园艺学报 ›› 2021, Vol. 48 ›› Issue (10): 1859-1872.doi: 10.16420/j.issn.0513-353x.2021-0476
李崇晖1,3, 杨光穗1,3, 张志群1,3, 尹俊梅2,3,*()
收稿日期:
2021-07-19
修回日期:
2021-09-02
出版日期:
2021-10-25
发布日期:
2021-11-01
通讯作者:
尹俊梅
E-mail:yinjunmei2004@163.com
基金资助:
LI Chonghui1,3, YANG Guangsui1,3, ZHANG Zhiqun1,3, YIN Junmei2,3,*()
Received:
2021-07-19
Revised:
2021-09-02
Online:
2021-10-25
Published:
2021-11-01
Contact:
YIN Junmei
E-mail:yinjunmei2004@163.com
摘要:
为了挖掘调控红掌肉穗花序花青素苷合成的转录因子基因,基于前期的转录组数据,以‘粉冠军’红掌(Anthurium andraeanum‘Pink Champion’)肉穗花序为材料,克隆了1个R2R3-MYB家族基因AaMYB6(GenBank序列号MZ171064)。通过氨基酸序列比对和系统进化树分析、亚细胞定位、在烟草中的过表达分析、qRT-PCR、酵母双杂交(yeast two-hybrid assay,Y2H)和双分子荧光互补(bimolecular fluorescence complementation,BiFC)试验,研究了AaMYB6的功能。结果表明AaMYB6与已报道的AaMYB1具有较高的同源性,属于以玉米ZmC1为代表的,调控单子叶植物花青素苷合成的R2R3-MYB家族C1亚组。AaMYB6定位于细胞核。在烟草中过表达AaMYB6,NtF3H表达量下调,但却激活了T1代转基因植株花丝中花青素苷生物合成途径关键酶基因NtF3′H、NtDFR、NtANS、NtUFGT的表达,产生了花丝中积累花青素苷的表型。AaMYB6主要在红掌‘紫公主’的肉穗花序中表达,且在不同品种肉穗花序中其表达量与花青素苷含量显著正相关。Y2H和BiFC试验表明AaMYB6与前期报道的参与花青素苷和原花青素合成调控的bHLH转录因子AabHLH1有相互作用,进一步验证了AaMYB6调控花青素苷合成的功能。
中图分类号:
李崇晖, 杨光穗, 张志群, 尹俊梅. 红掌R2R3-MYB转录因子基因AaMYB6调控花青素苷合成[J]. 园艺学报, 2021, 48(10): 1859-1872.
LI Chonghui, YANG Guangsui, ZHANG Zhiqun, YIN Junmei. A Novel R2R3-MYB Transcription Factor Gene AaMYB6 Involved in Anthocyanin Biosynthesis in Anthurium andraeanum[J]. Acta Horticulturae Sinica, 2021, 48(10): 1859-1872.
图1 红掌AaMYB6与其他植物参与花青素苷合成的R2R3-MYB的氨基酸序列比对分析 红色框:bHLH互作motif;绿色框:单子叶植物调控花青素苷合成的R2R3MYB保守序列“DNEI”;蓝色框:单子叶植物调控花青素苷合成MYB转录因子C-末端保守序列KAX[K/R]C[S/T];Aa:红掌;Zm:玉米;Pe:蝴蝶兰;Fh:小苍兰。
Fig. 1 Sequences alignment of AaMYB6 from anthurium with known R2R3-MYBs involved in anthocyanin biosynthesis A:The red box indicates the bHLH interacting motif;the green box indicates the different conserved“DNEI”motif for monocots R2R3-MYB;The blue box indicates the C-terminal-conserved motif KAX[K/R]C[S/T] for anthocyanin-regulating MYBs of monocots. Aa:Anthurium andraeanum;Zm:Zea mays;Pe:Phalaenopsis equestris;Fh:Freesia hybrid.
图2 红掌AaMYB6与其他植物参与花青素苷合成的R2R3-MYB的系统进化树分析 *既与花青素苷相关又与原花青素相关。
Fig. 2 Phylogenic tree of AaMYB6 from anthurium with known R2R3-MYBs involved in anthocyanin biosynthesis * Both correlated with anthocyanin and proanthocyanidin.
