园艺学报 ›› 2021, Vol. 48 ›› Issue (9): 1815-1826.doi: 10.16420/j.issn.0513-353x.2020-0549
收稿日期:
2020-12-24
修回日期:
2021-04-27
出版日期:
2021-09-25
发布日期:
2021-09-30
通讯作者:
陈龙清
E-mail:chenlq@swfu.edu.cn
基金资助:
QIAO Zhenglin, HU Huizhen, YAN Bo, CHEN Longqing*()
Received:
2020-12-24
Revised:
2021-04-27
Online:
2021-09-25
Published:
2021-09-30
Contact:
CHEN Longqing
E-mail:chenlq@swfu.edu.cn
摘要:
花香挥发性苯/苯丙素类化合物(floral volatile benzenoids/phenylpropanoids,FVBP)是植物花香挥发性有机化合物(volatile organic compounds,VOC)成分中仅次于萜烯类的第二大类,是植物与环境及其他生物间的信息传递载体,具有吸引传粉昆虫,防御病原体、寄生虫侵害以及作为生物或非生物胁迫免疫信号等作用。本文对观赏花卉中FVBP的生物合成与释放、功能和调控机制、相关酶和基因的研究进展进行了综述和展望。
中图分类号:
谯正林, 胡慧贞, 鄢波, 陈龙清. 花香挥发性苯/苯丙素类化合物的生物合成及基因调控研究进展[J]. 园艺学报, 2021, 48(9): 1815-1826.
QIAO Zhenglin, HU Huizhen, YAN Bo, CHEN Longqing. Advances of Researches on Biosynthesis and Regulation of Floral Volatile Benzenoids/Phenylpropanoids[J]. Acta Horticulturae Sinica, 2021, 48(9): 1815-1826.
图1 苯丙氨酸的合成途径及转录调控 ADH:预苯胺酸脱氢酶(Arogenate dehydrogenase);ADT:预苯胺酸脱水酶(Arogenate dehydratase);AS:邻氨基苯甲酸合成酶(Anthranilate synthase);CM1:分支酸变位酶1(Chorismate mutase 1);CM2:分支酸变位酶2(Chorismate mutase 2);CS:分支酸合成酶(Chorismate synthase);DAHP:3-脱氧-D-阿拉伯庚酮糖酸-7-磷酸合成酶(3-deoxy-D-arabino-heptulosonate 7-phosphate synthase);EPSP:5-醇式丙酮酰莽草酸-3-磷酸(5-enolpyruvyl-3-shikimate phosphate);HPP-AT:4-羟苯丙酸转氨酶(4-hydroxyphenylpyruvate aminotransferase);PDH:预苯酸脱氢酶(Prephenate dehydrogenase);PDT:预苯酸脱水酶(Prephenate dehydratase);PPA-AT:预苯酸转氨酶(Prephenate aminotransferase);SDC:水杨酸盐脱羧酶(Salicylate decarboxylase);SK:莽草酸激酶(Shikimate kinase);TPL:酪氨酸酚裂合酶(Tyrosine phenol lyase).
Fig. 1 Regulation and synthesis pathway of Phe Maeda et al.,2010;Maeda & Dudareva,2012;Tzin et al.,2012;Dudareva et al.,2013;Widhalm et al.,2015a;Oliva et al.,2017;Qian et al.,2019.
