园艺学报 ›› 2021, Vol. 48 ›› Issue (10): 2001-2017.doi: 10.16420/j.issn.0513-353x.2021-0523
曾拓, 李伽文, 周黎, 李进进, 史安琪, 付瀚森, 罗靖, 郑日如, 王媛媛, 王彩云*()
收稿日期:
2021-07-08
修回日期:
2021-08-30
出版日期:
2021-10-25
发布日期:
2021-11-01
通讯作者:
王彩云
E-mail:wangcy@mail.hzau.edu.cn
基金资助:
ZENG Tuo, LI Jiawen, ZHOU Li, LI Jinjin, SHI Anqi, FU Hansen, LUO Jing, ZHENG Riru, WANG Yuanyuan, WANG Caiyun*()
Received:
2021-07-08
Revised:
2021-08-30
Online:
2021-10-25
Published:
2021-11-01
Contact:
WANG Caiyun
E-mail:wangcy@mail.hzau.edu.cn
摘要:
观赏植物花色的多样性缘于与传粉者相互适应的生殖系统多样性,与传粉系统的进化紧密相连。人类以自身生产或审美为目标,对作物进行驯化、种植、人工授粉以及使用化学杀虫剂等导致农业区域、城市绿地与花园环境中昆虫传粉者的栖息地丧失、食物链断裂,传粉昆虫数量急剧减少,因此,植物花色与授粉昆虫的相互适应机制引起人们越来越广泛的关注。本文从授粉昆虫对花色感知、花器官表皮结构与呈色模式、昆虫对花色的地域性与多态性的影响、花色变化对授粉昆虫的吸引以及花卉的色彩模仿和欺骗等方面进行了综述,对花色与昆虫的相互适应关系进行了简要总结,并对花卉育种、乡村农田野花带以及城市花园营建中如何根据植物花色科学吸引授粉昆虫、提高观赏植物繁育效率和培育更多色彩丰富的花卉等提出了建议。
中图分类号:
曾拓, 李伽文, 周黎, 李进进, 史安琪, 付瀚森, 罗靖, 郑日如, 王媛媛, 王彩云. 观赏植物花色与授粉昆虫相互适应关系的研究进展[J]. 园艺学报, 2021, 48(10): 2001-2017.
ZENG Tuo, LI Jiawen, ZHOU Li, LI Jinjin, SHI Anqi, FU Hansen, LUO Jing, ZHENG Riru, WANG Yuanyuan, WANG Caiyun. Advances in the Mutualistic and Antagonistic Interactions Between Flower Colors and the Pollinators of Ornamental Plants[J]. Acta Horticulturae Sinica, 2021, 48(10): 2001-2017.
授粉昆虫 Pollinator | 膜翅目蜜蜂 Hymenoptera bee | 鞘翅目甲虫 Coleoptera beetle | 双翅目蝇类 Diptera fly | 鳞翅目蝴蝶 Lepidoptera butterfly | 鳞翅目蛾类 Lepidoptera moth |
---|---|---|---|---|---|
花色Color | 蓝紫或紫外光 Blue,purple,UV | 奶白色或绿色 Cream,green | 黄白色 Yellow and white | 鲜艳或紫外光 Bright,UV | 白色或灰白 Whites,palm |
花卉向导Floral guide | 通常存在 Usually present | 无 Absent | 无 Absent | 偶尔存在 Occasionally present | 无 Absent |
花蜜Nectar | 通常存在 Usually present | 偶尔存在 Occasionally present | 一般没有 Usually absent | 充裕;隐蔽 Ample,hidden | 充裕;隐蔽 Ample,hidden |
花粉Pollen | 少量 Limited | 丰富 Ample | 适中 Modest | 少量 Limited | 少量 Limited |
花香Odour | 温和或具芳香 Mild or sweet | 强烈的果味 Strongly fruity | 温和或霉臭 Mild or musty | 温和甜美 Mild,pleasant | 强烈,香味浓郁 Strong sweet |
花形Shape | 花冠筒浅,着陆台 Shallow,tubular, landing platform | 大花或顶生花序 Large or terminal inflorescences | 扁平或成簇花 Flat or cluster floret | 窄管带花距,着陆台 Narrow tube,spur, landing platform | 萼筒无唇,着陆台 Tubular without lip, landing platform |
访花时间Visit time | 白天,黎明 Daytime,dawn | 白天,夜间 Daytime,night | 白天 Daytime | 白天 Daytime | 黄昏或夜间 Dusk or night |
表1 经典传粉综合征的花部特征与昆虫的关系
Table 1 The relationship of flower characteristics and the pollinators under classical pollination syndromes
授粉昆虫 Pollinator | 膜翅目蜜蜂 Hymenoptera bee | 鞘翅目甲虫 Coleoptera beetle | 双翅目蝇类 Diptera fly | 鳞翅目蝴蝶 Lepidoptera butterfly | 鳞翅目蛾类 Lepidoptera moth |
---|---|---|---|---|---|
花色Color | 蓝紫或紫外光 Blue,purple,UV | 奶白色或绿色 Cream,green | 黄白色 Yellow and white | 鲜艳或紫外光 Bright,UV | 白色或灰白 Whites,palm |
花卉向导Floral guide | 通常存在 Usually present | 无 Absent | 无 Absent | 偶尔存在 Occasionally present | 无 Absent |
花蜜Nectar | 通常存在 Usually present | 偶尔存在 Occasionally present | 一般没有 Usually absent | 充裕;隐蔽 Ample,hidden | 充裕;隐蔽 Ample,hidden |
花粉Pollen | 少量 Limited | 丰富 Ample | 适中 Modest | 少量 Limited | 少量 Limited |
花香Odour | 温和或具芳香 Mild or sweet | 强烈的果味 Strongly fruity | 温和或霉臭 Mild or musty | 温和甜美 Mild,pleasant | 强烈,香味浓郁 Strong sweet |
花形Shape | 花冠筒浅,着陆台 Shallow,tubular, landing platform | 大花或顶生花序 Large or terminal inflorescences | 扁平或成簇花 Flat or cluster floret | 窄管带花距,着陆台 Narrow tube,spur, landing platform | 萼筒无唇,着陆台 Tubular without lip, landing platform |
访花时间Visit time | 白天,黎明 Daytime,dawn | 白天,夜间 Daytime,night | 白天 Daytime | 白天 Daytime | 黄昏或夜间 Dusk or night |
图1 授粉昆虫和蜂鸟访花 A:蜜蜂造访紫色的琉璃苣;B:瓢虫造访白花除虫菊;C:食蚜蝇造访白花除虫菊;D:蝴蝶造访红花除虫菊;E:飞蛾夜间造访白花除虫菊;F:蜂鸟访花(© fred prose,来自Pixabay免版权网站)。
Fig. 1 Visiting of pollinating insect and hummingbird to flowering plants A:Honeybee visits Borago officinalis(purple flower color);B:Ladybeetle visits Tanacetum cinerariifolium;C:Hoverfly visits T. cinerariifolium;D:Butterfly visits T. coccineum(red flower color);E:Moths visits T. cinerariifolium at night;F:Hummingbird visits flowers(© fred prose from Pixabay copyright free website).
