon:- | 2 263(0.60) | 12 125(0.18) | 2 841(0.82) | 20 279(0.31) | 3 489(0.74) | 24 477(0.25) |
intron:+ | 6 317(1.67) | 48 369(0.72) | 5 486(1.59) | 34 062(0.52) | 8 825(1.87) | 79 221(0.79) |
intron:- | 3 386(0.90) | 11 592(0.17) | 2 934(0.85) | 9 272(0.14) | 4 064(0.86) | 18 475(0.18) |
其他Other | 131 297(34.79) | 481 402(7.15) | 116 873(33.81) | 429 158(6.59) | 167 937(35.59) | 683 147(6.84) |
总和Total | 377 413 | 6 732 531 | 345 654 | 6 514 541 | 471 826 | 9 987 406 |
类型 Sample type | miRNA总数 Total reads | 童期 Juvenile period | 过渡期 Transition period | 成年期 Adult period |
---|---|---|---|---|
已知miRNA前体数 Known miRNA hairpin | 58 | 47 | 50 | 55 |
已知miRNA成熟体数 Known miRNA mature | 49 | 36 | 40 | 44 |
新miRNA前体数 Novel miRNA hairpin | 23 | 22 | 19 | 20 |
新miRNA成熟体数 Novel miRNA mature | 17 | 14 | 13 | 15 |
表4 miRNA的鉴定结果
Table 4 The results of identified miRNAs
类型 Sample type | miRNA总数 Total reads | 童期 Juvenile period | 过渡期 Transition period | 成年期 Adult period |
---|---|---|---|---|
已知miRNA前体数 Known miRNA hairpin | 58 | 47 | 50 | 55 |
已知miRNA成熟体数 Known miRNA mature | 49 | 36 | 40 | 44 |
新miRNA前体数 Novel miRNA hairpin | 23 | 22 | 19 | 20 |
新miRNA成熟体数 Novel miRNA mature | 17 | 14 | 13 | 15 |
不同比较组合 Different comparison | 差异基因数 Differentially expressed gene number | 上调表达 Up regulated | 下调表达 Down regulated |
---|---|---|---|
童期vs过渡期 Jup vs Trp | 27 | 17 | 10 |
童期vs成年期 Jup vs Adp | 32 | 20 | 12 |
过渡期vs成年期 Trp vs Adp | 25 | 11 | 14 |
表5 差异表达的miRNA数量统计
Table 5 Summary of differentially expressed miRNA
不同比较组合 Different comparison | 差异基因数 Differentially expressed gene number | 上调表达 Up regulated | 下调表达 Down regulated |
---|---|---|---|
童期vs过渡期 Jup vs Trp | 27 | 17 | 10 |
童期vs成年期 Jup vs Adp | 32 | 20 | 12 |
过渡期vs成年期 Trp vs Adp | 25 | 11 | 14 |
miRNA家族 miRNA family | miRNA | 成熟体序列(5′-3′) miRNA mature sequence | 序列长度/nt Length | 靶基因数量 Number |
---|---|---|---|---|
zjMIR156 | zjmiR156a-5p | UGACAGAAGAGAGUGAGCAC | 20 | 340 |
zjmiR156j | UGACAGAAGAGAGAGAGCAC | 20 | 547 | |
zjMIR157 | zjmiR157a-5p | UUGACAGAAGAUAGAGAGCAC | 21 | 121 |
zjmiR157d | UGACAGAAGAUAGAGAGCAC | 20 | 265 | |
zjMIR160 | zjmiR160a-5p | UGCCUGGCUCCCUGUAUGCCA | 21 | 26 |
zjMIR164 | zjmiR164c-5p | UGGAGAAGCAGGGCACGUGCG | 21 | 93 |
zjMIR171 | zjmiR171a-3p | UGAUUGAGCCGCGCCAAUAUC | 21 | 25 |
zjmiR171b-3p | UUGAGCCGUGCCAAUAUCACG | 21 | 29 | |
zjMIR172 | zjmiR172a | AGAAUCUUGAUGAUGCUGCAU | 21 | 218 |
zjmiR172c | AGAAUCUUGAUGAUGCUGCAG | 21 | 211 | |
zjmiR172e-3p | GGAAUCUUGAUGAUGCUGCAU | 21 | 205 | |
zjMIR319 | zjmiR319a | UUGGACUGAAGGGAGCUCCCU | 21 | 50 |
zjmiR319c | UUGGACUGAAGGGAGCUCCUU | 21 | 79 | |