图2 FVBP的合成途径及转录调控(改绘自Dudareva et al.,2013) 4CL:4-香豆酰辅酶A连接酶(4-coumaroyl-CoA ligase);AAE:酰基活化酶(Acyl-activating enzyme);BA2H:苯甲酸2-羟化酶(Benzoic acid 2-hydroxylase);BAMT:苯甲酸羧基位甲基转移酶(Benzoic acid carboxyl methyl transferase);BEAT:苯甲醇乙酰转移酶(Acetyl-CoA benzylalcohol acetyltransferase);BPBT:苯甲醇/苯乙醇苯甲酰转移酶(Benzoyl-CoA:benzylalcohol/2-phenylethanol benzoyltransferase);C3H:对香豆酸-3-羟化酶(P-coumarate-3-hydroxylase);CAD:肉桂醇脱氢酶(Cinnamyl alcohol dehydrogenase);CAR:羧酸还原酶(Carboxylic-acid reductase);CCMT:肉桂酸羧基位甲基转移酶(Cinnamic acid carboxyl methyl transferase);CCoAHD:苯甲酰辅酶A水合酶/裂合酶(Cinnamoyl-CoA hydratase/lyase);CCoAOMT:咖啡酰辅酶A3邻甲基转移酶(Caffeoyl-CoA 3-O-methyltransferase);CFAT:松柏醇酰基转移酶(Coniferyl alcohol acetatyltransferase);CHD:肉桂酰辅酶A水解酶(Cinnamoyl-CoA hydratasedehydrogenase);CNL:肉桂酰辅酶A连接酶(Cinnamoyl-CoA ligase);CoA:辅酶A(Coenzyme A);EGS:丁香酚合成酶(Eugenol synthase);IEMT:(异)丁香酚-O-甲基转移酶[(iso)eugenol-O-methyltransferase];KAT:3-酮酰基辅酶A硫解酶(3-ketoacyl-CoA thiolase);COMT:咖啡酸邻-甲基转移酶(Caffeic acid O-methyltransferase);PAL:苯丙氨酸裂解酶(Phenylalanine ammonia lyase);PAR:苯乙醛还原酶(Phenylacetaldehyde reductase);SAMT:水杨酸羧基位甲基转移酶(Salicylic acid carboxyl methyl transferase);TE1:硫酯酶1(Thioesterase1)。
Fig. 2 Regulation and synthesis pathway of FVBPs(modified from Dudareva et al.,2013) Raguso et al.,1996;Dudareva et al.,2000;Kolosova et al.,2001;Negre et al.,2003;Verdonk et al.,2003;Boatright et al.,2004;Orlova et al.,2006;Koeduka et al.,2006;Dexter et al.,2007;Kapteyn et al.,2007;Moerkercke et al.,2009;Colquhoun et al.,2012;Klempien et al.,2012;Spitzer-Rimon et al.,2012;Dudareva et al.,2013;Widhalm et al.,2015a;Shaipulah et al.,2016;Sas et al.,2016;Adebesin et al.,2018;Roccia et al.,2019;Kim et al.,2019.
[1] |
Adebesin F, Widhalm J R, Boachon B, Lefevre F, Pierman B, Lynch J H, Alam I, Junqueira B, Benke R, Ray S, Porter J A, Yanagisawa M, Wetzstein H Y, Morgan J A, Boutry M, Schuurink R C, Dudareva N. 2017. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science, 356(6345):1386-1388.
doi: 10.1126/science.aan0826 URL |
[2] |
Adebesin F, Widhalm J R, Lynch J H, McCoy R M, Dudareva N. 2018. A peroxisomal thioesterase plays auxiliary roles in plant β-oxidative benzoic acid metabolism. The Plant Journal, 93(5):905-916.
doi: 10.1111/tpj.2018.93.issue-5 URL |
[3] |
Baker C J, Harmon G L, Glazener J A, Orlandi E W. 1995. A noninvasive technique for monitoring peroxidative and H2O2 scavenging activities during interaction between bacterial plant pathogens and suspension cells. Plant Physiology, 108:353-359.
pmid: 12228480 |
[4] |
Bao F, Ding A Q, Zhang T X, Luo L, Wang J, Cheng T R, Zhang Q X. 2019. Expansion of PmBEAT genes in the Prunus mume genome induces characteristic floral scent production. Horticulture Research, 6:24.
doi: 10.1038/s41438-018-0104-4 URL |
[5] |
Boatright J, Negre F, Chen X L, Kish C M, Wood B, Peel G, Orlova I, Gang D, Rhodes D, Dudareva N. 2004. Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiology, 135(4):1993-2011.
pmid: 15286288 |
[6] |
Braasch J, Kaplan I. 2012. Over what distance are plant volatiles bioactive? Estimating the spatial dimensions of attraction in an arthropod assemblage. Entomologia Experimentalis et Applicata, 145(2):115-123.
doi: 10.1111/eea.2012.145.issue-2 URL |
[7] |
Bussell J D, Reichelt M, Wiszniewski A A G, Gershenzon J, Smith S M. 2014. Peroxisomal ATP-binding cassette transporter comatose and the multifunctional protein abnormal inflorescence meristem are required for the production of benzoylated metabolites in Arabidopsis seeds. Plant Physiology, 164(1):48-54.
doi: 10.1104/pp.113.229807 URL pmid: 24254312 |
[8] | Chang K M, Kim G H. 2008. Volatile aroma composition of Chrysanthemum indicum L. flower oil. Journal of Food Science and Nutrition, 13(2):122-127. |
[9] |
Cna’Ani A, Spitzer Rimon B, Ravid J, Farhi M, Masci T, Aravena Calvo J, Ovadis M, Vainstein A. 2015. Two showy traits,scent emission and pigmentation,are finely coregulated by the MYB transcription factor PH4 in petunia flowers. New Phytologist, 208(3):708-714.