图2 显花植物的花卉向导与结构色 A:森林草莓在可见光下(© David Kennard);B:森林草莓在紫外线照射下可以清晰看见花卉向导(© David Kennard);C:红蝉花的表面结构能增强可见视觉信号(© Hans Braxmeier);D:香铃草花瓣的结构色增强了可见信号(© Jo Rosenberry);E:花菱草花瓣表面结构能够使花瓣呈现强烈明亮的橙色或黄色(© Elke Stürznickel);F:南非雏菊花瓣有深色斑点,能够吸引甲虫授粉(© SAplants)。A ~ C,F图来源维基共享;D、E图来源Pixabay免版权网站,知识共享许可协议。
Fig. 2 Flower guides and the structure color of flowering plants A:Fragaria vesca under visible light(© David Kennard);B:The floral guides can be clearly seen in the ultraviolet spectrum of Fragaria vesca(© David Kennard);C:The surface structure of the Mandevilla sanderi flower can enhance the visual signal(© Hans Braxmeier);D:The structural color on the petals of Hibiscus trionum enhances the visible signal(© Jo Rosenberry);E:The surface structure of Eschscholzia californica can make the petals show a strong bright orange or yellow(© Elke Stürznickel);F:The petals of Gorteria diffusa have dark spots that attract beetles to pollinate(© Saplants). A-C,F images source Wikimedia Commons;D,E images Pixabay with Creative Commons attribution.
图3 花色的地域性和多样性 A:鸟媒的红色猴面花Mimulus aurantiacus(© Takwish);B:蛾媒的黄色猴面花Mimulus aurantiacus(© Dick Culbert);C:麦夸里岛虫媒花反射蝇类所喜好的黄绿色(© M. Murphy);D:手参的多样花色(© Orchi);E:孔雀银莲花 [E1:低海拔下由嗜好红色的甲虫授粉(© Katya);E2、E3:高海拔下花色多样性(E2:© Joseba Garmendia,E3:© Katya)]。以上图片均来源维基共享,知识共享许可协议。
Fig. 3 The regionality and variation of flower colors A:Red bird flowers of Mimulus aurantiacus(© Takwish);B:Yellow moth flowers of Mimulus aurantiacus(© Dick Culbert);C:Macquarie island insects reflect the long waves favored by flies(© M. Murphy);D:The polymorphism color of Gymnadenia rhellicani(© Orchi);E:Anemone pavonina[E1:Pollinated by red-loving beetles at low altitudes(© ghislain118);E2,E3:The flower color of Anemone pavonina polymorphism at high altitude(E2:© Joseba Garmendia,E3:© Katya)]. The above pictures are from Wikimedia Commons with Creative Commons attribution.
图4 观赏植物授粉前后花色的变化 A:海仙花授粉后花冠从白色转变为红色(© Peganum);B:欧洲七叶树上部花瓣黄色斑纹授粉后转变为粉红色(© MichalPL);C:马缨丹授粉后花色从黄色转变为红色(© Vengolis);D:厚叶石斑雄蕊从黄色变成红色(© A.Barra);E:角堇菜授粉后颜色从白色变为紫色(© David J. Stang);F:鸳鸯茉莉花开放从白色转变为蓝色(© Izu navi)。以上图片均来自维基共享,知识共享许可协议。
Fig. 4 The change of flower color after or before pollination of flowering plants A:After pollination,the Corolla of Weigela coraeensis changed from yellow-white to red(©Peganum);B:The yellow mark on the upper petals of Aesculus hippocastanum changed to pink after pollination(© MichalPL);C:After pollination,the flower color of Lantana camara changed from yellow to red(© Vengolis);D:The stamens of Raphiolepis umellata changed from yellow to red(©A.Barra);E:The flower color of Viola cornuta changes from white to purple after pollination(©David J. Stang);F:The flowers of Brunfelsia brasiliensis changed from white to blue(© Izu navi). The above pictures are from Wikimedia Commons with Creative Commons attribution.