图5 转AaMYB6烟草的表型(A)和花青素苷含量(B)及目标基因检测(C、D) WT:野生型植株;L1 ~ L3:过表达AaMYB6的3个T1代株系,每个株系2株(-1、-2)。t检验[与野生型WT(A、D)或不同组织间(B、C)相比],** α = 0.01。
Fig. 5 The phenotypes and the content of anthocyanin of AaMYB6 transgenic tobacco(A)and detection of gene expression(B,C) WT:Wild type tobacco plants;L1-L3:Three AaMYB6 overexpression T1 tobacco lines,and there were two plants of each line(-1,-2).t-test [Comparison between transgenic lines and wild type plants(A,D)or between different tissue(B,C)],** α = 0.01.
图6 转基因烟草花瓣和花丝中AaMYB6可能的靶基因的相对表达量 FC:相对于野生型的变化倍数;L1 ~ L3:过表达AaMYB6的3个T1代烟草株系,每个株系2株(-1、-2)。
Fig. 6 The relative expression of enzyme genes in petals and filaments of transgenic tobacco plants FC:Fold changes against the WT;L1-L3:Three AaMYB6 overexpression T1 tobacco lines,there were two plants of each line(-1,-2).
图7 利用Y2H和BiFC技术验证AaMYB6和AabHLH1的体内互作 A:在2种氨基酸缺陷型和4种氨基酸缺陷型酵母培养基上筛选包含质粒的Y2H Gold酵母细胞,X-α-gal用来验证互作;BD:pGBKT7空质粒;AD:pGADT7空质粒;AD-AaMYB6:pGAD-AaMYB6重组质粒;BD-bHLH:pGBK-AabHLH1重组质粒。B:在拟南芥原生质体中AaMYB6和AabHLH1的双分子荧光互补。
Fig. 7 Interactions between AaMYB6 and AabHLH1 detected using the Y2H and BiFC assays A:Y2H Gold yeast cells containing plasmids were grown on double- and quadruple-selection SD media. The X-α-gal assay was performed to confirm the positive interactions;BD:pGBKT7 empty plasmid;AD:pGADT7 empty plasmid;AD-AaMYB6:pGAD-AaMYB6 recombinant plasmid;BD-AabHLH1:pGBK-AabHLH1 recombinant plasmid;B:Bimolecular fluorescence complementation visualization of the AaMYB6 and AabHLH1 interaction in the in protoplasts of Arabidopsis.
[1] |
Albert N W, Arathoon S, Collette V E, Schwinn K E, Jameson P E, Lewis D H, Zhang H, Davies K M. 2010. Activation of anthocyanin synthesis in Cymbidium orchids:variability between known regulators. Plant Cell Tissue Organ Culture, 100 (3):355-360.
doi: 10.1007/s11240-009-9649-0 URL |
[2] |
Bai Y, Pattanaik S, Patra B, Werkman J R, Xie C H, Yuan L. 2011. Flavonoid-related basic helix-loop-helix regulators,NtAn1a and NtAn1b,of tobacco have originated from two ancestors and are functionally active. Planta, 234:363-375.
doi: 10.1007/s00425-011-1407-y URL |
[3] |
Bariola P A, Green M I J. 1999. Regulation of S-like ribonuclease levels in Arabidopsis. Antisense inhibition of RNS 1 or RNS2 elevates anthocyanin accumulation. Plant Physiology, 119 (1):331.
pmid: 9880376 |
[4] |
Bhargava A, Mansfield S D, Hall H C, Douglas C J, Ellis B E. 2010. MYB 75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant Physiology, 154:1428-1438.
doi: 10.1104/pp.110.162735 pmid: 20807862 |
[5] | Cao Yuwei, Xu Leifeng, Yang Panpan, Xu Hua, He Guoren, Tang Yuchao, Ren Junfang, Ming Jun. 2019. Differential expression of three R2R3-MYBs genes regulating anthocyanin pigmentation patterns in Lilium spp. Acta Horticulturae Sinica, 46 (5):955-963.(in Chinese) |
曹雨薇, 徐雷锋, 杨盼盼, 徐华, 何国仁, 唐玉超, 任君芳, 明军. 2019. 百合花青素苷呈色类型中3种R2R3-MYBs基因的差异表达. 园艺学报, 46 (5):955-963. | |
[6] |
Chen K L, Du L J, Liu H L, Liu Y L. 2019. A novel R2R3-MYB from grape hyacinth,MaMybA,which is different from MaAN2,confers intense and magenta anthocyanin pigmentation in tobacco. BMC Plant Biology, 19 (1):390.