doi: 10.1111/nph.2015.208.issue-3 URL |
[10] |
Colquhoun T A, Kim J Y, Wedde A E, Levin L A, Schmitt K C, Schuurink R C, Clark D G. 2011a. PhMYB4 fine-tunes the floral volatile signature of Petunia × hybrida through PhC4H. Journal of Experimental Botany, 62(3):1133-1143.
doi: 10.1093/jxb/erq342 URL pmid: 21068208 |
[11] |
Colquhoun T A, Marciniak D M, Wedde A E, Kim J Y, Schwieterman M L, Levin L A, Moerkercke A V, Schuurink R C, Clark D G. 2012. A peroxisomally localized acyl-activating enzyme is required for volatile benzenoid formation in a Petunia × hybrida cv.‘Mitchell Diploid’flower. Journal of Experimental Botany, 63(13):4821-4833.
doi: 10.1093/jxb/ers153 URL pmid: 22771854 |
[12] |
Colquhoun T A, Schwieterman M L, Wedde A E, Schimmel B C J, Marciniak D M, Verdonk J C, Kim J Y, Oh Y, Gá lis I, Baldwin I T, Clark D G. 2011b. EOBII controls flower opening by functioning as a general transcriptomic switch. Plant Physiology, 156(2):974-984.
doi: 10.1104/pp.111.176248 URL pmid: 21464473 |
[13] |
Colquhoun T A, Verdonk J C, Schimmel B C, Tieman D M, Underwood B A, Clark D G. 2010. Petunia floral volatile benzenoid/phenylpropanoid genes are regulated in a similar manner. Phytochemistry, 71(2-3):158-167.
doi: 10.1016/j.phytochem.2009.09.036 pmid: 19889429 |
[14] |
Costa A C, Garruti D S, Madruga M S. 2019. The power of odour volatiles from unifloral melipona honey evaluated by gas chromatography-olfactometry Osme techniques. Journal of the Science of Food and Agriculture, 99(9):4493-4497.
doi: 10.1002/jsfa.9647 pmid: 30767242 |
[15] |
D’Auria J C. 2006. Acyltransferases in plants:a good time to be BAHD. Current Opinion in Plant Biology, 9(3):331-340.
doi: 10.1016/j.pbi.2006.03.016 URL |
[16] |
Dexter R, Qualley A, Kish C M, Ma C J, Koeduka T, Nagegowda D A, Dudareva N, Pichersky E, Clark D. 2007. Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. Plant Journal, 49(2):265-275.
doi: 10.1111/j.1365-313X.2006.02954.x URL |
[17] |
Dhandapani S, Jin J J, Sridhar V, Chua N H, Jang I C. 2019. CYP79D73 participates in biosynthesis of floral scent compound 2-phenylethanol in Plumeria rubra. Plant Physiology, 180(1):171-184.
doi: 10.1104/pp.19.00098 pmid: 30804010 |
[18] |
Dudareva N, Klempien A, Muhlemann J K, Kaplan I. 2013. Biosynthesis,function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198(1):16-32.
doi: 10.1111/nph.12145 URL pmid: 23383981 |
[19] |
Dudareva N, Murfitt L M, Mann C J, Gorenstein N, Kolosova N, Kish C M, Bonham C, Wood K. 2000. Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell, 12(6):949-961.
pmid: 10852939 |
[20] | Fan Rong-hui, Huang Min-ling, Zhong Huai-qin, Wu Jian-she, Ye Xiu-xian. 2011. Adavances in biosynthesis,regulation and genetic engineering of floral scent. Chinese Journal of Cell Biology, 3(9):1028-1036. (in Chinese) |
樊荣辉, 黄敏玲, 钟淮钦, 吴建设, 叶秀仙. 2011. 花香的生物合成、调控及基因工程研究进展. 中国细胞生物学学报, 3(9):1028-1036. | |
[21] | Fenske M P, Hazelton K D H, Hempton A K, Shim J S, Yamamoto B M, Riffell J A, Imaizumi T. 2015. Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia. Proceedings of the National Academy of Sciences United States of America, 112(31):9775-9780. |
[22] |
Gervasi D D L, Schiestl F P. 2017. Real-time divergent evolution in plants driven by pollinators. Nature Communication, 8:14691.
doi: 10.1038/ncomms14691 URL |
[23] |
Grulke N, Heath R L. 2019. Ozone effects on plants in natural ecosystems. Plant Biology, 22:12-37.