zjMIR390 | zjmiR390a-3p | CGCUAUCCAUCCUGAGUUUCA | 21 | 49 |
zjmiR390b-3p | CGCUAUCCAUCCUGAGUUCC | 20 | 77 | |
zjMIR396 | zjmiR396b-3p | GCUCAAGAAAGCUGUGGGAAA | 21 | 262 |
zjMIR399 | zjmiR399d | UGCCAAAGGAGAUUUGCCCCG | 21 | 53 |
zjMIRn-16 | zjmiRnovel-16 | UUAGUGAUCCUCCGGAAGAUC | 21 | 64 |
zjMIRn-17 | zjmiRnovel-17 | UGCAUUUGCACCUGCACCUUU | 21 | 104 |
zjMIRn-34 | zjmiRnovel-34 | UUGAGCCGUGCCAAUAUCACA | 21 | 54 |
zjMIRn-35 | zjmiRnovel-35 | UGGCUGCCUCUUGUCUUUCAUG | 22 | 54 |
zjMIRn-44 | zjmiRnovel-44 | UGGAGAAGCAGGGCACAUGCU | 21 | 146 |
zjMIRn-52 | zjmiRnovel-52 | UAUAAGUGAUUUGGGCUAGU | 20 | 168 |
zjMIRn-71 | zjmiRnovel-71 | UUGAAGUGUUUGGGGGAACCC | 21 | 72 |
表6 候选24 个miRNA的分子特征
Table 6 Molecular characteristics of 24 candidate miRNAs
miRNA家族 miRNA family | miRNA | 成熟体序列(5′-3′) miRNA mature sequence | 序列长度/nt Length | 靶基因数量 Number |
---|---|---|---|---|
zjMIR156 | zjmiR156a-5p | UGACAGAAGAGAGUGAGCAC | 20 | 340 |
zjmiR156j | UGACAGAAGAGAGAGAGCAC | 20 | 547 | |
zjMIR157 | zjmiR157a-5p | UUGACAGAAGAUAGAGAGCAC | 21 | 121 |
zjmiR157d | UGACAGAAGAUAGAGAGCAC | 20 | 265 | |
zjMIR160 | zjmiR160a-5p | UGCCUGGCUCCCUGUAUGCCA | 21 | 26 |
zjMIR164 | zjmiR164c-5p | UGGAGAAGCAGGGCACGUGCG | 21 | 93 |
zjMIR171 | zjmiR171a-3p | UGAUUGAGCCGCGCCAAUAUC | 21 | 25 |
zjmiR171b-3p | UUGAGCCGUGCCAAUAUCACG | 21 | 29 | |
zjMIR172 | zjmiR172a | AGAAUCUUGAUGAUGCUGCAU | 21 | 218 |
zjmiR172c | AGAAUCUUGAUGAUGCUGCAG | 21 | 211 | |
zjmiR172e-3p | GGAAUCUUGAUGAUGCUGCAU | 21 | 205 | |
zjMIR319 | zjmiR319a | UUGGACUGAAGGGAGCUCCCU | 21 | 50 |
zjmiR319c | UUGGACUGAAGGGAGCUCCUU | 21 | 79 | |
zjMIR390 | zjmiR390a-3p | CGCUAUCCAUCCUGAGUUUCA | 21 | 49 |
zjmiR390b-3p | CGCUAUCCAUCCUGAGUUCC | 20 | 77 | |
zjMIR396 | zjmiR396b-3p | GCUCAAGAAAGCUGUGGGAAA | 21 | 262 |
zjMIR399 | zjmiR399d | UGCCAAAGGAGAUUUGCCCCG | 21 | 53 |
zjMIRn-16 | zjmiRnovel-16 | UUAGUGAUCCUCCGGAAGAUC | 21 | 64 |
zjMIRn-17 | zjmiRnovel-17 | UGCAUUUGCACCUGCACCUUU | 21 | 104 |
zjMIRn-34 | zjmiRnovel-34 | UUGAGCCGUGCCAAUAUCACA | 21 | 54 |
zjMIRn-35 | zjmiRnovel-35 | UGGCUGCCUCUUGUCUUUCAUG | 22 | 54 |
zjMIRn-44 | zjmiRnovel-44 | UGGAGAAGCAGGGCACAUGCU | 21 | 146 |
zjMIRn-52 | zjmiRnovel-52 | UAUAAGUGAUUUGGGCUAGU | 20 | 168 |
zjMIRn-71 | zjmiRnovel-71 | UUGAAGUGUUUGGGGGAACCC | 21 | 72 |
图4 miRNA家族进化树 A:枣与其他物种不同miRNA家族进化树(zj:枣;ath:拟南芥;mdm:苹果;vvi:葡萄);B:候选miRNA家族成员的进化树。
Fig. 4 Phylogenetic relationships among different miRNA family A:Phylogenetic relationships among different miRNA familys between jujube and other species(zj:Ziziphus jujuba;ath:Arabidopsis thaliana;mdm:Malus × domestica;vvi:Vitis vinifera);B:Phylogenetic relationships among family members of candidate miRNAs.
