园艺学报 ›› 2021, Vol. 48 ›› Issue (12): 2481-2496.doi: 10.16420/j.issn.0513-353x.2020-0717
蒋梦琦1, 薛晓东1, 苏立遥1, 陈燕1, 张舒婷1, 李晓斐1, 王培育2, 张梓浩1, 赖钟雄1, 林玉玲1,*()
收稿日期:
2021-03-11
修回日期:
2021-07-30
发布日期:
2022-01-04
通讯作者:
林玉玲
E-mail:buliang84@163.com
基金资助:
JIANG Mengqi1, XUE Xiaodong1, SU Liyao1, CHEN Yan1, ZHANG Shuting1, LI Xiaofei1, WANG Peiyu2, ZHANG Zihao1, LAI Zhongxiong1, LIN Yuling1,*()
Received:
2021-03-11
Revised:
2021-07-30
Published:
2022-01-04
Contact:
LIN Yuling
E-mail:buliang84@163.com
摘要:
利用生物信息学方法对龙眼TCP(DlTCP)基因家族进行全基因组鉴定,通过实时荧光定量PCR(qRT-PCR)技术分析龙眼TCP基因家族成员体胚发生早期表达模式及其对ABA和MeJA的响应模式。从龙眼基因组数据库中共鉴定获得20个龙眼TCP成员。这些DlTCP蛋白包含169 ~ 540个不等的氨基酸残基,分子量介于39.6 ~ 57.2 kD之间,理论等电点介于5.90 ~ 9.45。亚细胞定位预测显示,18个成员在细胞核中。染色体定位显示,DlTCP分布在龙眼15条染色体中的11条染色体上;共线性分析发现有12个DlTCP基因参与片段复制事件。启动子顺式作用元件分析显示,DlTCP成员启动子序列上含有响应激素应答、调控生长发育的元件。系统进化分析可将DlTCP分为2类,均具有典型TCP结构域。体胚发生早期表达模式分析表明,DlTCP2/4a/4b/13/17/18/19/23均在胚性愈伤组织阶段高表达,DlTCP5b/
中图分类号:
蒋梦琦, 薛晓东, 苏立遥, 陈燕, 张舒婷, 李晓斐, 王培育, 张梓浩, 赖钟雄, 林玉玲. 龙眼TCP家族全基因组鉴定与表达分析[J]. 园艺学报, 2021, 48(12): 2481-2496.
JIANG Mengqi, XUE Xiaodong, SU Liyao, CHEN Yan, ZHANG Shuting, LI Xiaofei, WANG Peiyu, ZHANG Zihao, LAI Zhongxiong, LIN Yuling. Genome-wide Identification and Expression Analysis of TCP Family in Dimocarpus longan[J]. Acta Horticulturae Sinica, 2021, 48(12): 2481-2496.
基因名称 Gene name | 基因ID Gene ID | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer |
---|---|---|---|
DlTCP1 | Dlo030081 | TGATCTCCAGGACATGCTAGG | TGCACATCTTTTCTCTGGTCC |
DlTCP2 | Dlo021979 | CTGTGGAGTTGGATGGTGAAG | GACACTACCAATACCACCAGTCAG |
DlTCP4a | Dlo009059 | CAATGGGTGCTTCAAACGAC | CCAGCATCATAACCAAGTGGAG |
DlTCP4b | Dlo027391 | CGTGGCACCCGAATATTAGT | AGTTGATTGATGAGGTCGTGG |
DlTCP5b | Dlo031128 | CTCATGATCCGAACACCTCTC | CCAGTAGCTAACCATTCTTCCTTAC |
DlTCP8 | Dlo024507 | TCAGGTGAAGCGGTCGAC | CATAGGGACCCGGATGATG |
DlTCP9 | Dlo012848 | CGGAGCCAGCTATTATTGC | GTTGTGGCACCATGAAGAAC |
DlTCP11 | Dlo029447 | CTAACTCACTCCTCCCCGTTAC | ACCCTACAAGACACCGACG |
DlTCP13 | Dlo030148 | CATCATTCAATGTCATCTTCT | TCAATCCATGGCTGCCTAAT |
DlTCP15 | Dlo018528 | TCCATAACCGGCGATGAC | GCTCGACCCTGAACTCCTTA |
DlTCP17 | Dlo026163 | AGAACGCCGTGTCACCTT | TGTTACTCATTCCAGGCGG |
DlTCP18 | Dlo031253 | ACATGGCCGATTCAACAAG | AACACTCACGCAGCTGCT |