doi: 10.1111/plb.v22.s1 URL |
[24] |
Günther J, Lackus N D, Schmidt A, Huber M, Stödtler H, Reichelt M, Gershenzon J, Köllner T G. 2019. Separate pathways contribute to the herbivore-induced formation of 2-phenylethanol in poplar. Plant Physiology, 180(2):767-782.
doi: 10.1104/pp.19.00059 pmid: 30846485 |
[25] |
Hirata H, Ohnishi T, Tomida K, Ishida H, Kanda M, Sakai M, Yoshimura J, Suzuki H, Ishikawa T, Dohra H, Watanabe N. 2016. Seasonal induction of alternative principal pathway for rose flower scent. Scientific Reports, 6:20234.
doi: 10.1038/srep20234 URL |
[26] |
Jantzen F, Joseph H L, Kappel H, Hofflin J, Skaliter O, Wozniak N, Sicard A, Sas C, Adebesin F, Ravid J, Vainstein A, Hilker M, Dudareva N, Lenhard M. 2019. Retracing the molecular basis and evolutionary history of the loss of benzaldehyde emission in the genus Capsella. New Phytologist, 224(3):1349-1360.
doi: 10.1111/nph.v224.3 URL |
[27] |
Kapteyn J, Qualley A V, Xie Z Z, Fridman E, Dudareva N, Gang D R. 2007. Evolution of cinnamate/p-coumarate carboxyl methyltransferases and their role in the biosynthesis of methylcinnamate. Plant Cell, 19(10):3212-3229.
pmid: 17951447 |
[28] |
Kim J Y, Swanson R T, Alvarez M I, Johnson T S, Cho K H, Clark D G, Colquhoun T A. 2019. Down regulation of p-coumarate 3-hydroxylase in petunia uniquely alters the profile of emitted floral volatiles. Scientific Reports, 9:8852.
doi: 10.1038/s41598-019-45183-2 URL |
[29] |
Klahre U, Gurba A, Hermann K, Saxenhofer M, Bossolini E, Guerin P, Kuhlemeier C. 2011. Pollinator choice in Petunia depends on two major genetic loci for floral scent production. Current Biology, 21(9):730-739.
doi: 10.1016/j.cub.2011.03.059 URL |
[30] |
Klempien A, Kaminaga Y, Qualley A, Nagegowda D A, Widhalm J R, Orlova I, Shasany A K, Taguchi G, Kish C M, Cooper B R, D’Auria J C, Rhodes D, Pichersky E, Dudareva N. 2012. Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers. Plant Cell, 24(5):2015-2030.
doi: 10.1105/tpc.112.097519 URL |
[31] |
Knudsen J T, Eriksson R, Gershenzon J, Stahl B. 2006. Diversity and distribution of floral scent. The Botanical Review, 72(1):1-120.
doi: 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2 URL |
[32] | Koeduka T, Fridman E, Gang D R, Vassao D G, Jackson B L, Kish C M, Orlova I, Spassova S M, Lewis N G, Noel J P, Baiga T J, Dudareva N, Pichersky E. 2006. Eugenol and isoeugenol,characteristic aromatic constituents of spices,are biosynthesized via reduction of a coniferyl alcohol ester. Proceedings of the National Academy of Sciences of the United States of America, 103(26):10128-10133. |
[33] |
Kolosova N, Sherman D, Karlson D, Dudareva N. 2001. Cellular and subcellular localization of s-adenosyl-l-methionine:benzoic acid carboxyl methyltransferase,the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in snapdragon flowers. Plant Physiology, 126(3):956-964.
pmid: 11457946 |
[34] |
Lin I W, Sosso D, Chen L Q, Gase K, Kim S G, Kessler D, Klinkenberg P M, Gorder M K, Hou B H, Qu X Q, Carter C J, Baldwin I T, Frommer W B. 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, 508(7497):546-549.
doi: 10.1038/nature13082 URL |
[35] |
Liu C, Qiao X, Li Q, Zeng W, Wei S, Wang X, Chen Y, Wu X, Wu J, Yin H, Zhang S. 2020. Genome-wide comparative analysis of the BAHD superfamily in seven Rosaceae species and expression analysis in pear(Pyrus bretschneideri). BMC Plant Biology, 20(1):14.
doi: 10.1186/s12870-019-2230-z URL |
[36] |
Liu F, Xiao Z N, Yang L, Chen Q, Shao L, Liu J X, Yu Y X. 2017. PhERF6,interacting with EOBI,negatively regulates fragrance biosynthesis in petunia flowers. New Phytologist, 215(4):1490-1502.