miRNA | 靶基因编号 Gene ID | 基因命名 Gene name | 靶基因注释 Gene description |
---|---|---|---|
zjmiR156a-5p | LOC107411088 | GE1 | 1,3-β葡萄糖苷内切酶Glucan endo-1,3-beta-glucosidase |
LOC107411586 | TC4M | 肉桂酸转移单氧酶Trans-cinnamate 4-monooxygenase | |
LOC107420411 | GPT2 | 葡萄糖6-磷酸转运蛋白2 Glucose-6-phosphate/phosphate translocator 2 | |
zjmiR156j | LOC107414106 | ERF105-like | 乙烯应答元件结合蛋白转录因子 Ethylene-responsive transcription factor ERF105-like |
LOC107425063 | SPL1 | 鳞片类启动子结合蛋白SPLSquamosa promoter-binding protein 1 | |
zjmiR172c | LOC107411289 | AP2c | 花同源蛋白 AP2基因Floral homeotic protein APETALA 2 |
zjmiR172e-3p | LOC107413613 | AP2e | 花同源蛋白AP2基因Floral homeotic protein APETALA 2 |
zjmiRnovel-16 | LOC107416596 | PIF4-like | 转录因子PIF4-likeTranscription factor PIF4-like |
LOC107416597 | PIF4 | 转录因子PIF4Transcription factor PIF4 | |
LOC107415240 | CO-LIKE7-like | 锌指蛋白类CO-LIKE7-like Zinc finger protein CONSTANS-LIKE 7-like | |
LOC107420622 | ELF3 | 早花蛋白3 Protein EARLY FLOWERING 3 | |
zjmiRnovel-71 | LOC107422007 | cro-GT1 | 西红花酸葡糖基转移酶Crocetin glucosyltransferase |
LOC107422008 | cro-GT2 | 西红花酸葡糖基转移酶Crocetin glucosyltransferase | |
LOC107418233 | NFYA7 | 核转录因子Y亚基A-7-like NFYA7-like Nuclear transcription factor Y subunit A-7-like | |
LOC107412400 | RLK1 | 富含亮氨酸重复受体类丝氨酸/苏氨酸蛋白激酶 Probable LRR receptor-like serine/threonine-protein kinase RFK1 |
表7 候选miRNA及其靶基因
Table 7 Candidate miRNAs and their target genes in jujube
miRNA | 靶基因编号 Gene ID | 基因命名 Gene name | 靶基因注释 Gene description |
---|---|---|---|
zjmiR156a-5p | LOC107411088 | GE1 | 1,3-β葡萄糖苷内切酶Glucan endo-1,3-beta-glucosidase |
LOC107411586 | TC4M | 肉桂酸转移单氧酶Trans-cinnamate 4-monooxygenase | |
LOC107420411 | GPT2 | 葡萄糖6-磷酸转运蛋白2 Glucose-6-phosphate/phosphate translocator 2 | |
zjmiR156j | LOC107414106 | ERF105-like | 乙烯应答元件结合蛋白转录因子 Ethylene-responsive transcription factor ERF105-like |
LOC107425063 | SPL1 | 鳞片类启动子结合蛋白SPLSquamosa promoter-binding protein 1 | |
zjmiR172c | LOC107411289 | AP2c | 花同源蛋白 AP2基因Floral homeotic protein APETALA 2 |
zjmiR172e-3p | LOC107413613 | AP2e | 花同源蛋白AP2基因Floral homeotic protein APETALA 2 |
zjmiRnovel-16 | LOC107416596 | PIF4-like | 转录因子PIF4-likeTranscription factor PIF4-like |
LOC107416597 | PIF4 | 转录因子PIF4Transcription factor PIF4 | |
LOC107415240 | CO-LIKE7-like | 锌指蛋白类CO-LIKE7-like Zinc finger protein CONSTANS-LIKE 7-like | |
LOC107420622 | ELF3 | 早花蛋白3 Protein EARLY FLOWERING 3 | |
zjmiRnovel-71 | LOC107422007 | cro-GT1 | 西红花酸葡糖基转移酶Crocetin glucosyltransferase |
LOC107422008 | cro-GT2 | 西红花酸葡糖基转移酶Crocetin glucosyltransferase | |
LOC107418233 | NFYA7 | 核转录因子Y亚基A-7-like NFYA7-like Nuclear transcription factor Y subunit A-7-like | |
LOC107412400 | RLK1 | 富含亮氨酸重复受体类丝氨酸/苏氨酸蛋白激酶 Probable LRR receptor-like serine/threonine-protein kinase RFK1 |
[1] | Allen R S, Li J Y, Stahle M I, Dubroué A, Gubler F, Millar A A. 2007. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 Family. Proceedings of the National Academy of Sciences of the United States of America, 104 (41):16371-16376. |
[2] |
Ambros V. 2001. microRNAs:tiny regulators with great potential. Cell, 107 (7):823-826.