DlTCP19 | Dlo019709 | GCACCGATCACACCAATGT | TGCTACTCGAACTGGAACTGG |
DlTCP20a | Dlo019007 | GCTGAGCCATCTATAATTGCTG | CACTCCCATAACTTGATGCC |
DlTCP20b | Dlo027551 | GAAGCCAGCAGAGATCAAAGAT | GGTATGGTTCCACTCCCTGT |
DlTCP21 | Dlo017839 | GAGAATCCGGATGCCAAT | TTGTGATCCAGTGAAGTCGAG |
DlTCP23 | Dlo014979 | CCCACCACGAGAACAGTG | GTAAGGAGACGTTAAGGGAGG |
Fe-SOD | GGTCAGATGGTGAAGCCGTAGAG | GTCTATGCCACCGATACAACAAACCC |
表1 qRT-PCR引物序列信息
Table 1 Primers used for qRT-PCR
基因名称 Gene name | 基因ID Gene ID | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer |
---|---|---|---|
DlTCP1 | Dlo030081 | TGATCTCCAGGACATGCTAGG | TGCACATCTTTTCTCTGGTCC |
DlTCP2 | Dlo021979 | CTGTGGAGTTGGATGGTGAAG | GACACTACCAATACCACCAGTCAG |
DlTCP4a | Dlo009059 | CAATGGGTGCTTCAAACGAC | CCAGCATCATAACCAAGTGGAG |
DlTCP4b | Dlo027391 | CGTGGCACCCGAATATTAGT | AGTTGATTGATGAGGTCGTGG |
DlTCP5b | Dlo031128 | CTCATGATCCGAACACCTCTC | CCAGTAGCTAACCATTCTTCCTTAC |
DlTCP8 | Dlo024507 | TCAGGTGAAGCGGTCGAC | CATAGGGACCCGGATGATG |
DlTCP9 | Dlo012848 | CGGAGCCAGCTATTATTGC | GTTGTGGCACCATGAAGAAC |
DlTCP11 | Dlo029447 | CTAACTCACTCCTCCCCGTTAC | ACCCTACAAGACACCGACG |
DlTCP13 | Dlo030148 | CATCATTCAATGTCATCTTCT | TCAATCCATGGCTGCCTAAT |
DlTCP15 | Dlo018528 | TCCATAACCGGCGATGAC | GCTCGACCCTGAACTCCTTA |
DlTCP17 | Dlo026163 | AGAACGCCGTGTCACCTT | TGTTACTCATTCCAGGCGG |
DlTCP18 | Dlo031253 | ACATGGCCGATTCAACAAG | AACACTCACGCAGCTGCT |
DlTCP19 | Dlo019709 | GCACCGATCACACCAATGT | TGCTACTCGAACTGGAACTGG |
DlTCP20a | Dlo019007 | GCTGAGCCATCTATAATTGCTG | CACTCCCATAACTTGATGCC |
DlTCP20b | Dlo027551 | GAAGCCAGCAGAGATCAAAGAT | GGTATGGTTCCACTCCCTGT |
DlTCP21 | Dlo017839 | GAGAATCCGGATGCCAAT | TTGTGATCCAGTGAAGTCGAG |
DlTCP23 | Dlo014979 | CCCACCACGAGAACAGTG | GTAAGGAGACGTTAAGGGAGG |
Fe-SOD | GGTCAGATGGTGAAGCCGTAGAG | GTCTATGCCACCGATACAACAAACCC |
基因名称 Gene name | 基因ID Gene ID | 染色 体 Chr | 基因组定位 Gene location | 开放阅 读框 ORF/bp | 氨基酸数 Amino acid number | 分子量 Molecular weight | 理论等 电点 pI | 不稳定 系数 Instability index | 亚细胞定位 Subcellular location |
---|---|---|---|---|---|---|---|---|---|
DlTCP1 | Dlo030081 | 14 | 12715538:12717415 | 1 062 | 353 | 39 513.21 | 9.41 | 52.04 | 细胞核Nucleus |