doi: 10.1186/s12870-019-1999-0 URL |
[7] |
Chen K L, Liu H L, Lou Q, Liu Y L. 2017. Ectopic expression of the grape hyacinth(Muscari armeniacum)R2R3-MYB transcription factor gene,MaAN2,induces anthocyanin accumulation in tobacco. Frontiers in Plant Science, 8:965.
doi: 10.3389/fpls.2017.00965 URL |
[8] |
Clark B R, Bliss B J, Suzuki J Y, Borris R P. 2014. Chemotaxonomy of Hawaiian Anthurium cultivars based on multivariate analysis of phenolic metabolites. Journal of Agricultural and Food Chemistry, 62:11323-11334.
doi: 10.1021/jf502187c URL |
[9] |
Collette V E, Jameson P E, Schwinn K E, Umaharan P, Davies K M. 2004. Temporal and spatial expression of flavonoid biosynthetic genes in flowers of Anthurium andraeanum. Physiologia Plantarum, 122:297-304.
doi: 10.1111/ppl.2004.122.issue-3 URL |
[10] | Dai Si-lan, Hong Yan. 2016. Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynthesis and coloration. Scientia Agricultura Sinica, 49 (3):529-542.(in Chinese) |
戴思兰, 洪艳. 2016. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种. 中国农业科学, 49 (3):529-542. | |
[11] |
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science, 15 (10):573-581.
doi: 10.1016/j.tplants.2010.06.005 URL |
[12] |
Elibox W, Umaharan P. 2008. Inheritance of major spathe colors in Anthurium andraeanum Hort. is determined by three major genes. HortScience, 43:787-791.
doi: 10.21273/HORTSCI.43.3.787 URL |
[13] |
Fu Z Z, Shang H Q, Jiang H, Gao J, Dong X Y, Wang H J, Li Y M, Wang L M, Zhang J, Shu Q Y, Chao Y C, Xu M L, Wang R, Wang L S, Zhang H C. 2020. Systematic identification of the light-quality responding anthocyanin synthesis-related transcripts in petunia petals. Horticultural Plant Journal, 6 (6):428-438.
doi: 10.1016/j.hpj.2020.11.006 URL |
[14] |
Gopaulchan D, Lennon A M, Umaharan P. 2015. Expression analysis of the anthocyanin genes in pink spathes of anthurium with different color intensities. Journal of the American Society For Horticultural Science, 140:480-489.
doi: 10.21273/JASHS.140.5.480 URL |
[15] |
Gopaulchan D, Lennon A M, Umaharan P. 2013. Identification of reference genes for expression studies using quantitative RT-PCR in spathe tissue of Anthurium andraeanum(Hort.). Scientia Horticulturae, 153:1-7.
doi: 10.1016/j.scienta.2013.01.024 URL |
[16] |
Gopaulchan D, Umaharan P, Lennon A M. 2014. A molecular assessment of the genetic model of spathe color inheritance in Anthurium andraeanum(Hort.). Planta, 239:695-705.
doi: 10.1007/s00425-013-2007-9 pmid: 24363030 |
[17] | Horsch R B, Fry J, Hoffmann N, Neidermeyer J, Rogers S G, Fraley R T. 1988. Leaf disc transformation//Gelvin S B,Schilperoort R A. Plant Molecular Biology Manual. Dordrecht:Kluwer Academic Publishers:1-9. |
[18] |
Hsu C C, Chen Y Y, Tsai W C, Chen W H, Chen H H. 2015. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. Plant Physiology, 168:175-191.
doi: 10.1104/pp.114.254599 URL |
[19] |
Huang W, Khaldun A B M, Lv H, Du L, Zhang C, Wang Y. 2016. Isolation and functional characterization of a R2R3-MYB regulator of the anthocyanin biosynthetic pathway from Epimedium sagittatum. Plant Cell Reports, 35:883-894.