doi: 10.1016/s0092-8674(01)00616-x pmid: 11779458 |
[3] |
Arya H, Singh M B, Bhalla P L. 2018. Genomic and molecular analysis of conserved and unique features of soybean PIF4. Scientific Reports, 8 (1):12569.
doi: 10.1038/s41598-018-30043-2 URL |
[4] |
Bartel D P. 2004. MicroRNAs:genomics,biogenesis,mechanism,and function. Cell, 116 (2):281-297.
doi: 10.1016/s0092-8674(04)00045-5 pmid: 14744438 |
[5] |
Baucher M, Moussawi J, Vandeputte O M, Monteyne D, Mol A, Pérez M D, El J M. 2013. A role for the miR396/GRF network in specification of organ type during flower development,as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco. Plant Biology, 15 (5):892-898.
doi: 10.1111/j.1438-8677.2012.00696.x pmid: 23173976 |
[6] |
Bhavani N, Sneha B, Anjan K B. 2017. The essential role of microRNAs in potato tuber development;a mini review. Indian Journal of Plant Physiology, 22 (4):401-410.
doi: 10.1007/s40502-017-0324-x URL |
[7] |
Borges F, Parent J S, van E F, Wolff P, Martínez G, Köhler C, Martienssen R A. 2018. Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis. Nature Genetics, 50 (2):186-192.
doi: 10.1038/s41588-017-0032-5 URL |
[8] | Chuck G S, Tobias C, Sun Lan, Kraemer F, Li Chenlin, Dibble D, Arora R, Bragg J N, Vogel J P, Singh S, Simmons B A, Pauly M, Hake S. 2011. Overexpression of the maize Corngrass 1 microRNA prevents flowering,improves digestibility,and increases starch content of switchgrass. Proceedings of the National Academy of Sciences of the United States of America, 108 (42):17550-17555. |
[9] |
Damodharan S, Zhao D Z, Arazi T. 2016. A common miRNA 160-based mechanism regulates ovary patterning,floral organ abscission and lamina outgrowth in tomato. The Plant Journal, 86 (6):458-471.
doi: 10.1111/tpj.13127 pmid: 26800988 |
[10] | Duan Zhongxin. 2012. Expression pattern and functional analysis of microRNA Peu-miR156j and Peu-miR169o from Populus euphratica[M. D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese) |
段中鑫. 2012. 胡杨microRNA Peu-miR156j和Peu-miR169o表达模式分析及功能鉴定[硕士论文]. 北京: 北京林业大学. | |
[11] |
Feng L, Xia R, Liu Y. 2019. Comprehensive characterization of miRNA and PHAS loci in the diploid strawberry(Fragaria vesca)genome. Horticultural Plant Journal, 5 (6):255-267.
doi: 10.1016/j.hpj.2019.11.004 |
[12] |
France C, François C, Christine D, Claude W. 2001. A highly specific glucosyltransferase is involved in the synthesis of crocetin glucosylesters in Crocus sativus cultured cells. Journal of Plant Physiology, 158 (5):553-560.
doi: 10.1078/0176-1617-00305 URL |
[13] |
Friedländer M R, Mackowiak S D, Li Na, Chen Wei, Rajewsky N. 2012. miRDeep 2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research, 40 (1):37-52.
doi: 10.1093/nar/gkr688 pmid: 21911355 |
[14] |
Gao Y, Yang F Q, Cao X, Li C M, Wang Y, Zhao Y B, Zeng G J, Chen D M, Han Z H, Zhang X Z. 2014. Differences in gene expression and regulation during ontogenetic phase change in apple seedlings. Plant Molecular Biology Reporter, 32 (2):357-371.