图5 花卉的色彩模仿和欺骗 A:斜序距心兰(左)外观与产油植物金虎尾科叶柱藤属(右)非常相似,能够欺骗采油蜜蜂光顾(© Papadopulos);B:红花头蕊兰(左© Hans Stieglitz)拟态匍匐风铃草(右©Ivar Leidus),两者的花都为紫红色且具有近似的反射光谱;C:角蜂眉兰的花像雌性胡蜂(© Marc Pascual);D:Telipogon peruvianus能通过模仿花蜜植物的食物欺骗并结合性欺骗,诱骗授粉者(© Manfred Ayasse);E:兜兰属唇瓣上有黑色凸起物或者棒状腺毛以拟态蚜虫,吸引雌性食蚜蝇来产卵,诱骗其掉入陷阱式囊中,起到传粉的作用(© Naoki Takebayashi);F:以色列鸢尾Iris atropurpurea开暗紫红花无蜜的品种通过给雄性独居蜜蜂提供庇所获得授粉(© Veereshin)。以上图片除C图来源于Pixabay免版权网站,其他均来自维基共享,知识共享许可协议。
Fig. 5 The imitation and deception of flower colors A:Trichocentrum ascendens(left)is very similar in appearance to Stigmaphyllon sp(Malpighiaceae,right),an oil-producing plant,and can deceive the patronage of bees(© Papadopulos);B:Cephalanthera rubra(left,© Hans Stieglitz)successfully mimicks Campanula rapunculoides(right ©Ivar Leidus). Both flowers are purplish red and have similar reflectance spectra;C:The flower of Ophrys speculum looks like a female wasp (© Marc Pascual);D:Telipogon peruvianus can deceive pollinators by directly imitating the food of nectar plants and combining sexual deception with two different ways of deception(© Manfred Ayasse);E:Paphiopedilum has black protuberances or stick-shaped hairs glandular on their lips to mimic aphids,to attract female hoverfly to lay eggs,thus luring hoverfly into a trap bag to pollination(© Naoki Takebayashi);F:Iris atropurpurea,a safflower without honey is pollinated by providing shelter for male solitary bees(© Veereshin). The above images except C picture are from Pixabay,and others from Wikimedia Commons with Creative Commons attribution.
[1] |
Almut K, Warrant E J, Michael P, Wallén R, Theobald J C, Wcislo W T, Raguso R A. 2006. Light intensity limits foraging activity in nocturnal and crepuscular bees. Behavioral Ecology, 17 (1):63-72.
doi: 10.1093/beheco/arj001 URL |
[2] |
Arikawa K. 2017. The eyes and vision of butterflies. Journal of Physiology, 595 (16):5457-5464.
doi: 10.1113/JP273917 URL |
[3] |
Baguette M, Bertrand J A M, Stevens V M, Schatz B. 2020. Why are there so many bee-orchid species? Adaptive radiation by intra-specific competition for mnesic pollinators. Biological Reviews, 95 (6):1630-1663.
doi: 10.1111/brv.v95.6 URL |
[4] |
Bischoff M, Lord J, Robertson A, Dyer A. 2013. Hymenopteran pollinators as agents of selection on flower colour in the New Zealand mountains:salient chromatic signals enhance flower discrimination. New Zealand Journal of Botany, 51 (3):181-193.
doi: 10.1080/0028825X.2013.806933 URL |
[5] |
Blaauw B R, Isaacs R. 2014. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. Journal of Applied Ecology, 51 (4):890-898.
doi: 10.1111/1365-2664.12257 URL |
[6] |
Blitzer E J, Dormann C F, Holzschuh A, Klein A M, Rand T A, Tscharntke T. 2012. Spillover of functionally important organisms between managed and natural habitats. Agriculture Ecosystems & Environment, 146 (1):34-43.
doi: 10.1016/j.agee.2011.09.005 URL |
[7] |
Bradshaw H D, Schemske D W. 2003. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature, 426 (6963):176-178.
doi: 10.1038/nature02106 URL |
[8] |
Briscoe A. 2001. The evolution of color vision in insects. Annual Review of Entomology, 46 (1):471.
doi: 10.1146/ento.2001.46.issue-1 URL |
[9] |
Brown M J F, Baer B. 2005. The evolutionary significance of long copulation duration in bumble bees. Apidologie, 36 (2):157-167.
doi: 10.1051/apido:2005008 URL |
[10] |
Busch A, Zachgo S. 2009. Flower symmetry evolution:towards understanding the abominable mystery of angiosperm radiation. Bioessays, 31 (11):1181-1190.
doi: 10.1002/bies.v31:11 URL |
[11] | Cairampoma L, Martel C. 2012. Floral visitors in Salvia rhombifolia ruiz & pavon(Lamiaceae)in lima,peru:a bee-pollinated species. The Biologist, 10 (2):97-103. |
[12] |
Cairampoma L J A, Tello J R, Classen-Bockhoff R. 2020. Pollination in the desert:adaptation to bees and birds in Salvia rhombifolia. International Journal of Plant Sciences, 181 (8):857-870.
doi: 10.1086/710219 URL |
[13] |
Camlitepe Y, Aksoy V. 2010. First evidence of fine colour discrimination ability in ants(Hymenoptera,Formicidae). Journal of Experimental Biology, 213 (1):72-77.
doi: 10.1242/jeb.037853 URL |
[14] | Chen P J, Eawata H, Ematsushita A, Yang E C, Arikawa K. 2016. Extreme spectral richness in the eye of the common bluebottle butterfly,Graphium sarpedon. Frontiers in Ecology and Evolution, 4:18. |
[15] | Chittka L, Kevan P G. 2005. Flower colour as advertisement. In practical pollination biology. Cambridge,Canada: Enviroquest Ltd Press:157-196. |
[16] |
Coimbra G, Araujo C, Bergamo P J, Freitas L, Rodriguez-Girones M A. 2020. Flower conspicuousness to bees across pollination systems:a generalized test of the bee-avoidance hypothesis. Frontiers in Plant Science, 11:558684.