DlTCP2 | Dlo021979 | 10 | 8735823:8746343 | 1 512 | 503 | 55 328.04 | 8.42 | 54.23 | 细胞核Nucleus |
DlTCP4a | Dlo009059 | 4 | 10439106:10441967 | 1 251 | 416 | 45 292.48 | 6.35 | 56.10 | 细胞核Nucleus |
DlTCP4b | Dlo027391 | 13 | 5039037:5042408 | 1 065 | 354 | 38 741.10 | 6.22 | 49.13 | 细胞核Nucleus |
DlTCP5a | Dlo026162 | 12 | 19976189:19976698 | 510 | 169 | 39 613.57 | 8.62 | 42.30 | 细胞核Nucleus |
DlTCP5b | Dlo031128 | 15 | 7294709:7295881 | 1 173 | 390 | 43 679.68 | 9.00 | 53.05 | 细胞核Nucleus |
DlTCP8 | Dlo024507 | 11 | 17156563:17158185 | 1 623 | 540 | 57 211.58 | 6.62 | 61.62 | 细胞核Nucleus |
DlTCP9 | Dlo012848 | 5 | 32302987:32304165 | 1 179 | 392 | 41 341.56 | 8.97 | 52.88 | 细胞核Nucleus |
DlTCP11 | Dlo029447 | 14 | 5931490:5932119 | 630 | 209 | 22 462.23 | 8.82 | 74.76 | 细胞核Nucleus |
DlTCP12 | Dlo018254 | 8 | 18820036:18821397 | 1 362 | 453 | 49 819.29 | 9.10 | 53.43 | 细胞核Nucleus |
DlTCP13 | Dlo030148 | 14 | 13720270:13723613 | 1 029 | 342 | 37 824.36 | 8.42 | 56.72 | 细胞核Nucleus |
DlTCP14 | Dlo032223 | 15 | 18165748:18167034 | 1 287 | 428 | 46 492.80 | 7.54 | 63.63 | 细胞核Nucleus |
DlTCP15 | Dlo018528 | 8 | 21299710:21300948 | 1 239 | 412 | 44 078.51 | 7.35 | 57.80 | 细胞核Nucleus |
DlTCP17 | Dlo026163 | 12 | 19984109:19984681 | 573 | 190 | 20 595.15 | 6.29 | 37.10 | 叶绿体Chloroplast |
DlTCP18 | Dlo031253 | 15 | 8846922:8847980 | 1 059 | 352 | 39 608.05 | 7.27 | 49.95 | 细胞核Nucleus |
DlTCP19 | Dlo019709 | 9 | 5138059:5139069 | 1 011 | 336 | 36 084.09 | 5.9 | 59.25 | 细胞核Nucleus |
DlTCP20a | Dlo019007 | 8 | 25450145:25450999 | 855 | 284 | 30 303.73 | 9.01 | 44.23 | 细胞核Nucleus |
DlTCP20b | Dlo027551 | 13 | 6380380:6382053 | 1 152 | 383 | 41 510.79 | 9.06 | 56.77 | 线粒体 Mitochondrion |
DlTCP21 | Dlo017839 | 8 | 12941326:12942114 | 789 | 262 | 27 391.62 | 9.45 | 39.31 | 细胞核Nucleus |
DlTCP23 | Dlo014979 | 6 | 25244640:25245548 | 909 | 302 | 32 075.54 | 7.17 | 51.82 | 细胞核Nucleus |
表2 DlTCP家族理化性质分析
Table 2 Analysis of Physicochemical Properties of DlTCP gene family
基因名称 Gene name | 基因ID Gene ID | 染色 体 Chr | 基因组定位 Gene location | 开放阅 读框 ORF/bp | 氨基酸数 Amino acid number | 分子量 Molecular weight | 理论等 电点 pI | 不稳定 系数 Instability index | 亚细胞定位 Subcellular location |
---|---|---|---|---|---|---|---|---|---|