doi: 10.1007/s11105-013-0648-2 URL |
[15] | Gou Yanli, Zhang Le, Guo Huan, Ma Hongping, Bao Aike. 2020. Research progress on the AP2/ERF transcription factor in plants. Pratacultural Science, 37 (6):1150-1159. (in Chinese) |
苟艳丽, 张乐, 郭欢, 马红萍, 包爱科. 2020. 植物AP2/ERF类转录因子研究进展. 草业科学, 37 (6):1150-1159. | |
[16] | Gu Jie. 2008. Localization of regulator of G protein signaling(RGS)Protein and its functional analyses in glucose signaling in Arabidopsis thaliana[M. D. Dissertation]. Yangzhou: Yangzhou University. (in Chinese) |
顾杰. 2008. 拟南芥G蛋白信号转导调节蛋白(AtRGS1蛋白)的定位及在葡萄糖信号转导中的功能研究[硕士论文]. 扬州: 扬州大学. | |
[17] |
Hu Z W, Shen X P, Xiang X, Cao J S. 2019. Evolution of MIR159/ 319 genes in Brassica campestris and their function in pollen development. Plant Molecular Biology, 101 (6):537-550.
doi: 10.1007/s11103-019-00920-z URL |
[18] | Huang Jingmiao. 2018. Prediction and analysis of cis-acting elements and transcription factors of related MdMIR156s during vegetative phase change in apple[M. D. Dissertation]. Beijing: China Agriculture University. (in Chinese) |
黄晶淼. 2018. 苹果阶段转变相关MdMIR156s顺式元件及转录因子预测与分析[硕士论文]. 北京: 中国农业大学. | |
[19] |
José M F Z, Adrián V, Marco T, Isabel M, María I P, Ignacio R S, Antonio L, Detlef W, Juan A G, Javier P A. 2007. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 39 (8):1033-1037.
doi: 10.1038/ng2079 URL |
[20] |
Ketting R F. 2010. MicroRNA biogenesis and function. An overview. Advances in Experimental Medicine and Biology, 700:1-14.
pmid: 21627025 |
[21] |
Kim Wanhui, Ahn H J, Chiou T J, Ahn J H. 2011. The role of the miR399-PHO 2 module in the regulation of flowering time in response to different ambient temperatures in Arabidopsis thaliana. Molecules and Cells, 32 (1):83-88.
doi: 10.1007/s10059-011-1043-1 pmid: 21533549 |
[22] |
Kunz H H, Häusler R E, Fettke J, Herbst K, Niewiadomski P, Gierth M, Bell K, Steup M, Flügge U I, Schneider A. 2010. The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biology, 12:115-128.
doi: 10.1111/j.1438-8677.2010.00349.x URL |
[23] | Li Chenjing, Niu Jianxin, Pei Maosong, Cao Fujun, Quan Shaowen. 2016. Cloning and identification of novel miRNA genes related to calyx persistence in Korla Fragrant Pear. Acta Horticulturae Sinica, 43 (9):1803-1815. (in Chinese) |
李陈静, 牛建新, 裴茂松, 曹福军, 全绍文. 2016. 库尔勒香梨9个新miRNA克隆鉴定. 园艺学报, 43(9):1803-1815. | |
[24] | Li Zongmei. 2013. Identification and characterization of a novel hydroxycinnamoyl transferase from the Physcomitrella patens and the regulation of P. patens HCT[M. D. Dissertation]. Wuhan;Huazhong Agricultural University. (in Chinese) |
李宗梅. 2013. 小立碗藓羟基肉桂酰酰基转移酶基因功能及调控研究初探[硕士论文]. 武汉: 华中农业大学. | |
[25] | Liu M J, Wang J R, Wang L L, Liu P, Zhao J, Zhao Z H, Yao S R, Stănică Florin, Liu Z G, Wang L X, Ao C W, Dai L, Li X S, Zhao X, Jia C X. 2020. The historical and current research progress on jujube-a superfruit for the future. Horticulture Research, 7 (1):1683-1698. |
[26] | Liu M J, Zhao J, Cai Q L, Liu G C, Wang J R, Zhao Z H, Liu P, Dai L, Yan G J, Wang W J, Li X S, Chen Y, Sun Y D, Liu Z G, Lin M J, Xiao J, Chen Y Y, Li X F, Wu B, Ma Y, Jian J B, Yang W, Yuan Z, Sun X C, Wei Y L, Yu L L, Zhang C, Liao S G, He R J, Guang X M, Wang Z, Zhang Y Y, Luo L H. 2014. The complex jujube genome provides insights into fruit tree biology. Nature Communications, 5 (1):1309-1324. |