doi: 10.1007/s00299-015-1929-z URL |
[20] |
Huang Y J, Song S, Allan A C, Liu X F, Yin X R, Xu C J, Chen K S. 2013. Differential activation of anthocyanin biosynthesis in Arabidopsis and tobacco over-expressing an R2R3 MYB from Chinese bayberry. Plant Cell Tissue Organ Culture, 113:491-499.
doi: 10.1007/s11240-013-0291-5 URL |
[21] |
Huang Z A, Zhao T, Fan H J, Wang N, Zheng S S, Ling H Q. 2012. The upregulation of NtAN2 expression at low temperature is required for anthocyanin accumulation in juvenile leaves of Lc-transgenic tobacco(Nicotiana tabacum L.). Journal of Genetics and Genomics, 39:149-156.
doi: 10.1016/j.jgg.2012.01.007 URL |
[22] |
Lai B, Li X J, Hu B, Qin Y H, Huang X M, Wang H C, Hu G B. 2014. LcMYB1is a key determinant of differential anthocyanin accumulation among genotypes,tissues,developmental phases and ABA and light stimuli in Litchi chinensi. PLoS ONE, 9 (1):e86293.
doi: 10.1371/journal.pone.0086293 URL |
[23] | Li C H, Qiu J, Ding L, Huang M Z, Huang S R, Yang G S, Yin J M. 2017. Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals. Plant Physiology and Biochemistry, 12:335-345. |
[24] |
Li C H, Qiu J, Huang S R, Yang G S, Yin J M. 2019a. Ectopic expression of the Anthurium andraeanum(Hort.)R2R3-MYB genes AaMYB4 and AaMYB5 enhance the flower color in transgenic tobacco. Plant Cell Tissue Organ Culture, 139:105-117.
doi: 10.1007/s11240-019-01667-7 URL |
[25] |
Li C H, Qiu J, Huang S R, Yin J M, Yang G S. 2019b. AaMYB 3 interacts with AabHLH1 to regulate proanthocyanidin accumulation in Anthurium andraeanum(Hort.)-another strategy to modulate pigmentation. Horticulture Research, 6:14.
doi: 10.1038/s41438-018-0102-6 URL |
[26] |
Li C H, Qiu J, Yang G S, Huang S R, Yin J M. 2016. Isolation and characterization of a R2R3-MYB transcription factor gene related to anthocyanin biosynthesis in the spathes of Anthurium andraeanum(Hort.). Plant Cell Reports, 35:2151-2165.
doi: 10.1007/s00299-016-2025-8 URL |
[27] | Li Chong-hui, Yang Guang-sui. 2019. The expression pattern of AaMYB1 in anthurium and its overexpression in tobacco. Molecular Plant Breeding, 17 (6):1898-1905. (in Chiese) |
李崇晖, 杨光穗. 2019. 红掌AaMYB1的表达特征及其在烟草中的过表达. 分子植物育种, 17 (6):1898-1905. | |
[28] | Li Y Q, Shan X T, Tong L N, Wei C, Lu K Y, Li S Y, Kimani S, Wang S C, Wang L, Gao X. 2020. The conserved and particular roles of the R2R3-MYB regulator FhPAP 1 from Freesia hybrida in flower anthocyanin biosynthesis. Plant and Cell Physiology,(7):7. |
[29] |
Li Y Q, Shan X T, Zhou L D, Gao R F, Yang S, Wang S C, Wang L, Gao X. 2019c. The R2R3-MYB factor FhMYB 5 from Freesia hybrida contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis. Frontiers in Plant Science, 9:1935.
doi: 10.3389/fpls.2018.01935 URL |
[30] |
Li Z Y, Wang J B, Fu Y L, Gao Y, Lu H Z, Xu L. 2018. Transcriptome profiling in the spathe of Anthurium andraeanum‘Albama’and its anthocyanin-loss mutant‘Xueyu’. Scientific Data, 5:180247.
doi: 10.1038/sdata.2018.247 URL |
[31] |
Li Z Y, Wang J B, Zhang X Q, Xu L. 2015. Comparative transcriptome analysis of Anthurium‘Albama’and its anthocyanin-loss mutant. PLoS ONE, 10 (3):e0119027.