DlTCP1 | Dlo030081 | 14 | 12715538:12717415 | 1 062 | 353 | 39 513.21 | 9.41 | 52.04 | 细胞核Nucleus |
DlTCP2 | Dlo021979 | 10 | 8735823:8746343 | 1 512 | 503 | 55 328.04 | 8.42 | 54.23 | 细胞核Nucleus |
DlTCP4a | Dlo009059 | 4 | 10439106:10441967 | 1 251 | 416 | 45 292.48 | 6.35 | 56.10 | 细胞核Nucleus |
DlTCP4b | Dlo027391 | 13 | 5039037:5042408 | 1 065 | 354 | 38 741.10 | 6.22 | 49.13 | 细胞核Nucleus |
DlTCP5a | Dlo026162 | 12 | 19976189:19976698 | 510 | 169 | 39 613.57 | 8.62 | 42.30 | 细胞核Nucleus |
DlTCP5b | Dlo031128 | 15 | 7294709:7295881 | 1 173 | 390 | 43 679.68 | 9.00 | 53.05 | 细胞核Nucleus |
DlTCP8 | Dlo024507 | 11 | 17156563:17158185 | 1 623 | 540 | 57 211.58 | 6.62 | 61.62 | 细胞核Nucleus |
DlTCP9 | Dlo012848 | 5 | 32302987:32304165 | 1 179 | 392 | 41 341.56 | 8.97 | 52.88 | 细胞核Nucleus |
DlTCP11 | Dlo029447 | 14 | 5931490:5932119 | 630 | 209 | 22 462.23 | 8.82 | 74.76 | 细胞核Nucleus |
DlTCP12 | Dlo018254 | 8 | 18820036:18821397 | 1 362 | 453 | 49 819.29 | 9.10 | 53.43 | 细胞核Nucleus |
DlTCP13 | Dlo030148 | 14 | 13720270:13723613 | 1 029 | 342 | 37 824.36 | 8.42 | 56.72 | 细胞核Nucleus |
DlTCP14 | Dlo032223 | 15 | 18165748:18167034 | 1 287 | 428 | 46 492.80 | 7.54 | 63.63 | 细胞核Nucleus |
DlTCP15 | Dlo018528 | 8 | 21299710:21300948 | 1 239 | 412 | 44 078.51 | 7.35 | 57.80 | 细胞核Nucleus |
DlTCP17 | Dlo026163 | 12 | 19984109:19984681 | 573 | 190 | 20 595.15 | 6.29 | 37.10 | 叶绿体Chloroplast |
DlTCP18 | Dlo031253 | 15 | 8846922:8847980 | 1 059 | 352 | 39 608.05 | 7.27 | 49.95 | 细胞核Nucleus |
DlTCP19 | Dlo019709 | 9 | 5138059:5139069 | 1 011 | 336 | 36 084.09 | 5.9 | 59.25 | 细胞核Nucleus |
DlTCP20a | Dlo019007 | 8 | 25450145:25450999 | 855 | 284 | 30 303.73 | 9.01 | 44.23 | 细胞核Nucleus |
DlTCP20b | Dlo027551 | 13 | 6380380:6382053 | 1 152 | 383 | 41 510.79 | 9.06 | 56.77 | 线粒体 Mitochondrion |
DlTCP21 | Dlo017839 | 8 | 12941326:12942114 | 789 | 262 | 27 391.62 | 9.45 | 39.31 | 细胞核Nucleus |
DlTCP23 | Dlo014979 | 6 | 25244640:25245548 | 909 | 302 | 32 075.54 | 7.17 | 51.82 | 细胞核Nucleus |
图3 DlTCP家族结构和保守基序 A:DlTCP蛋白进化树,B:DlTCP基因结构,C:DlTCP 保守基序。
Fig. 3 The gene structure and conserve motif in DlTCP genes family A:Protein evolutionary tree,B:DlTCP gene structure,C:DlTCP conserve motif.