[27] | Liu Weihua, Lin Yuling, Lin Zhengchun, Ni Shanshan, Lai Zhongxiong. 2018. Analysis of evolution and molecular characteristics of miR172 family members in plants. Chinese Journal of Tropical Crops, 39 (3):525-533. (in Chinese) |
刘炜婳, 林玉玲, 林争春, 倪珊珊, 赖钟雄. 2018. 植物miR172家族成员进化与分子特性分析. 热带作物学报, 39 (3):525-533. | |
[28] | Luo Hongyu, Yang Jiangwei, Feng Ya, Zhang Huanhuan, Liu Shengyan, Zhang Ning, Si Huaijun. 2021. The effect of Stu-miR156 silencing by STTM technology on potato lateral root development. Acta Horticulturae Sinica, 48 (3):531-538. (in Chinese) |
罗红玉, 杨江伟, 冯亚, 张欢欢, 刘升燕, 张宁, 司怀军. 2021. STTM 技术沉默马铃薯Stu-miR156 对其侧根发育的影响. 园艺学报, 48 (3):531-538. | |
[29] |
Ma J Y, Zhao P, Liu S B, Yang Q, Guo H H. 2020. The Control of developmental phase transitions by microRNAs and their targets in seed plants. International Journal of Molecular Sciences, 21 (6):1971.
doi: 10.3390/ijms21061971 URL |
[30] | Ma Li, Zhou Li, Xu Hang, Quan Shaowen, Yang Jieping, Niu LJianxini. 2019. Evolutionary characteristics and the expression patterns of miR159 gene family in‘Kuerlexiangli’pear. Journal of Fruit Science, 36 (1):1-10. (in Chinese) |
马丽, 周丽, 徐航, 全绍文, 杨洁萍, 牛建新. 2019. ‘库尔勒香梨’miR159家族成员进化特性及表达分析. 果树学报, 36 (1):1-10. | |
[31] |
Martin R C, Asahina M, Liu Popu, Kristof J R, Coppersmith J L, Pluskota W E, Bassel G W, Goloviznina N A, Nguyen T T, Martínez A C, Arun Kumar M B, Pupel P, Nonogaki H. 2010. The microRNA156 and microRNA 172 gene regulation cascades at post-germinative stages in Arabidopsis. Seed Science Research, 20 (2):79-87.
doi: 10.1017/S0960258510000085 URL |
[32] |
Meng J, Yang J, Peng M D, Liu X L, He H B. 2020a. Genome-wide characterization,evolution,and expression analysis of the Leucine-Rich Repeat Receptor-Like Protein Kinase(LRR-RLK)gene family in Medicago truncatula. Life, 10 (176):176.
doi: 10.3390/life10090176 URL |
[33] |
Meng X W, Li Y, Yuan Y, Zhang Y, Li H T, Zhao J, Liu M J. 2020b. The regulatory pathways of distinct flowering characteristics in Chinese jujube. Horticulture Research, 7 (1):13-19.
doi: 10.1038/s41438-019-0236-1 URL |
[34] |
Mi S J, Cai T, Hu Y G, Chen Y M, Hodges E, Ni F R, Wu L, Li S, Zhou H Y, Long C Z, Chen S, Hannon G J, Qi Y J. 2008. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell, 133 (1):116-127.
doi: 10.1016/j.cell.2008.02.034 URL |
[35] |
Milo J A, Hajime S. 2003. Regulation of flowering time and floral organ identity by a MicroRNA and Its APETALA2-Like target Genes. The Plant Cell, 15:2730-2741
doi: 10.1105/tpc.016238 URL |
[36] |
Rubenach A J S, Hecht V, Vander Schoor J K, Liew L C, Aubert G, Burstin J, Weller J L. 2017. EARLY FLOWERING 3 redundancy fine-tunes photoperiod sensitivity. Plant Physiology, 173 (4):2253-2264.
doi: 10.1104/pp.16.01738 pmid: 28202598 |
[37] |
Schmid M, Uhlenhaut N H, Godard F, Demar M, Bressan R, Weigel D, Lohmann J U. 2003. Dissection of floral induction pathways using global expression analysis. Development, 130 (24):6001-6012.