doi: 10.1111/nph.2017.215.issue-4 URL |
[37] |
Lohonyai Z, Vuts J, Kárpáti Z, Koczor S, Domingue M J, Fail J, Birkett M A, Tótha M, Imreia Z. 2019. Benzaldehyde:an alfalfa-related compound for the spring attraction of the pest weevil Sitona humeralis(Coleoptera:Curculionidae). Pest Manag Science, 75(12):3153-3159.
doi: 10.1002/ps.v75.12 URL |
[38] |
Long M C, Nagegowda D A, Kaminaga Y, Ho K K, Kish C M, Schnepp J, Sherman D, Weiner H, Rhodes D, Dudareva N. 2009. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis. Plant Journal, 59(2):256-265.
doi: 10.1111/tpj.2009.59.issue-2 URL |
[39] |
Maeda H, Dudareva N. 2012. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology, 63(1):73-105.
doi: 10.1146/arplant.2012.63.issue-1 URL |
[40] |
Maeda H, Shasany A K, Schnepp J, Orlova I, Taguchi G, Cooper B R, Rhodes D, Pichersky E, Dudareva N. 2010. RNAi suppression of arogenate dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals. Plant Cell, 22:832-849.
doi: 10.1105/tpc.109.073247 URL |
[41] |
Mao G F, Tian J, Li T, Fouad H, Mo J. 2018. Behavioral responses of Anagrus nilaparvatae to common terpenoids,aromatic compounds,and fatty acid derivatives from rice plants. Entomologia Experimentalis et Applicata, 166(6):483-490.
doi: 10.1111/eea.2018.166.issue-6 URL |
[42] |
Marques I, Jürgens A, Aguilar J F, Feliner G N. 2016. Convergent recruitment of new pollinators is triggered by independent hybridization events in Narcissus. New Phytologist, 210(2):731-742.
doi: 10.1111/nph.13805 pmid: 26738752 |
[43] |
Medina-Puche L, Molina-Hidalgo F J, Boersma M, Schuurink R C, López-Vidriero I, Solano R, Franco-Zorrilla J, Caballero J L, Blanco-Portales R, Muñoz-Blanco J. 2015. An R2R3-MYB transcription factor regulates eugenol production in ripe strawberry fruit receptacles. Plant Physiology, 168(2):598-614.
doi: 10.1104/pp.114.252908 pmid: 25931522 |
[44] | Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta(BBA)-Gene Regulatory Mechanisms, 1819(2):86-96. |
[45] |
Moerkercke A V, Galván-Ampudia C S, Verdonk J C, Haring M A, Schuurink R C. 2012. Regulators of floral fragrance production and their target genes in petunia are not exclusively active in the epidermal cells of petals. Journal of Experimental Botany, 63(8):3157-3171.
doi: 10.1093/jxb/ers034 URL pmid: 22345641 |
[46] |
Moerkercke A V, Haring M A, Schuurink R C. 2011. The transcription factor EMISSION OF BENZENOIDSⅡactivates the MYB. Plant Journal, 67(4):917-928.
doi: 10.1111/j.1365-313X.2011.04644.x URL |
[47] |
Moerkercke A V, Schauvinhold I, Pichersky E, Haring M A, Schuurink R C. 2009. A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Plant Journal, 60:292-302.
doi: 10.1111/tpj.2009.60.issue-2 URL |
[48] |
Muhlemann J K, Woodworth B D, Morgan J A, Dudareva N. 2014. The monolignol pathway contributes to the biosynthesis of volatile phenylpropenes in flowers. New Phytologist, 204(3):661-670.
doi: 10.1111/nph.12913 URL pmid: 24985707 |
[49] |
Negre F, Kish C M, Boatright J, Underwood B, Shibuya K, Wagner C, Clark D G, Dudareva N. 2003. Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. Plant Cell, 15(12):2992.
doi: 10.1105/tpc.016766 URL |
[50] |
Oliva M, Bar E, Ovadia R, Perl A, Galili G, Lewinsohn E, Oren-Shamir M. 2017. Phenylpyruvate contributes to the synthesis of fragrant benzenoid-phenylpropanoids in Petunia × hybrida flowers. Frontiers in Plant Science, 8:769.
doi: 10.3389/fpls.2017.00769 URL |
[51] |
Orlova I, Marshall-Colon A, Schnepp J, Wood B, Varbanova M, Fridman E, Blakeslee J J, Peer W A, Murphy A S, Rhodes D, Pichersky E, Dudareva N. 2006. Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Plant Cell, 18(12):3458-3475.
