[1] |
Baumgartner Sabine, Dax Thomas G, Praznik Werner, Falk Heinz. 2000. Characterisation of the high-molecular weight fructan isolated from garlic(Allium sativum L.). Carbohydrate Research, 328 (2):177-183.
pmid: 11028785
|
[2] |
Bian Haiyan, Zhong Qiwen, Huang Sijie, Wang Lihui, Yang Shipeng, Tian Jie. 2018. Analysis of gene expressions of fructan metabolism key enzymes in garlic under drought stress. Molecular Plant Breeding, 16 (20):6770-6776. (in Chinese)
|
|
边海燕, 钟启文, 黄思杰, 王丽慧, 杨世鹏, 田洁. 2018. 干旱胁迫下大蒜果聚糖代谢关键酶基因的表达分析. 分子植物育种, 16 (20):6770-6776.
|
[3] |
Fujishima M, Sakai H, Ueno K, Takahashi N, Onodera S, Benkeblia N, Shiomi N. 2005. Purification and characterization of a fructosyltransferase from onion bulbs and its key role in the synthesis of fructo-oligosaccharides in vivo. New Phytologist, 165 (2):513-524.
pmid: 15720662
|
[4] |
Gadegaard G, Didion T, Folling M, Storgaard M, Andersen C H, Nielsen K K. 2008. Improved fructan accumulation in perennial ryegrass transformed with the onion fructosyltransferase genes 1-SST and 6G-FFT. Journal of Plant Physiology, 165 (11):1214-1225.
pmid: 17933422
|
[5] |
Gao Xiang, She Maoyun, Yin Guixiang, Yu Yang, Bie Xiaomin, Du Lipu, Xu Huijun, Ye Xingguo. 2009. Isolation and functional determination of fructan biosynthesis enzyme encoding gene 6-SFT from common wheat(Triticum aestivum L.). Science & Technology Review, 27 (23):70-75. (in Chinese)
|
|
高翔, 佘茂云, 殷桂香, 于洋, 别晓敏, 杜丽璞, 徐惠君, 叶兴国. 2009. 小麦果聚糖合成酶基因6-SFT克隆和功能验证. 科技导报, 27 (23):70-75.
|
[6] |
García-Pérez M C, López M G. 2015. Factors affecting fructosyltransferases and fructan exohydrolase activities in agave tequilana weber var. azul. Journal of Plant Biochemistry and Biotechnology, 25 (2):1-8.
doi: 10.1007/s13562-015-0326-6
URL
|
[7] |
Hincha D K, Livingston D P, Premakumar R, Zuther E, Obel N, Cacela C, Heyer A G. 2007. Fructans from oat and rye:composition and effects on membrane stability during drying. Biochimica et Biophysica Acta(BBA)-Biomembranes, 1768 (6):1611-1619.
|
[8] |
Koichiro T, Daniel P, Nicholas P, Glen S, Masatoshi N, Sudhir K. 2011. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods. Molecular Biology and Evolution, 28 (10):2731-2739.
doi: 10.1093/molbev/msr121
pmid: 21546353
|
[9] |
Lasseur B, Lothier J, Djoumad A, Coninck B D, Smeekens S, Laere A V, Morvan-Bertrand V, Ende W V D, Prud'homme M P. 2006. Molecular and functional characterization of a cDNA encoding fructan:fructan 6G-fructosyltransferase (6G-FFT)/fructan:fructan 1-fructosyltransferase (1-FFT) from perennial ryegrass(Lolium perenne L.). Journal of Experimental Botany, 57 (14):2719-2734.
doi: 10.1093/jxb/erl034
URL
|
[10] |
Liu Jiapeng, Tan Qiuyue, Wu Junwei, Wang Bin, Tian Na, Liu Fan, Sun Xueli, Cheng Chunzhen. 2020. Cloning and expression analysis of a MaTIFY9 gene in banana. Chinese Journal of Applied and Environmental Biology,doi: org/10.19675/j.cnki.1006-687x.2020.07006. (in Chinese)
doi: org/10.19675/j.cnki.1006-687x.2020.07006
|
|
刘嘉鹏, 谭秋月, 伍俊为, 王斌, 田娜, 刘范, 孙雪丽, 程春振. 2020. 香蕉MaTIFY9基因的克隆及表达. 应用与环境生物学报,doi: org/10.19675/j.cnki.1006-687x.2020.07006.
doi: org/10.19675/j.cnki.1006-687x.2020.07006
|
[11] |
Liu M, Wu Z, Jiang F L. 2015. Selection and validation of garlic reference genes for quantitative real-time PCR normalization. Plant Cell,Tissue and Organ Culture(PCTOC), 122 (2):435-444.
|
[12] |
Livingston D P, Hincha D K, Heyer A G. 2009. Fructan and its relationship to abiotic stress tolerance in plants. Cellular and Molecular Life Sciences, 66 (13):2007-2023.
doi: 10.1007/s00018-009-0002-x
pmid: 19290476
|
[13] |
Ritsema T, Verhaar A, Vijn I, Smeekens S. 2004. Fructosyl-transferase mutants specify a function for the b-fructosidase motif of the sucrose-binding box in specifying the fructan type synthesized. Plant Molecular Biology, 54:853-863.
pmid: 15604656
|
[14] |
Shiomi N. 1982. Purification and characterisation of 6G-fructosyltransferase from the roots of asparagus(Asparagus officinalis L.). Carbohydrate Research, 99 (2):157-169.