图6 DlTCP蛋白的TCP结构域多重序列比对(A)和dlo-miR319a潜在结合位点的序列比对(B)
Fig. 6 TCP domain multiple sequence alignment of DlTCP proteins(A)and sequence alignment of dlo-miR319a potential binding site(B)
图 8 DlTCP家族在龙眼早期体胚发生过程qRT-PCR分析 EC:胚性愈伤组织;IcpEC:不完全胚性紧实结构;GE:球形胚。不同小写字母表示数据之间具有显著差异性。
Fig. 8 Analysis of the qRT-PCR of ">DlTCP genes family in the early somatic embryogenesis of longan EC:Embryogenic callus;IcpEC:Incomplete compact pro-embrogenic culture;GE:Globular embryos.Different lowercase letters indicate significant differences between data.
图9 ABA和MeJA处理下DlTCP的表达模式 ABA和MeJA分别与对照进行显著性分析,* 表示两组数据有显著性。
Fig. 9 Expression levels of 10 selected DlTCP in longan EC after ABA and MeJA treatments ABA and MeJA were significantly analyzed with control respectively,* indicates that there is significant difference between the two groups of data.
[1] | Chai W B, Jiang P F, Guo Y, Huang H Y, Li X Y. 2017. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize. Physiology & Molecular Biology of Plants, 23:779-791. |
[2] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools:an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13 (8):1194-1202.
doi: 10.1016/j.molp.2020.06.009 URL |
[3] |
Cubas P, Lauter N, Doebley J, Coen E. 1999. The TCP domain:a motif found in proteins regulating plant growth and development. Plant J, 18 (2):215-222.
pmid: 10363373 |
[4] |
Danisman S, van Dijk A D J, Bimbo A, van der Wal F, Hennig L, de Folter S, Angenent G C, Immink R G H. 2013. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. Journal of Experimental Botany, 64 (18):5673-5685.
doi: 10.1093/jxb/ert337 URL |
[5] |
Doebley J, Stec A, Hubbard L. 1997. The evolution of apical dominance in maize. Nature, 386 (6624):485-488.
doi: 10.1038/386485a0 URL |
[6] |
Guo Z, Fujioka S, Blancaflor E, Miao S, Gou X, Li J. 2010. TCP 1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell, 22 (4):1161-1173.
doi: 10.1105/tpc.109.069203 URL |
[7] | Kieffer M, Master V, Waites R, Davies B. 2011. TCP14 and TCP 15 affect internode length and leaf shape in Arabidopsis. Plant Journal for Cell & Molecular Biology, 68 (1):147-158. |
[8] | Kosugi S, Ohashi Y. 1997. PCF1 and PCF 2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. The Plant Cell, 9 (9):1607-1619. |
[9] |
Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohmetakagi M. 2010. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164,as well as the auxin response,during differentiation of leaves in Arabidopsis. Plant Cell, 22 (11):3574.
doi: 10.1105/tpc.110.075598 URL |
[10] | Lai Zhong-xiong. 2003. Study of longan biotechnology. Fuzhou: Fujian Science and Technology Press. (in Chinese) |
赖钟雄. 2003. 龙眼生物技术研究. 福州: 福建科学技术出版社. | |
[11] |
Leng X, Wei H, Xu X, Ghuge S A, Jia D, Liu G, Wang Y, Yuan Y. 2019. Genome-wide identification and transcript analysis of TCP transcription factors in grapevine. BMC Genomics, 20 (1):786.
doi: 10.1186/s12864-019-6159-2 URL |
[12] | Li S. 2015. The Arabidopsis thaliana TCP transcription factors:a broadening horizon beyond development. Plant Signaling & Behavior, 10 (7):e1044192. |
[13] |
Li S, Zachgo S. 2013. TCP 3 interacts with R2R3-MYB proteins,promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant Journal, 76 (6):901-913.
doi: 10.1111/tpj.2013.76.issue-6 URL |
[14] |
Lin Y F, Chen Y Y, Yu-Yun H, Shen C Y, Jui-Ling H, Chuan-Ming Y, Nobutaka M, Masaru O T, Liu Z J, Wen-Chieh T. 2016. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris. Journal of Experimental Botany, 67 (17):5051-5066.
doi: 10.1093/jxb/erw273 pmid: 27543606 |
[15] |
Lin Y L, Lai Z X. 2010. Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Science, 178 (4):359-365.