pmid: 17194766 |
[52] | Piechulla B, Lemfack M C, Kai M. 2017. Effects of discrete bioactive microbial volatiles on plants and fungi. Plant,Cell & Environment, 40(10):2042-2067. |
[53] |
Qian Y, Lynch J H, Guo L, Rhodes D, Morgan J A, Dudareva N. 2019. Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants. Nature Communications, 10:15.
doi: 10.1038/s41467-018-07969-2 URL |
[54] | Qualley A V, Widhalm J R, Adebesin F, Kish C M, Dudareva N. 2012. Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Proceedings of the National Academy of Sciences of the United States of America, 109(40):16383-16388. |
[55] |
Raguso R A, Light D M, Pickersky E. 1996. Electroantennogram responses of hyles lineata(Sphingidae:Lepidoptera)to volatile compounds from Clarkia breweri(Onagraceae)and other moth-pollinated flowers. Journal of Chemical Ecology, 22(10):1735-1766.
doi: 10.1007/BF02028502 pmid: 24227106 |
[56] |
Ramya M, Lee S Y, An H R, Park P M, Park P H. 2019. MYB1 transcription factor regulation through floral scent in Cymbidium cultivar 'Sael Bit'. Phytochemistry Letters, 32:181-187.
doi: 10.1016/j.phytol.2019.06.007 URL |
[57] |
Ranjan A, Westrick N M, Jain S, Piotrowski J S, Ranjan M, Kessens R, Stiegman L, Grau C R, Conley S P, Smith D L, Kabbage M. 2019. Resistance against Sclerotinia sclerotiorum in soybean involves a reprogramming of the phenylpropanoid pathway and up-regulation of antifungal activity targeting ergosterol biosynthesis. Plant Biotechnology Journal, 17(8):1567-1581.
doi: 10.1111/pbi.2019.17.issue-8 URL |
[58] |
Ravid J, Spitzer-Rimon B, Takebayashi Y, Seo M, Cna’ani A, Aravena-Calvo J, Masci T, Farhi M, Vainstein A. 2017. GA as a regulatory link between the showy floral traits color and scent. New Phytologist, 215(1):411-422.
doi: 10.1111/nph.2017.215.issue-1 URL |
[59] | Roccia A, Oyan H L, Cavel E, Caissard J, Machenaud J, Thouroude T, Jeauffre J, Bony A, Dubois A, Vergne P, Szécsi J, Foucher F, Bendahmane M, Baudino S. 2019. Biosynthesis of 2-phenylethanol in rose petals is linked to the expression of one allele of RhPAAS. Plant Physiology, 3(179):1064-1079. |
[60] |
Sablowski R W, Moyano E, Culianez-Macia F A, Schuch W, Martin C, Bevan M. 1994. A flower-specific MYB protein activates transcription of phenylpropanoid biosynthetic genes. The EMBO Journal, 13(1):128-137.
doi: 10.1002/embj.1994.13.issue-1 URL |
[61] |
Sas C, Müller F, Kappel C, Kent T V, Wright S I, Hilker M, Lenhard M. 2016. Repeated inactivation of the first committed enzyme underlies the loss of benzaldehyde emission after the selfing transition in Capsella. Current Biology, 26(24):3313-3319.
doi: 10.1016/j.cub.2016.10.026 URL |
[62] |
Schie C C V, Haring M A, Schuurink R C. 2006. Regulation of terpenoid and benzenoid production in flowers. Current Opinion in Plant Biology, 9(2):203-208.
doi: 10.1016/j.pbi.2006.01.001 URL |
[63] |
Shaipulah N F M, Muhlemann J K, Woodworth B D, Moerkercke A Van, Verdonk J C, Ramirez A A, Haring M A, Dudareva N, Schuurink R C. 2016. CCoAOMT down-regulation activates anthocyanin biosynthesis in petunia. Plant Physiology, 170(2):717-731.
doi: 10.1104/pp.15.01646 pmid: 26620524 |
[64] |
Spitzer-Rimon B, Farhi M, Albo B, Cna’Ani A, Zvi M M B, Masci T, Edelbaum O, Yu Y, Shklarman E, Ovadis M. 2012. The R2R3-MYB-like regulatory factor EOBI,acting downstream of EOBII,regulates scent production by activating ODO1 and structural scent-related genes in petunia. Plant Cell, 24:5089-5105.
doi: 10.1105/tpc.112.105247 URL |
[65] |
Spitzer-Rimon B, Marhevka E, Barkai O, Marton I, Edelbaum O, Masci T, Prathapani N, Shklarman E, Ovadis M, Vainstein A. 2010. EOBII,a gene encoding a flower-specific regulator of phenylpropanoid volatiles biosynthesis in petunia. Plant Cell, 22(6):1961-1976.