doi: 10.3389/fpls.2020.558684 URL |
[17] |
Cordoba S, Cocucci A. 2011. Flower power:its association with bee power and floral functional morphology in papilionate legumes. Annals of Botany, 108 (5):919-931.
doi: 10.1093/aob/mcr196 URL |
[18] |
Crane P R, Friis E M, Pedersen K R. 1995. The origin and early diversification of angiosperms. Nature, 374 (6517):27-33.
doi: 10.1038/374027a0 URL |
[19] |
Cuthill I C, Allen W L, Arbuckle K, Caspers B, Chaplin G, Hauber M E, Hill G E, Jablonski N G, Jiggins C D, Kelber A, Mappes J, Marshall J, Merrill R, Osorio D, Prum R, Roberts N W, Roulin A, Rowland H M, Sherratt T N, Skelhorn J, Speed M P, Stevens M, Stoddard M C, Stuart-Fox D, Talas L, Tibbetts E, Caro T. 2017. The biology of color. Science, 357 (6350):eaan0221.
doi: 10.1126/science.aan0221 URL |
[20] |
de Camargo M G, Lunau G K, Batalha M A, Brings S, de Brito V L G, Morellato L P C. 2019. How flower colour signals allure bees and hummingbirds:a community-level test of the bee avoidance hypothesis. New Phytologist, 222 (2):1112-1122.
doi: 10.1111/nph.2019.222.issue-2 URL |
[21] |
Del-Claro K, Rodriguez-Morales D, Calixto E S, Martins A S, Torezan-Silingardi H M. 2019. Ant pollination of Paepalanthus lundii (Eriocaulaceae) in Brazilian savanna. Annals of Botany, 123 (7):1159-1165.
doi: 10.1093/aob/mcz021 pmid: 30852596 |
[22] |
Delnevo N E, van Etten J, Clemente N, Fogu L, Pavarani E, Byrne M, Stock W D. 2020. Pollen adaptation to ant pollination:a case study from the Proteaceae. Annals of Botany, 126 (3):377-386.
doi: 10.1093/aob/mcaa058 pmid: 32227077 |
[23] |
Du Wei, Wang Shuai, Wang Manqun, Wang Xiaofan. 2012. Who are the major pollinators of Chimonanthus praecox(Calycanthaceae):insect behaviors and potential pollination roles. Biodiversity Science, 20 (3):400-404.(in Chinese)
doi: 10.3724/SP.J.1003.2012.05033 |
杜巍, 王帅, 王满囷, 汪小凡. 2012. 谁是腊梅的主要传粉者:昆虫行为与传粉作用. 生物多样性, 20 (3):400-404.
doi: 10.3724/SP.J.1003.2012.05033 |
|
[24] | Dudek B, Schneider B, Hilger H H, Stavenga D G, Martinez-Harms J. 2020. Highly different flavonol content explains geographic variations in the UV reflecting properties of flowers of the corn poppy,Papaver rhoeas(Papaveraceae). Phytochemistry 178:112457. |
[25] |
Dyer A G, Jentsch A, Burd M, Garcia J E, Giejsztowt J, Camargo M G G, Tjorve E, Tjorve K M C, White P, Shrestha M. 2020. Fragmentary blue:resolving the rarity paradox in flower colors. Frontiers in Plant Science, 11:618203.
doi: 10.3389/fpls.2020.618203 URL |
[26] | Ellis A G, Johnson S D. 2010. Floral mimicry enhances pollen export:the evolution of pollination by sexual deceit outside of the Ochidaceae. The American Naturalist, 176 (5):E143-E151. |
[27] | Faegri K, Pijl L V D. 1979. The principles of pollination ecology. 3rd ed. Oxford: Pergamon Press. |
[28] |
Goyret J, Pfaff M, Raguso R A, Kelber A. 2008. Why do Manduca sexta feed from white flowers? Innate and learnt colour preferences in a hawkmoth. Naturwissenschaften, 95 (6):569-576.
doi: 10.1007/s00114-008-0350-7 URL |
[29] |
Hannah L, Dyer A G, Garcia J E, Dorin A, Burd M. 2019. Psychophysics of the hoverfly:categorical or continuous color discrimination? Current Zoology, 65 (4):483-492.
doi: 10.1093/cz/zoz008 pmid: 31413720 |
[30] | Ito K, Suzuki M F, Mochizuki K. 2021. Evolution of honest reward signal in flowers. Proceedings of the Royal Society B: Biological Sciences, 288:20202848. |
[31] |
Jager M L D, Ellis A G. 2012. Gender-specific preferences for floral traits. Functional Ecology, 26 (5):1197-1204.
doi: 10.1111/j.1365-2435.2012.02028.x URL |
[32] | Johnson S D, Schiestl F P. 2016. Floral mimicry. Oxford: Oxford University Press. |
[33] |
Kagawa K, Takimoto G. 2016. Inaccurate color discrimination by pollinators promotes evolution of discrete color polymorphism in food-deceptive flowers. The American Naturalist, 187 (2):194-204.
doi: 10.1086/684433 URL |
[34] |
Kalisz S, Kramer E M. 2008. Variation and constraint in plant evolution and development. Heredity, 100 (2):171-177.
pmid: 17268482 |
[35] |
Kawamata R, Sato Y, Suzuki M, Kainoh Y. 2018. Color preference and associative color learning in a parasitoid wasp,Ascogaster reticulata (Hymenoptera:Braconidae). Journal of Insect Behavior, 31 (5):523-534.