doi: 10.1016/S0008-6215(00)81905-9
URL
|
[15] |
Suárez-González E M, López M G, Délano-Frier J P, Gómez-Leyva J F. 2014. Expression of the 1-SST and 1-FFT genes and consequent fructan accumulation in Agave tequilana and A. inaequidens is differentially induced by diverse(a)biotic-stress related elicitors. Journal of Plant Physiology, 171 (3-4):359-372.
doi: 10.1016/j.jplph.2013.08.002
pmid: 23988562
|
[16] |
Suárez-González E M, Suárez P A P, Cruz-Rubio J M, Martínez-Gallardo N A, Hernández I C, Délano-Frier J P, Gómez-Leyva J F. 2016. Differential fructan accumulation and expression of fructan biosynthesis,invertase and defense genes is induced in Agave tequilana plantlets by sucrose or stress-related elicitors. Agri Gene, 2:17-28.
doi: 10.1016/j.aggene.2016.09.003
URL
|
[17] |
Sun Yongmei, Liu Lijie, Feng Mingfang, Wang Junhong, Cang Jing, Li Su, Bao Yuzhuo, Wang Xiutian. 2015. Research progress of sugar metabolism of plants under cold stress. Journal of Northeast Agricultural University, 46 (7):95-102. (in Chinese)
|
|
孙永梅, 刘丽杰, 冯明芳, 王军虹, 仓晶, 李速, 包雨卓, 王秀田. 2015. 植物在低温胁迫下的糖代谢研究进展. 东北农业大学学报, 46 (7):95-102.
|
[18] |
Valluru R, Ende W V D. 2008. Plant fructans in stress environments:emerging concepts and future prospects. Journal of Experimental Botany, 59 (11):2905-2916.
doi: 10.1093/jxb/ern164
pmid: 18603617
|
[19] |
Valluru R, Lammens W, Claupein W, Ende W V D. 2008. Freezing tolerance by vesicle-mediated fructan transport. Trends in Plant Science, 13 (8):409-414.
doi: 10.1016/j.tplants.2008.05.008
pmid: 18619894
|
[20] |
Vijn I, Dijken A, Sprenger N, Dun K, Weisbeek P, Wiemken A, Smeekens S. 2010. Fructan of the inulin neoseries is synthesized in transgenic chicory plants(Cichorium intybus L.)harbouring onion(Allium cepa L.)fructan:fructan 6G-fructosyltransferase. Plant Journal, 11 (3):387-398.
doi: 10.1046/j.1365-313X.1997.11030387.x
URL
|
[21] |
Wang Xinxin, Zhao Jingjing, Feng Naijie, Zheng Dianfeng. 2020. Effects of low temperature stress on physiological activity and yield of different soybean canopy leaves of flowering stage. Soybean Science, 39 (2):252-259. (in Chinese)
|
|
王新欣, 赵晶晶, 冯乃杰, 郑殿峰. 2020. 低温胁迫对大豆花期不同冠层叶片生理活性及产量的影响. 大豆科学, 39 (2):252-259.
|
[22] |
Wei J Z, Chatterton N J. 2001. Fructan biosynthesis and fructosyltransferase evolution:expression of the 6-SFT(sucrose:fructan 6-fructosyltransferase)gene in crested wheatgrass (Agropyron cristatum). Journal of Plant Physiology, 158 (9):1203-1213.
doi: 10.1078/0176-1617-00241
URL
|
[23] |
Wu Wei, Wang Zuowei, Su Yongying, Gan Shuang, Du Shiping, Cai Yi,Guo Jinya. 2017. Analysis of subcellular localization signals of Arabidopsis cytokinin receptor protein AHK3. Journal of South China Agricultural University, 38 (6):64-71. (in Chinese)
|
|
吴委, 王作伟, 粟永英, 甘爽, 杜世平, 蔡易, 郭晋雅. 2017. 拟南芥细胞分裂素受体AHK3亚细胞定位信号的研究. 华南农业大学学报, 38 (6):64-71.
|
[24] |
Wu Yuan-li. 2011. Study on genetic transformation of 1-SST gene to sugarcane and its drought resistance ability[M. D. Dissertation]. Haikou: Hainan University:10-13. (in Chinese)
|
|
武媛丽. 2011. 转蔗糖:蔗糖-1-果糖基转移酶基因甘蔗的抗旱性研究[硕士论文]. 海口: 海南大学:10-13.
|
[25] |
Xu Huanhuan, Kang Jian, Liang Mingxiang. 2014. Research advances in the metabolism of fructan in plant stress resistance. Chinese Bulletin of Botany, 49 (2):209-220. (in Chinese)
doi: 10.3724/SP.J.1259.2014.00209
URL
|
|
许欢欢, 康健, 梁明祥. 2014. 植物果聚糖的代谢途径及其在植物抗逆中的功能研究进展. 植物学报, 49 (2):209-220.
|
[26] |
Xu Lulu, Wang Han, Gao Panpan, Wu Sanqiao, Zhang Chenlu. 2020. Effects of environmental stress on plant root morphology. Journal of Anhui Agricultural Sciences, 48 (14):16-19. (in Chinese)
|
|
许璐璐, 王涵, 高盼盼, 吴三桥, 张辰露. 2020. 环境胁迫对植物根系形态的影响. 安徽农业科学, 48 (14):16-19.
|