doi: 10.1371/journal.pone.0119027 URL |
[32] |
Meng J X, Gao Y, Han M L, Liu P Y, Yang C, Shen T, Li H H. 2020. In vitro anthocyanin induction and metabolite analysis in Malus spectabilis leaves under low nitrogen conditions. Horticultural Plant Journal, 6 (5):284-292.
doi: 10.1016/j.hpj.2020.06.004 URL |
[33] |
Pattanaik S, Kong Q, Zaitlin D, Werkman J R, Xie C H, Patra B, Yuan L. 2010. Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta, 231:1061-1076.
doi: 10.1007/s00425-010-1108-y URL |
[34] |
Petroni K, Tonelli C. 2011. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science, 181:219-229.
doi: 10.1016/j.plantsci.2011.05.009 pmid: 21763532 |
[35] |
Pérez-Díaz J R, Pérez-Díaz J, Madrid-Espinoza J, Gonzúlez-Villanueva E, Moreno Y, Ruiz-Lara S. 2016. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco. Plant Molecular Biology, 90 (1-2):63-76.
doi: 10.1007/s11103-015-0394-y pmid: 26497001 |
[36] |
Suzuki J Y, Amore T D, Calla B, Palmer N A, Scully E D, Sattler S E, Sarath G, Lichty J S, Myers R Y, Keith L M, Matsumot T K, Geib S M. 2017. Organ-specific transcriptome profiling of metabolic and pigment biosynthesis pathways in the floral ornamental progenitor species Anthurium amnicola Dressler. Scientific Reports, 7 (1):1596.
doi: 10.1038/s41598-017-00808-2 pmid: 28473720 |
[37] |
Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments:anthocyanins,betalains and carotenoids. Plant Journal, 54:733-749.
doi: 10.1111/j.1365-313X.2008.03447.x URL |
[38] |
Xiang L L, Liu X F, Li X, Yin X R, Grierson D, Li F, Chen K S. 2015. A novel bHLH transcription factor involved in regulating anthocyanin biosynthesis in chrysanthemums(Chrysanthemum morifolium Ramat.). PLoS ONE, 10 (11):e0143892.
doi: 10.1371/journal.pone.0143892 URL |
[39] |
Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Science, 20:176-185.
doi: 10.1016/j.tplants.2014.12.001 URL |
[40] |
Yamagishi M. 2011. Oriental hybrid lily Sorbonne homologue of LhMYB12 regulates anthocyanin biosyntheses in flower tepals and tepal spots. Molecular Breeding, 28:381-389.
doi: 10.1007/s11032-010-9490-5 URL |
[41] |
Yamagishi M. 2016. A novel R2R3-MYB transcription factor regulates light-mediated floral and vegetative anthocyanin pigmentation patterns in Lilium regale. Molecular Breeding, 36:1-14.
doi: 10.1007/s11032-015-0425-z URL |
[42] |
Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K. 2010. Two R2R3-MYB genes,homologs of petunia AN2,regulate anthocyanin biosyntheses in flower tepals,tepal spots and leaves of Asiatic hybrid lily. Plant Cell Physiology, 51:463-474.
doi: 10.1093/pcp/pcq011 URL |
[43] |
Yamagishi M, Toda S, Tasaki K. 2014. The novel allele of the LhMYB12,gene is involved in splatter-type spot formation on the flower tepals of Asiatic hybrid lilies(Lilium spp.). New Phytologist, 201:1009-1020.
doi: 10.1111/nph.12572 pmid: 24180488 |
[44] | Yang Guanxian, Xu Haifeng, Zhang Jing, Wang Nan, Fang Hongcheng, Jiang Shenghui, Wang Yicheng, Su Mengyu, Chen Xuesen. 2019. Functional identification of apple anthocyanin regulatory gene MdMYB111. Acta Horticulturae Sinica, 46 (5):832-840. (in Chiese) |
杨官显, 许海峰, 张静, 王楠, 房鸿成, 姜生辉, 王意程, 苏梦雨, 陈学森. 2019. 苹果花青苷调控基因MdMYB111的功能鉴定. 园艺学报, 46 (5):832-840. | |
[45] | Yoo S D, Cho Y H, Sheen J. 2014. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nature Protocol, 2 (7):1565-1572. |
[46] |
Yuan Y W, Sagawa J M, Frost L, Vela J P, Bradshaw H D. 2014. Transcriptional control of floral anthocyanin pigmentation in monkey flowers(Mimulus). New Phytologist, 204:1013-1027.