doi: 10.1007/s10905-018-9696-7 URL |
[36] |
Kellenberger R T, Byers K J R P, Francisco R M D B, Staedler Y M, Lafountain A M, Schönenberger J, Schiestl F P, Schlüter P M. 2019. Emergence of a floral colour polymorphism by pollinator-mediated overdominance. Nature Communications, 10 (1):1-11.
doi: 10.1038/s41467-018-07882-8 URL |
[37] |
Kemp J E, Ellis A G. 2019. Cryptic petal coloration decreases floral apparency and herbivory in nocturnally closing daisies. Functional Ecology, 33 (11):2130-2141.
doi: 10.1111/fec.v33.11 URL |
[38] |
Klaus L, Lina A, Miriam D, Michele H, Leonie S, Vanessa S, Daniel O. 2018. Limitations of learning in the proboscis reflex of the flower visiting syrphid fly Eristalis tenax. PLoS ONE, 13 (3):e0194167.
doi: 10.1371/journal.pone.0194167 URL |
[39] |
Koski M H, Tia-Lynn A. 2014. Dissecting pollinator responses to a ubiquitous ultraviolet floral pattern in the wild. Functional Ecology, 28 (4):868-877.
doi: 10.1111/fec.2014.28.issue-4 URL |
[40] | Kretz R. 1979. A behavioural analysis of colour vision in the ant Cataglyphis bicolor(Formicidae,Hymenoptera). Journal of Comparative Physiology, 131 (3):217-233. |
[41] |
Leonard A S, Brent J, Papaj D R, Dornhaus A. 2013. Floral nectar guide patterns discourage nectar robbing by bumble bees. PLoS ONE, 8 (2):e55914.
doi: 10.1371/journal.pone.0055914 URL |
[42] |
Li J J, Hu H, Chen Y, Xie J, Li J W, Zeng T, Wang M Q, Luo J, Zheng R R, Jongsma M A, Wang C Y. 2021. Tissue specificity of (E)-β-farnesene and germacrene D accumulation in pyrethrum flowers. Phytochemistry, 187:112768.
doi: 10.1016/j.phytochem.2021.112768 URL |
[43] |
Li J J, Hu H, Mao J, Yu L, Stoopen G, Wang M, Mumm R, de Ruijter N C A, Dicke M, Jongsma M A, Wang C Y. 2019. Defense of pyrethrum flowers:repelling herbivores and recruiting carnivores by producing aphid alarm pheromone. New Phytologist, 223 (3):1607-1620.
doi: 10.1111/nph.2019.223.issue-3 URL |
[44] | Li Taiqiang. 2018. Conservation biology of the plant species with extremely small population Rhododendron longipedicellatum[M. D. Dissertation]. Beijing: Chinese Academy of Forestry.(in Chinese) |
李太强. 2018. 极小种群野生植物长梗杜鹃的保护生物学研究[硕士论文]. 北京: 中国林业科学研究院. | |
[45] | Li Zhi, Yang Guodong, Duan Yifan, Fan Yi, Zhao Youpeng, Cheng Jurong, Wang Xianrong. 2014. Study on major pollinators and their flower-visiting behavior of Osmanthus fragrans. Journal of Nanjing Forestry University(Natural Sciences Edition), 38:47-50.(in Chinese) |
李稚, 杨国栋, 段一凡, 范怡, 赵友朋, 成举荣, 王贤荣. 2014. 桂花访花昆虫及其访花行为观察. 南京林业大学学报(自然科学版), 38:47-50. | |
[46] |
Lunau K. 2006. Stamens and mimic stamens as components of floral colour patterns. Botanische Jahrbücher, 127 (1):13-41.
doi: 10.1127/0006-8152/2006/0127-0013 URL |
[47] |
Martel C, Francke W, Ayasse M. 2019. The chemical and visual bases of the pollination of the neotropical sexually deceptive orchid Telipogon peruvianus. New Phytologist, 223 (4):1989-2001.
doi: 10.1111/nph.v223.4 URL |
[48] |
Martinez-Harms J, Hadar R, Marquez N, Menzel R, Shmida A, Stavenga D G, Vorobyev M. 2020. Enhanced UV-reflection facilitated a shift in the pollination system of the red poppy,Papaver rhoeas(Papaveraceae). Plants, 9 (8):927.
doi: 10.3390/plants9080927 URL |
[49] | McCabe L M, Cobb N S. 2021. From bees to flies:global shift in pollinator communities along elevation gradients Frontiers in Ecology and Evolution, 8:626124. |
[50] |
McGimpsey V J, Lord J M. 2015. In a world of white,flower colour matters:a white-purple transition signals lack of reward in an alpine Euphrasia. Austral Ecology, 40 (6):701-708.
doi: 10.1111/aec.2015.40.issue-6 URL |
[51] | Menzel R. 1985. Learning in honey bees in an ecological and behavioral context. Experimental Behavioral Ecology & Sociobiology, 31:55-74. |
[52] | Miller R, Owens S J, Rrslett B. 2011. Plants and colour:flowers and pollination. Optics & Laser Technology, 43 (2):282-294. |
[53] |
Moyroud E, Glover B J. 2017a. The physics of pollinator attraction. New Phytologist, 216 (2):350-354.
doi: 10.1111/nph.2017.216.issue-2 URL |
[54] |
Moyroud E, Wenzel T, Middleton R, Rudall P J, Banks H, Reed A, Mellers G, Killoran P, Westwood M M, Steiner U, Vignolini S, Glover B J. 2017b. Disorder in convergent floral nanostructures enhances signalling to bees. Nature, 550 (7677):469-474.