doi: 10.1105/tpc.109.067280 URL |
[66] |
Suchet C, Dormont L, Schatz B, Giurfa M, Simon V, Raynaud C, Chave J. 2011. Floral scent variation in two Antirrhinum majus subspecies influences the choice of naïve bumblebees. Behavioral Ecology and Sociobiology, 65:1015-1027.
doi: 10.1007/s00265-010-1106-x URL |
[67] |
Tahir H A S, Gu Q, Wu H, Niu Y, Huo R, Gao X. 2017. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Scientific Reports, 7:40481.
doi: 10.1038/srep40481 URL |
[68] |
Terry M I, Pérez-Sanz F, Navarro P J, Weiss J, Egea-Cortines M. 2019. The snapdragon LATE ELONGATED HYPOCOTYL plays a dual role in activating floral growth and scent emission. Cells, 8(8):920.
doi: 10.3390/cells8080920 URL |
[69] | Tieman D, Taylor M, Schauer N, Fernie A R, Hanson A D, Klee H J. 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences of the United States of America, 103(21):8287-8292. |
[70] |
Torres E, Iriondo J M, Escudero A, Pérez C. 2003. Analysis of within-population spatial genetic structure in Antirrhinum microphyllum (Scrophulariaceae). American Journal of Botany, 90(12):1688-1695.
doi: 10.3732/ajb.90.12.1688 pmid: 21653345 |
[71] |
Tzin V, Malitsky S, Ben Zvi M M, Bedair M, Sumner L, Aharoni A, Galili G. 2012. Expression of a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism. New Phytologist, 194(2):430-439.
doi: 10.1111/nph.2012.194.issue-2 URL |
[72] | Vargas P, Concepción O, Javier O F, Juan A. 2010. Is the occluded corolla of Antirrhinum bee-specialized? Annals & Magazine of Natural History, 44(23-24):1427-1443. |
[73] |
Verdonk J C, Haring M A, van Tunen A J, Schuurink R C. 2005. ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell, 17:1612-1624.
pmid: 15805488 |
[74] |
Wang F, Cui X, Sun Y, Dong C H. 2013. Ethylene signaling and regulation in plant growth and stress responses. Plant Cell Reports, 32(7):1099-1109.
doi: 10.1007/s00299-013-1421-6 URL |
[75] | Weiss J, Mühlemann J K, Ruiz-Hernández V, Dudareva N, Egea-Cortines M. 2016. Phenotypic space and variation of floral scent profiles during late flower development in Antirrhinum. Frontiers in Plant Science, 7:1903. |
[76] |
Widhalm J, Dudareva N. 2015. A familiar ring to it:biosynthesis of plant benzoic acids. Molecular Plant, 8(1):83-97.
doi: 10.1016/j.molp.2014.12.001 pmid: 25578274 |
[77] |
Widhalm J R, Gutensohn M, Yoo H, Adebesin F, Qian Y C, Guo L Y, Jaini R, Lynch J H, McCoy R M, Shreve J T, Thimmapuram J, Rhodes D, Morgan J A, Dudareva N. 2015a. Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network. Nature Communications, 6:8142.
doi: 10.1038/ncomms9142 pmid: 26356302 |
[78] |
Widhalm J R, Jaini R, Morgan J A, Dudareva N. 2015b. Rethinking how volatiles are released from plant cells. Trends in Plant Science, 20(9):545-550.
doi: 10.1016/j.tplants.2015.06.009 pmid: 26189793 |
[79] | Xiang L, Zhao K G, Chen L Q. 2010. Molecular cloning and expression of Chimonanthus praecox farnesyl pyrophosphate synthase gene and its possible involvement in the biosynthesis of floral volatile sesquiterpenoids. Plant Physiology & Biochemistry, 48(10-11):845-850. |
[80] |
Xiao Y, Beres Z T, Lin J, Parrish J T, Wanying Z, David M, Snow A A. 2017. Effects of over-expressing a native gene encoding 5-enolpyruvylshikimate-3-phosphate synthase(EPSPs)on glyphosate resistance in Arabidopsis thaliana. PLoS One, 12(4):e0175820.
doi: 10.1371/journal.pone.0175820 URL |
[81] |
Yoshida K, Oyama-Okubo N, Yamagishi M. 2018. An R2R3-MYB transcription factor ODORANT1 regulates fragrance biosynthesis in lilies (Lilium spp.). Molecular Breeding, 38(12):144.