doi: 10.1111/nph.2014.204.issue-4 URL |
[1] | 叶子茂, 申晚霞, 刘梦雨, 王 彤, 张晓楠, 余 歆, 刘小丰, 赵晓春, . R2R3-MYB转录因子CitMYB21对柑橘类黄酮生物合成的影响[J]. 园艺学报, 2023, 50(2): 250-264. |
[2] | 黄玲, 胡先梅, 梁泽慧, 王艳平, 产祝龙, 向林. 郁金香花青素合成酶基因TgANS的克隆与功能鉴定[J]. 园艺学报, 2022, 49(9): 1935-1944. |
[3] | 李茂福, 杨媛, 王华, 范又维, 孙佩, 金万梅. 月季中R2R3-MYB基因RhMYB113c调控花青素苷合成[J]. 园艺学报, 2022, 49(9): 1957-1966. |
[4] | 杨禹妍, 段新圆, 何治霖, 邴起浩, 陈锁英, 刘晓曼, 曾明, 刘小刚. 金柑UDP-鼠李糖合成酶基因的克隆与功能解析[J]. 园艺学报, 2022, 49(8): 1663-1672. |
[5] | 许海峰, 王中堂, 陈新, 刘志国, 王利虎, 刘平, 刘孟军, 张琼. 冬枣果皮着色相关类黄酮靶向代谢组学及潜在MYB转录因子分析[J]. 园艺学报, 2022, 49(8): 1761-1771. |
[6] | 陶鑫, 朱荣香, 贡鑫, 吴磊, 张绍铃, 赵建荣, 张虎平. 梨果糖激酶基因PpyFRK5在果实蔗糖积累中的作用[J]. 园艺学报, 2022, 49(7): 1429-1440. |
[7] | 钱婕妤, 蒋玲莉, 郑钢, 陈佳红, 赖吴浩, 许梦晗, 付建新, 张超. 百日草花青素苷合成相关MYB转录因子筛选及ZeMYB9功能研究[J]. 园艺学报, 2022, 49(7): 1505-1518. |
[8] | 麻明英, 郝晨星, 张凯, 肖桂华, 苏翰英, 文康, 邓子牛, 马先锋. 甜橙SWEET2a促进柑橘溃疡病菌侵染[J]. 园艺学报, 2022, 49(6): 1247-1260. |
[9] | 陈道宗, 刘镒, 沈文杰, 朱博, 谭晨. 白菜、甘蓝和甘蓝型油菜PAP1/2同源基因的鉴定及分析[J]. 园艺学报, 2022, 49(6): 1301-1312. |
[10] | 王妍, 孙政, 冯珊, 袁心怡, 仲林林, 曾云流, 傅小鹏, 程运江, 包满珠, 张帆. 香石竹DcERF-1转录因子对切花衰老的负调控作用[J]. 园艺学报, 2022, 49(6): 1313-1326. |
[11] | 李俊璋, 秦源, 肖强, 安昌, 廖静怡, 郑平. 景天酸代谢植物分子生物学研究进展及应用潜力[J]. 园艺学报, 2022, 49(12): 2597-2610. |
[12] | 周辉明, 莫智龙, 陈昌铭, 林辉锋. 红掌新品种‘明农白凤’[J]. 园艺学报, 2022, 49(11): 2523-2524. |
[13] | 杨博, 魏佳, 李坤峰, 王程亮, 倪隽蓓, 滕元文, 白松龄. PpyERF060-PpyABF3-PpyMADS71调控乙烯信号通路介导的梨芽休眠进程[J]. 园艺学报, 2022, 49(10): 2249-2262. |
[14] | 霍文雨, 肖 博, 张晓雪, 王习习, 王 晖, . 红掌新品种‘红胭’[J]. 园艺学报, 2021, 48(S2): 2887-2888. |
[15] | 朱自果, 张庆田, 韩真, 李勃, 李国栋, 李秀杰. 欧洲葡萄VvMYB6正向调控花青素合成[J]. 园艺学报, 2021, 48(3): 465-476. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司