doi: 10.1038/nature24285 URL |
[55] | Nadot S, Carrive L. 2020. The colourful life of flowers. Botany Letters, 14 (14):1-11. |
[56] | Newman E, Anderson B, Johnson S D. 2012. Flower colour adaptation in a mimetic orchid. Proceedings of the Royal Society B: Biological Sciences, 279 (1737):2309-2313. |
[57] |
Ohashi K, Makino T T, Arikawa K. 2015. Floral colour change in the eyes of pollinators:testing possible constraints and correlated evolution. Functional Ecology, 29 (9):1144-1155.
doi: 10.1111/fec.2015.29.issue-9 URL |
[58] | Papadopulos A S T, Powell M P, Pupulin F, Warner J, Hawkins J A, Salamin N, Chittka L, Williams N H, Whitten W M, Loader D. 2013. Convergent evolution of floral signals underlies the success of neotropical orchids. Proceedings of the Royal Society B: Biological Sciences, 280 (1765):1-8. |
[59] |
Papiorek S, Junker R R, Alves-Dos-Santos I, Melo G A, Amaral-Neto L P, Sazima M, Wolowski M, Freitas L, Lunau K. 2016. Bees,birds and yellow flowers:pollinator-dependent convergent evolution of UV patterns. Plant Biology, 18 (1):46-55.
doi: 10.1111/plb.12322 pmid: 25703147 |
[60] |
Paulus H F. 2018. Pollinators as isolation mechanisms:field observations and field experiments regarding specificity of pollinator attraction in the genus Ophrys(Orchidaceae und Insecta,Hymenoptera,Apoidea). Entomologia Generalis, 37 (3-4):261-316.
doi: 10.1127/entomologia/2018/0650 URL |
[61] |
Polte S, Reinhold K. 2013. The function of the wild carrot's dark central floret:attract,guide or deter? Plant Species Biology, 28 (1):81-86.
doi: 10.1111/psbi.2013.28.issue-1 URL |
[62] |
Raguso R A. 2004. Flowers as sensory billboards:progress towards an integrated understanding of floral advertisement. Current Opinion in Plant Biology, 7 (4):434-440.
doi: 10.1016/j.pbi.2004.05.010 URL |
[63] | Raguso R A. 2008. Wake up and smell the roses:the ecology and evolution of floral scent. Annual Review of Ecology Evolution & Systematics, 39 (1):549-569. |
[64] |
Raine N E, Chittka L. 2007. The adaptive significance of sensory bias in a foraging context:floral colour preferences in the bumblebee Bombus terrestris. PLoS ONE, 2 (6):e556.
doi: 10.1371/journal.pone.0000556 URL |
[65] |
Ram H Y M, Mathur G. 1984. Flower color changes in Lantana camara. Journal of Experimental Botany, 35 (160):1656-1662.
doi: 10.1093/jxb/35.11.1656 URL |
[66] |
Reverte S, Retana J, Gomez J M, Bosch J. 2016. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators. Annals of Botany, 118 (2):249-257.
doi: 10.1093/aob/mcw103 URL |
[67] |
Roguz K, Gallagher M K, Senden E, Bar-Lev Y, Lebel M, Heliczer R, Sapir Y. 2020. All the colors of the rainbow:diversification of flower color and intraspecific color variation in the genus Iris. Frontiers in Plant Science, 11:569811.
doi: 10.3389/fpls.2020.569811 URL |
[68] |
Rudall P J. 2020. Colourful cones:how did flower colour first evolve? Journal of Experimental Botany, 71 (3):759-767.
doi: 10.1093/jxb/erz479 pmid: 31714579 |
[69] | Schaefer H M, Ruxton G D. 2011. Plant-animal communication. Oxford: Oxford University Press. |
[70] |
Schiestl F P, Johnson S D. 2013. Pollinator-mediated evolution of floral signals. Trends in Ecology & Evolution, 28 (5):307-315.
doi: 10.1016/j.tree.2013.01.019 URL |
[71] |
Shrestha M, Burd M, Garcia J E, Dorin A, Dyer A G. 2019. Colour evolution within orchids depends on whether the pollinator is a bee or a fly. Plant Biology, 21 (4):745-752.
doi: 10.1111/plb.12968 pmid: 30681768 |
[72] |
Shrestha M, Dyer A G, Bhattarai P, Burd M. 2014. Flower colour and phylogeny along an altitudinal gradient in the Himalayas of Nepal. Journal of Ecology, 102 (1):126-135.
doi: 10.1111/jec.2013.102.issue-1 URL |
[73] |
Shrestha M, Lunau K, Dorin A, Schulze B, Bischoff M, Burd M, Dyer A G. 2016. Floral colours in a world without birds and bees:the plants of Macquarie Island. Plant Biology, 18 (5):842-850.
doi: 10.1111/plb.12456 pmid: 27016399 |
[74] |
Ssymank A, Kearns C A, Pape T, Thompson F C. 2008. Pollinating flies(Diptera):a major contribution to plant diversity and agricultural production. Biodiversity, 9 (1-2):86-89.
doi: 10.1080/14888386.2008.9712892 URL |
[75] |
Stavenga D G, Leertouwer H L, Dudek B, van der Kooi C J. 2020b. Coloration of flowers by flavonoids and consequences of pH dependent absorption. Frontiers in Plant Science, 11:600124.
doi: 10.3389/fpls.2020.600124 URL |
[76] |
Stavenga D G, Staal M, van der Kooi C J. 2020a. Conical epidermal cells cause velvety colouration and enhanced patterning in Mandevilla flowers. Faraday Discussions, 223:98-106.
doi: 10.1039/D0FD00055H URL |
[77] | Stoddard M C, Eyster H N, Hogan B G, Morris D H, Soucy E R, Inouye D W. 2020. Wild hummingbirds discriminate nonspectral colors. Proceedings of the National Academy of Sciences, 117 (26):15112-15122. |
[78] |
Streinzer M, Roth N, Paulus H F, Spaethe J. 2019. Color preference and spatial distribution of glaphyrid beetles suggest a key role in the maintenance of the color polymorphism in the peacock anemone(Anemone pavonina,Ranunculaceae)in Northern Greece. Journal of Comparative Physiology A, 205 (5):735-743.