doi: 10.1016/j.plantsci.2010.02.005 URL |
[16] | Lin Y L, Min J M, Lai R L, Wu Z Y, Chen Y K, Yu L L, Cheng C Z, Jin Y C, Tian Q L, Liu Q F. 2017. Genome-wide sequencing of longan (Dimocarpus longan Lour.)provides insights into molecular basis of its polyphenol-rich characteristics. Gigaence, 6 (5):1-14. |
[17] |
Liu H, Gao Y, Wu M, Shi Y, Wang H, Wu L, Xiang Y. 2020. TCP10,a TCP transcription factor in moso bamboo(Phyllostachys edulis),confers drought tolerance to transgenic plants. Environmental and Experimental Botany, 172 (9):104002.
doi: 10.1016/j.envexpbot.2020.104002 URL |
[18] |
Liu Y, Li D, Yan J, Wang K, Luo H, Zhang W. 2019. MiR319 mediated salt tolerance by ethylene biosynthesis,signaling and salt stress response in switchgrass. Plant Biotechnology Journal, 17 (12):2370-2383.
doi: 10.1111/pbi.v17.12 URL |
[19] |
Lopez J A, Sun Y, Blair P B, Mukhtar M S. 2015. TCP three-way handshake:linking developmental processes with plant immunity. Trends in Plant Science, 20 (4):238-245.
doi: 10.1016/j.tplants.2015.01.005 URL |
[20] |
Luo D, Carpenter R, Vincent C, Copsey L, Coen E. 1996. Origin of floral asymmetry in Antirrhinum. Nature, 383 (6603):794-799.
doi: 10.1038/383794a0 URL |
[21] | Ma J, Wang Q, Sun R, Xie F, Jones D C, Zhang B. 2014. Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii. Rep, 4:6645. |
[22] | Martín-Trillo M, Cubas P. 2010. TCP genes:a family snapshot ten years later. Trends in Plant Science, 15 (1):39. |
[23] | Min L, Hu Q, Li Y, Xu J, Ma Y, Zhu L, Yang X, Zhang X. 2015. Leafy cotyledon1-casein kinaseⅠ-TCP15-phytochome interacting factor 4 network regulates somatic embryogenesis by regulating auxin homeostasis. Plant Physiology, 169 (4):1480-2015. |
[24] | Nag A, King S, Jack T. 2009. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proceedings of the National Academy of Sciences, 106 (52):22534-22539. |
[25] |
Olivier N, Patrick D, Elodie C, Dominique T, Christine H. 2007. TCP transcription factors predate the emergence of land plants. Journal of Molecular Evolution, 65 (1):23-33.
pmid: 17568984 |
[26] |
Om P G, Anil D, Archana S, Sweta K, Pradeep K J T, Vinutha&Shelly P. 2019. Conserved miRNAs modulate the expression of potential transcription factors of isoflavonoid biosynthetic pathway in soybean seeds. Molecular Biology Reports, 46 (4):3713-3730.
doi: 10.1007/s11033-019-04814-7 URL |
[27] |
Parapunova V, Busscher M, Busscher-Lange J, Lammers M, Karlova R, Bovy A G, Angenent G C, de Maagd R A. 2014. Identification,cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biology, 14:157.
doi: 10.1186/1471-2229-14-157 pmid: 24903607 |
[28] |
Resentini F, Felipo-Benavent A, Colombo L, Blázquez M A, Alabadi D, Masiero S. 2015. TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana. Molecular Plant, 8 (3):482-485.
doi: 10.1016/j.molp.2014.11.018 URL |
[29] | Sarvepalli K, Nath U. 2011. Hyper-activation of the TCP 4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant Journal for Cell & Molecular Biology, 67 (4):595-607. |
[30] |
Schommer C, Debernardi J M, Bresso E G, Rodriguez R E, Palatnik J F. 2014. Repression of cell proliferation by miR319-regulated TCP4. Molecular Plant, 7 (10):1533-1544.
doi: 10.1093/mp/ssu084 pmid: 25053833 |
[31] |
Schommer C, Palatnik J F, Aggarwal P, Chételat A, Cubas P, Farmer E E, Nath U, Weigel D, Carrington J C. 2008. Control of jasmonate biosynthesis and senescence by miR319 Targets. PLoS Biology, 6 (9):e230.