doi: 10.1007/s11032-018-0902-2 URL |
[82] | Zhou Y, Peng Q Y, Zhang L, Cheng S H, Zeng L T, Dong F, Yang Z Y. 2018. Characterization of enzymes specifically producing chiral flavor compounds (R)-and (S)-1-phenylethanol from tea(Camellia sinensis)flowers. Foodchemistry, 280:27-33. |
[83] |
Zvi M M B, Negre F, Masci T, Ovadis M, Shklarman E, Ben-Meir H, Tzfira T, Dudareva N, Vainstein A. 2010. Interlinking showy traits:co-engineering of scent and color biosynthesis in flowers. Plant Biotechnology Journal, 6(4):403-415.
doi: 10.1111/j.1467-7652.2008.00329.x URL |
[1] | 宋艳红, 陈亚铎, 张晓玉, 宋 盼, 刘丽锋, 李 刚, 赵 霞, 周厚成, . 森林草莓FvbHLH130转录因子调控植株提前开花[J]. 园艺学报, 2023, 50(2): 295-306. |
[2] | 李瑞雅, 宋程威, 牛童非, 魏祯祯, 郭丽丽, 侯小改. ‘海黄’牡丹花挥发性物质释放规律及PsGDS的克隆与表达分析[J]. 园艺学报, 2023, 50(2): 331-344. |
[3] | 张爱玲, 涂红艳, 肖 望, 钟晓晴, 陆秋婵, 成丽萍, 林晓萍, 麦钰玲. 白姜花二倍体与四倍体切花形态与显微结构变化观察[J]. 园艺学报, 2023, 50(2): 345-358. |
[4] | 田明康, 徐智祥, 刘秀群, 眭顺照, 李名扬, 李志能, . 蜡梅AP2亚家族转录因子鉴定及CpAP2-L11功能研究[J]. 园艺学报, 2023, 50(2): 382-396. |
[5] | 王梦梦, 孙德岭, 陈 锐, 杨迎霞, 张 冠, 吕明杰, 王 倩, 谢添羽, 牛国保, 单晓政, 谭 津, 姚星伟, . 花椰菜核心种质的构建与评价[J]. 园艺学报, 2023, 50(2): 421-431. |
[6] | 刘艺平, 倪梦辉, 吴芳芳, 刘红利, 贺丹, 孔德政. 荷花花器官性状与SSR标记的关联分析[J]. 园艺学报, 2023, 50(1): 103-115. |
[7] | 吕 毅, 隋 静, 薛玉平, 黄海静, 孟艳玲, 王同勇, 杨 鹤, . 无花果新品种‘锦青’[J]. 园艺学报, 2022, 49(S2): 45-46. |
[8] | 季琳琳, 陈素传, 吴志辉, 常 君, 韩文妍, 陶汝鹏. 早花山核桃新品种‘宁国山核桃2号’[J]. 园艺学报, 2022, 49(S2): 53-54. |
[9] | 叶志琴, 杨 娟. 菊花新品种‘紫鬓云’[J]. 园艺学报, 2022, 49(S2): 173-174. |
[10] | 赵艳莉, 李战鸿, 曹 琴, 戴妙飞, 高萌萌, 孙珍珠, 李会宽, 李永华, 卞书迅, 黄 淦. 菊花新品种‘汴京庆典黄’[J]. 园艺学报, 2022, 49(S2): 175-176. |
[11] | 曹 琴, 赵艳莉, 李战鸿, 高萌萌, 戴妙飞, 李永华, 李会宽, 孙珍珠, 卞书迅, 李 菲. 小菊新品种‘汴京紫精灵’[J]. 园艺学报, 2022, 49(S2): 177-178. |
[12] | 孔令普, 欧阳雪灵, 彭火辉, 叶 川, 袁淑贞, 王国行, 彭玉辅, . 报春苣苔属新品种‘初心’[J]. 园艺学报, 2022, 49(S2): 189-190. |
[13] | 许 曈, 楼建华, 史小华, 夏宜平, 李丹青, 张佳平, . 花菖蒲新品种‘夏日活力’[J]. 园艺学报, 2022, 49(S2): 203-204. |
[14] | 黄杏娥, 郭应杰, 杨文宏, 汤王外, 郭承刚, 徐春莲, 和寿星. 兰花新品种‘云科高1号’[J]. 园艺学报, 2022, 49(S2): 207-208. |
[15] | 李清清, 赵广胜, 吉建斌, 崔建平. 观赏荷花新品种‘燕赵牡丹’[J]. 园艺学报, 2022, 49(S2): 211-212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司