doi: 10.1007/s00359-019-01360-2 URL |
[79] |
Streisfeld M A, Kohn J R. 2007. Environment and pollinator-mediated selection on parapatric floral races of Mimulus aurantiacus. Journal of Evolutionary Biology, 20 (1):122-132.
pmid: 17210005 |
[80] |
Suzuki M F, Ohashi K. 2014. How does a floral colour-changing species differ from its non-colour-changing congener? A comparison of trait combinations and their effects on pollination. Functional Ecology, 28 (3):549-560.
doi: 10.1111/fec.2014.28.issue-3 URL |
[81] |
Takeuchi Y, Arikawa K, Kinoshita M. 2006. Color discrimination at the spatial resolution limit in a swallowtail butterfly,Papilio xuthus. Journal of Experimental Biology, 209 (15):2873-2879.
doi: 10.1242/jeb.02311 URL |
[82] |
Thomas M M, Rudall P J, Ellis A G, Savolainen V, Glover B J. 2009. Development of a complex floral trait:the pollinator-attracting petal spots of the beetle daisy,Gorteria diffusa(Asteraceae). American Journal of Botany, 96 (12):2184-2196.
doi: 10.3732/ajb.0900079 URL |
[83] |
Valenta K, Dimac-Stohl K, Baines F, Smith T, Piotrowski G, Hill N, Kuppler J, Nevo O. 2020. Ultraviolet radiation changes plant color. BMC Plant Biology, 20 (1):1-5.
doi: 10.1186/s12870-019-2170-7 URL |
[84] |
van der Kooi C J, Ollerton J. 2020. The origins of flowering plants and pollinators. Science, 368 (6497):1306-1308.
doi: 10.1126/science.aay3662 URL |
[85] |
van der Kooi C J, Stavenga D G. 2019. Vividly coloured poppy flowers due to dense pigmentation and strong scattering in thin petals. Journal of Comparative Physiology A, 205 (3):363-372.
doi: 10.1007/s00359-018-01313-1 URL |
[86] |
Vereecken N J, Dorchin A, Dafni A, Hotling S, Schulz S, Watts S. 2013. A pollinators' eye view of a shelter mimicry system. Annals of Botany, 111 (6):1155-1165.
doi: 10.1093/aob/mct081 pmid: 23599249 |
[87] |
Vignolini S, Moyroud E, Hingant T, Banks H, Rudall P J, Steiner U, Glover B J. 2015. The flower of Hibiscus trionum is both visibly and measurably iridescent. New Phytologist, 205 (1):97-101.
doi: 10.1111/nph.12958 pmid: 25040014 |
[88] | Von Witt C G. 2019. Pollination and geographical divergence in flower colour of the Drosera Cistiflora species complex,or‘How the Snotrosie got its colours’[Ph. D. Dissertation]. Pietermaritzburg:University of Kwa Zulu-Natal. |
[89] | Wang R, Yang Y, Jing Y, Segar S T, Zhang Y, Wang G, Chen J, Liu Q F, Chen S, Chen Y, Cruaud A, Ding Y Y, Dunn D W, Gao Q, Gilmartin P M, Jiang K, Kjellberg F, Li H Q, Li Y Y, Liu J Q, Liu M, Machado C A, Ming R, Rasplus J Y, Tong X, Wen P, Yang H M, Yang J J, Yin Y, Zhang X T, Zhang Y Y, Yu H, Yue Z, Compton S G, Chen X Y. 2021. Molecular mechanisms of mutualistic and antagonistic interactions in a plant-pollinator association. Nature Ecology & Evolution, 17:1-13. |
[90] |
Wessinger C A, Rausher M D. 2012. Lessons from flower colour evolution on targets of selection. Journal of Experimental Botany, 63 (16):5741-5749.
doi: 10.1093/jxb/ers267 pmid: 23048126 |
[91] |
Wester P, Cairampoma L, Haag S, Schramme J, Neumeyer C, Classen-Bockhoff R. 2020. Bee exclusion in bird-pollinated Salvia flowers:the role of flower color versus flower construction. International Journal of Plant Sciences, 181 (8):770-786.
doi: 10.1086/709132 URL |
[92] |
Whitehead M R, Linde C C, Peakall R. 2015. Pollination by sexual deception promotes outcrossing and mate diversity in self-compatible clonal orchids. Journal of Evolutionary Biology, 28 (8):1526-1541.
doi: 10.1111/jeb.12673 pmid: 26079670 |
[93] | Willmer P. 2011. Pollination and floral ecology. Princeton: Princeton University Press. |
[94] |
Willmer P, Stanley D A, Steijven K, Matthews I M, Nuttman C V. 2009. Bidirectional flower color and shape changes allow a second opportunity for pollination. Current Biology, 19 (11):919-923.
doi: 10.1016/j.cub.2009.03.070 pmid: 19409788 |
[95] |
Wilts B D, Rudall P J, Moyroud E, Gregory T, Ogawa Y, Vignolini S, Steiner U, Glover B J. 2018. Ultrastructure and optics of the prism-like petal epidermal cells of Eschscholzia californica(California poppy). New Phytologist, 219 (3):1124-1133.