doi: 10.1371/journal.pbio.0060230 URL |
[32] |
Shi P, Guy K M, Wu W, Fang B, Yang J, Zhang M, Hu Z. 2016. Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus. BMC Plant Biology, 16 (1):85.
doi: 10.1186/s12870-016-0765-9 URL |
[33] | Su Li-yao, Chen Xu, Huang Shu-qi, Jiang Meng-qi, Li Xue, Zhang Zi-hao, Lai Zhong-xiong, Lin Yu-ling. 2020. The expression profiles of eTM,microRNA319 and their targets in early longan somatic embryogenesis. Chinese Journal of Applied & Environmental Biology, 26 (3):566-573. (in Chinese) |
苏立遥, 陈旭, 黄倏祺, 蒋梦琦, 厉雪, 张梓浩, 赖钟雄, 林玉玲. 2020. eTM、microRNA319及其调控靶标在龙眼体胚发生早期的表达模式. 应用与环境生物学报, 26 (3):566-573. | |
[34] |
Sun X, Wang C, Nan X, Xiong L, Yang Y. 2017. Activation of secondary cell wall biosynthesis by miR319-targeted TCP 4 transcription factor. Plant Biotechnology Journal, 15 (10):1284.
doi: 10.1111/pbi.2017.15.issue-10 URL |
[35] |
Takeda T, Amano K, Ohto M A, Nakamura K, Sato S, Kato T, Tabata S, Ueguchi C. 2006. RNA interference of the Arabidopsis putative transcription factor TCP 16 gene results in abortion of early pollen development. Plant Molecular Biology, 61 (1-2):165-177.
pmid: 16786299 |
[36] |
Tran C D, Chu H D, Nguyen K H, Watanabe Y, La H V, Tran K D, Tran L P. 2018. Genome-wide identification of the TCP transcription factor family in Chickpea(Cicer arietinum L.)and their transcriptional responses to dehydration and exogenous abscisic acid treatments. Journal of Plant Growth Regulation, 37 (4):1286-1299.
doi: 10.1007/s00344-018-9859-y URL |
[37] | Wen Beibei, Luo Yong, Liu Dongmin, Zhang Xiangna, Li Juan, Wang Yingzi, Wang Kunbo, Huang Jianan. 2019. Identification and expression profiling analysis of TCP family genes involved in growth and development in Camellia sinensis. Acta Horticulturae Sinica, 46 (12):2369-2382. (in Chinese) |
温贝贝, 罗勇, 刘冬敏, 张向娜, 李娟, 王英姿, 王坤波, 黄建安. 2019. 茶树TCP转录因子的鉴定与表达分析. 园艺学报, 46 (12):2369-2382. | |
[38] |
Wu Z, Wang W, Zhuang J. 2017. TCP family genes control leaf development and its responses to hormonal stimuli in tea plant [Camellia sinensis(L.)O. Kuntze]. Plant Growth Regulation, 83 (1):43-53.
doi: 10.1007/s10725-017-0282-3 URL |
[39] |
Yao X, Hong M, Jian W. 2010. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. Journal of Integrative Plant Biology, 49 (6):885-897.
doi: 10.1111/jipb.2007.49.issue-6 URL |
[40] |
Zhang X, Bao Y, Shan D, Wang Z, Song X, Wang Z, Wang J, He L, Wu L, Zhang Z, Niu D, Jin H, Zhao H. 2018. Magnaporthe oryzae induces the expression of a microRNA to suppress the immune response in rice. Plant Physiology, 177 (1):352-368.