doi: 10.1242/dev.00842 URL |
[38] | Shuai Minmin. 2018. Advances of GIGANTEA and CONSTANS,the key genes of flowering in photoperiod pathway[M. D. Dissertation]. Lin’an:Zhejiang A & F University. (in Chinese) |
帅敏敏. 2018. 光周期途径成花关键基因GIGANTEA和CONSTANS的进化机制[硕士论文]. 临安: 浙江农林大学. | |
[39] | Shuai Minmin, Zhang Qixiang, Huang Youjun. 2019. Evolution of the flowering time gene CONSTANS in a photoperiod pathway. Journal of Zhejiang A & F University, 36 (1):7-13. (in Chinese) |
帅敏敏, 张启香, 黄有军. 2019. 光周期途径成花关键基因CONSTANS的进化机制. 浙江农林大学学报, 36 (1):7-13. | |
[40] |
Spanudakis E, Jackson S. 2014. The role of microRNAs in the control of flowering time. Journal of experimental botany, 65 (2):365-380.
doi: 10.1093/jxb/ert453 pmid: 24474808 |
[41] | Teng Yunlong, Li Chunmin, Zhang Xinzhong, Chen Dongmei, Zeng Guangjuan, Zhao Yongbo, Dong Wenxuan. 2009. SDS-PAGE analysis of phase-transition-related proteins in buds of apple trees. Journal of Fruit Science, 26 (3):375-378. (in Chinese) |
滕云龙, 李春敏, 张新忠, 陈东玫, 曾广娟, 赵永波, 董文轩. 2009. 苹果实生树嫩芽阶段转变相关蛋白质的SDS-PAGE分析. 果树学报, 26 (3):375-378. | |
[42] |
Wang L K, Feng Z X, Wang X, Wang X W, Zhang X G. 2010. DEGseq;an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 26 (1):136-138.
doi: 10.1093/bioinformatics/btp612 URL |
[43] |
Wen M, Shen Y, Shi S H, Tang T. 2012. miREvo;an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics 13 (1):140.
doi: 10.1186/1471-2105-13-140 URL |
[44] |
Wu G, Park M Y, Conway S R, Wang J W, Weigel D, Poethig R S. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 138 (4):750-759.
doi: 10.1016/j.cell.2009.06.031 URL |
[45] |
Xu Zihan, Hu Fengrong. 2020. Research progress of miR172 in plant development and regulation. Biotechnology Bulletin, 36 (8):173-184. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0181 |
徐子涵, 胡凤荣. 2020. miR172参与植物发育调控的研究进展. 生物技术通报, 36 (8):173-184.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0181 |
|
[46] |
Yang L L, Xu M L, Koo Y, He J,Poethig R Scott. 2013. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife, 2:e00260.
doi: 10.7554/eLife.00260 URL |
[47] | Yu S, Cao L, Zhou C M, Zhang T Q, Lian H, Sun Y, Wu J Q, Huang J R, Wang G D, Wang J W. 2013. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife, 2:17. |
[48] |
Yu S, Lian H, Wang J W. 2015. Plant developmental transitions;the role of microRNAs and sugars. Current Opinion in Plant Biology, 27:1-7.
doi: 10.1016/j.pbi.2015.05.009 URL |
[49] |
Zhang C, Xian Z Q, Huang W, Li Z G. 2015. Evidence for the biological function of miR403 in tomato development. Scientia Horticulturae, 197:619-626.
doi: 10.1016/j.scienta.2015.10.027 URL |
[50] | Zhao Guomiao. 2019. Studies on the miRNA regulation mechanism of heteromorphic leaf development in Populus euphratica[Ph. D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese) |
赵国淼. 2019. 胡杨异形叶发育的miRNA调控机制研究[博士论文]. 北京: 北京林业大学. | |
[51] | Zhao Hang. 2020. Molecular mechanism of Arabidopsis NF-YA 8 in regulating juvenile-to-adult transition and flowering time[Ph. D. Dissertation]. Tai'an: Shandong Agricultural University. (in Chinese) |
赵航. 2020. 拟南芥NF-YA8调控幼年向成年阶段转型及开花时间的分子机理研究[博士论文]. 泰安: 山东农业大学. | |
[52] | Zhao Jianguo, Cui Jiawen, Jin Biao. 2015. Research advances of developmental changes of juvenile to adult transition in woody plants. Plant Physiology Journal, 51 (11):1765-1774. (in Chinese) |
赵建国, 崔佳雯, 金飚. 2015. 树木幼年向成年转变的发育调控机制研究进展. 植物生理学报, 51 (11);1765-1774. | |
[53] |
Zheng C F, Ye M X, Sang M G, Wu R L. 2019a. A regulatory network for miR156-SPL module in Arabidopsis thaliana. International Journal of Molecular Sciences, 20 (24):6166.