doi: 10.1111/nph.15229 pmid: 29856474 |
[96] | Wu Tingfeng. 2020. A study on biodiversity of urban green roof and its ecological value[M. D. Dissertation]. Shanghai: Shanghai Institute of Technology.(in Chinese) |
吴廷峰. 2020. 城市绿色屋顶生物多样性及其生态价值研究[硕士论文]. 上海: 上海应用技术大学 | |
[97] | Wu Xuefeng. 2020. Design and application of wildflower strip[M. D. Dissertation]. Beijing: Beijing Forestry University.(in Chinese) |
吴学峰. 2020. 昆虫野花带设计与应用研究[硕士论文]. 北京: 北京林业大学 | |
[98] | Wyatt G E, Sazima M. 2012. Pollination and reproductive biology of thirteen species of Begonia in the Serra do Mar State Park,São Paulo,Brazil. Journal of Pollination Ecology, 6 (14):95-107. |
[99] |
Zhang Jingli, Zhang Changqin. Wu Zhikun, Qiao Qin. 2007. The potential roles of interspecific pollination in natural hybridization of Rhododendron species in Yunnan,China. Biodiversity Science, 15 (6):658-665.(in Chinese)
doi: 10.1360/biodiv.070066 |
张敬丽, 张长芹, 吴之坤, 乔琴. 2007. 探讨种间传粉在杜鹃花属自然杂交物种形成中的作用. 生物多样性, 15 (6):658-665.
doi: 10.1360/biodiv.070066 |
|
[100] |
Zhang X T, Wang G, Zhang S C, Chen S, Wang Y B, Wen P, Ma X K, Shi Y, Qi R, Yang Y, Liao Z Y, Lin J, Lin J S, Xu X M, Chen X Q, Xu X D, Deng F, Zhao L H, Lee Y L, Wang R, Chen X Y, Lin Y R, Zhang J S, Tang H B, Chen J, Ming R. 2020. Genomes of the Banyan tree and pollinator wasp provide insights into fig-wasp coevolution. Cell, 183 (4):875-889.
doi: 10.1016/j.cell.2020.09.043 URL |
[101] | Zhuang Ping. 2019. Progress on the fertility of Rhododendron. Biodiversity Science, 27 (3):327-338 (in Chinese) |
庄平. 2019. 杜鹃花属植物的可育性研究进展. 生物多样性, 27 (3):327-338.
doi: 10.17520/biods.2018345 |
[1] | 孔令普, 欧阳雪灵, 彭火辉, 叶 川, 袁淑贞, 王国行, 彭玉辅, . 报春苣苔属新品种‘初心’[J]. 园艺学报, 2022, 49(S2): 189-190. |
[2] | 王沙, 张心慧, 赵玉洁, 李变变, 招雪晴, 沈雨, 董建梅, 苑兆和. 石榴花青苷合成相关基因PgMYB111的克隆与功能分析[J]. 园艺学报, 2022, 49(9): 1883-1894. |
[3] | 李晓明, 于俊池, 王春夏. 露地、温室、温室遮阳下紫花和白花香青兰生长及次生代谢物比较[J]. 园艺学报, 2022, 49(6): 1363-1370. |
[4] | 何静娟, 范燕萍. 观赏植物花色相关的类胡萝卜素组成及代谢调控研究进展[J]. 园艺学报, 2022, 49(5): 1162-1172. |
[5] | 沈植国, 张琳, 袁德义, 程建明. 蜡梅花色及其红花新资源研究进展[J]. 园艺学报, 2022, 49(4): 924-934. |
[6] | 王静, 徐雷锋, 王令, 祁先宇, 宋蒙, 曹雨薇, 何国仁, 唐玉超, 杨盼盼, 明军. 百合花色表型数量分类研究[J]. 园艺学报, 2022, 49(3): 571-580. |
[7] | 周琳, 邹红竹, 韩璐璐, 贾莹华, 王雁. 糖基转移酶在花瓣色泽形成中的作用研究进展[J]. 园艺学报, 2022, 49(3): 687-700. |
[8] | 卢甜甜, 刘志远, 徐兆生, 张合龙, 李国亮, 折红兵, 钱伟. 菜豆花色全基因组关联分析[J]. 园艺学报, 2022, 49(2): 332-340. |
[9] | 邓娇, 苏梦月, 刘雪莲, 欧克芳, 户正荣, 杨平仿. 基于转录组分析揭示双色花莲‘大洒锦’花色形成机理[J]. 园艺学报, 2022, 49(2): 365-377. |
[10] | 陈思嘉, 王焕, 李蕊蕊, 王卓异, 罗靖, 王彩云. 菊花CmMYC2在舌状花绿色性状形成过程中的功能研究[J]. 园艺学报, 2022, 49(11): 2377-2387. |
[11] | 孙威, 孙世宇, 陈一然, 王聿晗, 张艳, 鞠志刚, 乙引. 马缨杜鹃查尔酮异构酶基因RdCHI1的克隆与功能解析[J]. 园艺学报, 2022, 49(11): 2407-2418. |
[12] | 郭鑫, 成仿云, 钟原, 成信云, 陶熙文. 紫斑牡丹花色表型数量分类研究[J]. 园艺学报, 2022, 49(1): 86-99. |
[13] | 孔令普, 彭火辉, 石旭平, 陈华玲, 王国行, 彭玉辅, . 报春苣苔属黄花牛耳朵新品种‘白鸽’[J]. 园艺学报, 2021, 48(S2): 2895-2896. |
[14] | 孔令普, 梁振龙, 陈 超, 杨 凤. 报春苣苔属黄花牛耳朵新品种‘天使之眼’[J]. 园艺学报, 2021, 48(S2): 2897-2898. |
[15] | 洪燕红, 叶清华, 李泽坤, 王威, 谢倩, 陈清西, 陈建清. 红花草莓‘莓红’花瓣花色苷积累及其MYB基因的表达分析[J]. 园艺学报, 2021, 48(8): 1470-1484. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司