doi: 10.1104/pp.17.01665 pmid: 29549093 |
[1] | 袁馨, 徐云鹤, 张雨培, 单楠, 陈楚英, 万春鹏, 开文斌, 翟夏琬, 陈金印, 甘增宇. 猕猴桃后熟过程中ABA响应结合因子AcAREB1调控AcGH3.1的表达[J]. 园艺学报, 2023, 50(1): 53-64. |
[2] | 李镇希, 潘睿翾, 许美容, 郑正, 邓晓玲. 柑橘黄龙病菌双重实时荧光PCR检测方法的建立[J]. 园艺学报, 2023, 50(1): 188-196. |
[3] | 邓朝军, 许奇志, 蒋际谋, 胡文舜, 郑少泉, 陈秀萍, 姜 帆, 许家辉, 苏文炳, 张雅玲, 黄敬峰. 浓香型龙眼新品种‘醇香’[J]. 园艺学报, 2022, 49(S2): 75-76. |
[4] | 邓朝军, 陈秀萍, 许奇志, 蒋际谋, 郑少泉, 胡文舜, 姜 帆, 许家辉, 苏文炳, 张雅玲, 黄敬峰. 浓香型龙眼新品种‘福香’[J]. 园艺学报, 2022, 49(S2): 77-78. |
[5] | 徐小萍, 曹清影, 蔡柔荻, 官庆栩, 张梓浩, 陈裕坤, 徐涵, 林玉玲, 赖钟雄. 龙眼miR408与DlLAC12克隆及其在球形胚发生和非生物胁迫下的表达分析[J]. 园艺学报, 2022, 49(9): 1866-1882. |
[6] | 张秋悦, 刘昌来, 于晓晶, 杨甲定, 封超年. 盐胁迫条件下杜梨叶片差异表达基因qRT-PCR内参基因筛选[J]. 园艺学报, 2022, 49(7): 1557-1570. |
[7] | 肖学宸, 刘梦雨, 蒋梦琦, 陈燕, 薛晓东, 周承哲, 吴兴健, 吴君楠, 郭寅生, 叶开温, 赖钟雄, 林玉玲. 龙眼褪黑素合成途径SNAT、ASMT和COMT家族基因鉴定及表达分析[J]. 园艺学报, 2022, 49(5): 1031-1046. |
[8] | 刘梦雨, 蒋梦琦, 陈燕, 张舒婷, 薛晓东, 肖学宸, 赖钟雄, 林玉玲. 龙眼GDSL酯酶/脂肪酶基因的全基因组鉴定及表达分析[J]. 园艺学报, 2022, 49(3): 597-612. |
[9] | 孟臻, 张伟萍, 王莹, 李龙, 姬小雪, 董贝, 乔康. 番茄枯萎病菌RT-PCR检测技术的建立与应用[J]. 园艺学报, 2022, 49(11): 2479-2488. |
[10] | 侯天泽, 易双双, 张志群, 王健, 李崇晖. 秋石斛RT-qPCR内参基因的筛选与验证[J]. 园艺学报, 2022, 49(11): 2489-2501. |
[11] | 申序, 陈晓慧, 张婧, 陈荣珠, 徐小萍, 李晓斐, 蒋梦琦, 刘蒲东, 倪珊珊, 林玉玲, 赖钟雄. 龙眼染色质重塑因子Snf2基因家族的进化动力学研究及在体胚发生早期的表达[J]. 园艺学报, 2022, 49(1): 41-61. |
[12] | 谢思艺, 周承哲, 朱晨, 詹冬梅, 陈兰, 吴祖春, 赖钟雄, 郭玉琼. 茶树CsTIFY家族全基因组鉴定及非生物胁迫和激素处理中主要基因表达分析[J]. 园艺学报, 2022, 49(1): 100-116. |
[13] | 张春渝, 许小琼, 徐小萍, 赵鹏程, 申序, MunirNigarish, 张梓浩, 林玉玲, 陈振光, 赖钟雄. 龙眼SKP1-like家族成员鉴定及体胚发生早期表达分析[J]. 园艺学报, 2021, 48(9): 1665-1679. |
[14] | 杨为海, 曾利珍, 肖秋生, 石胜友. 饥饿胁迫下龙眼落果与果皮和离区糖、ABA及相关基因表达的变化[J]. 园艺学报, 2021, 48(8): 1457-1469. |
[15] | 苏立遥, 王培育, 蒋梦琦, 黄倏祺, 薛晓东, 刘梦雨, 肖学宸, 赖春旺, 张梓浩, 陈裕坤, 赖钟雄, 林玉玲. 龙眼pri-miR319a编码短肽活性的研究[J]. 园艺学报, 2021, 48(5): 908-920. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司