doi: 10.3390/ijms20246166 URL |
[54] |
Zheng G H, Wei W, Li Y P, Kan L J, Wang F X, Zhang X, Li F, Liu Z C, Kang C Y. 2019b. Conserved and novel roles of miR164-CUC 2 regulatory module in specifying leaf and floral organ morphology in strawberry. New Phytologist, 224 (1):480-492.
doi: 10.1111/nph.v224.1 URL |
[1] | 杨植, 张川疆, 杨芯芳, 董梦怡, 王振磊, 闫芬芬, 吴翠云, 王玖瑞, 刘孟军, 林敏娟. 枣与酸枣杂交后代果实遗传倾向及混合遗传分析[J]. 园艺学报, 2023, 50(1): 36-52. |
[2] | 王建新, 马廷军. 枣新品种‘佳油1号’[J]. 园艺学报, 2022, 49(S2): 55-56. |
[3] | 张玉平, 武 阳, 路东晔, 姚砚武, 潘青华. 枣新品种‘平安葫芦枣’[J]. 园艺学报, 2022, 49(S2): 57-58. |
[4] | 王晓玲, 仇晓靖, 刘淑怡, 李智慧, 李旭茂, 毛永民, 申连英. 仁用酸枣新品种‘丽园珍珠4号’[J]. 园艺学报, 2022, 49(S2): 59-60. |
[5] | 王晓玲, 仇晓靖, 李旭茂, 刘淑怡, 李智慧, 毛永民, 申连英. 酸枣新品种‘丽园珍珠8号’[J]. 园艺学报, 2022, 49(S2): 61-62. |
[6] | 王晓玲, 仇晓靖, 李智慧, 刘淑怡, 李旭茂, 毛永民, 申连英. 酸枣新品种‘丽园珍珠10号’[J]. 园艺学报, 2022, 49(S2): 63-64. |
[7] | 王晓玲, 仇晓靖, 李智慧, 刘淑怡, 李旭茂, 毛永民, 申连英. 酸枣新品种‘丽园珍珠14号’[J]. 园艺学报, 2022, 49(S2): 65-66. |
[8] | 帕提古丽 • 买买提吐尔逊, 罗青红, 古丽尼沙 • 卡斯木, 盛 伟, 蒋 腾. 新疆大果沙枣新品种‘红铃’[J]. 园艺学报, 2022, 49(S2): 67-68. |
[9] | 帕提古丽 • 买买提吐尔逊, 古丽尼沙 • 卡斯木, 罗青红, 刘丽燕, 刘巧玲, 热依汗 • 阿吾提塔什. 新疆大果沙枣新品种‘雅丰’[J]. 园艺学报, 2022, 49(S2): 69-70. |
[10] | 周军永, 陆丽娟, 孙 俊, 马福利, 刘 茂, 朱淑芳, 孙其宝, . 中晚熟鲜食枣新品种‘高王枣’[J]. 园艺学报, 2022, 49(S1): 35-36. |
[11] | 许海峰, 王中堂, 陈新, 刘志国, 王利虎, 刘平, 刘孟军, 张琼. 冬枣果皮着色相关类黄酮靶向代谢组学及潜在MYB转录因子分析[J]. 园艺学报, 2022, 49(8): 1761-1771. |
[12] | 刘平, 王玖瑞, 刘志国, 王立新, 赵璇, 李建兵, 宋韬亮, 冯建华, 刘孟军. 鲜食枣新品种‘雨虹’[J]. 园艺学报, 2022, 49(8): 1833-1834. |
[13] | 刘青柏, 董胜君, 纪连军, 陈光辉, 丁士富, 于庆福. 酸枣新品种‘国丰’[J]. 园艺学报, 2022, 49(5): 1173-1174. |
[14] | 高玮林, 张力曼, 薛超玲, 张垚, 刘孟军, 赵锦. 枣E类MADS基因在花和果中的表达及其蛋白互作研究[J]. 园艺学报, 2022, 49(4): 739-748. |
[15] | 李亚梅, 马福利, 张山奇, 黄锦秋, 陈梦婷, 周军永, 孙其宝, 孙俊. 酸枣愈伤组织转化体系构建及在ZjBRC1调控ZjYUCCA表达中的应用[J]. 园艺学报, 2022, 49(4): 749-757. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司