园艺学报 ›› 2021, Vol. 48 ›› Issue (9): 1680-1694.doi: 10.16420/j.issn.0513-353x.2021- 0219
徐红霞1, 周慧芬2, 李晓颖1, 姜路花3, 陈俊伟1,*()
收稿日期:
2021-05-24
修回日期:
2021-08-25
出版日期:
2021-09-25
发布日期:
2021-09-30
通讯作者:
陈俊伟
E-mail:chenjunwei@zaas.ac.cn
基金资助:
XU Hongxia1, ZHOU Huifen2, LI Xiaoying1, JIANG Luhua3, CHEN Junwei1,*()
Received:
2021-05-24
Revised:
2021-08-25
Online:
2021-09-25
Published:
2021-09-30
Contact:
CHEN Junwei
E-mail:chenjunwei@zaas.ac.cn
摘要:
研究比较了枇杷(Eriobotrya japonica Lindl.)不同发育阶段花果的低温响应机制。以花蕾、完全开放的花和花后2周左右的幼果为试验材料,-3 ℃低温处理12 h,以未经低温处理样品为对照,测定生理生化指标并进行转录组测序分析。低温胁迫导致细胞膜破坏,超氧阴离子产生速率、丙二醛和脯氨酸含量、抗氧化酶活性明显升高。总体上抗低温能力为花蕾 > 花 > 幼果。转录组测序分析共获得6 987个差异表达基因(DEG),对这些基因进行通路注释分析,发现大量与低温胁迫相关的代谢途径,其中碳水化合物代谢中的糖酵解/糖异生、乙醛酸和二羧酸代谢及磷酸肌醇代谢途径,氨基酸代谢中的色氨酸代谢和酪氨酸代谢途径,酯类代谢中的甘油磷脂代谢、α-亚麻酸代谢和甘油酯代谢途径,次生代谢中的异喹啉生物碱生物合成途径以及能量代谢中的硫代谢途径在3个花果发育时期低温与对照的比较组中显著富集,说明这几个途径都是枇杷花果响应低温胁迫的重要代谢途径。“苯丙烷类生物合成”途径在前两个时期比较组中富集水平较高,氨基酸代谢相关途径在幼果比较组中富集更多。另外,从低温处理相关差异表达基因中筛选到了53个AP2-EREBP基因,14个WRKY基因和15个NAC基因,并对其中12个低温响应相关转录因子基因进行了qRT-PCR表达分析,进一步证实了转录组数据的准确性。
中图分类号:
徐红霞, 周慧芬, 李晓颖, 姜路花, 陈俊伟. 低温胁迫下枇杷不同发育阶段的花果转录组比较分析[J]. 园艺学报, 2021, 48(9): 1680-1694.
XU Hongxia, ZHOU Huifen, LI Xiaoying, JIANG Luhua, CHEN Junwei. Comparative Transcriptome Analysis of Different Developmental Stages of Flowers and Fruits in Loquat Under Low Temperature Stress[J]. Acta Horticulturae Sinica, 2021, 48(9): 1680-1694.
基因名称 Gene name | 基因 ID Gene ID | 引物序列(5′-3′) Primer sequence | |
---|---|---|---|
Ejactin | c158550.graph_c1 | F:GGATTTGCTGGTGATGATGC; | R:CCGTGCTCAATGGGATACTT |
ERF37 | c106174.graph_c0 | F:GCTGGGTGAGGAGATAACGG | R:AAGATGCGAAGACGGTGGTG |
ERF73 | c123742.graph_c0 | F:GCTTTCCTGAGGCGGACGAT | R:AATTGAGCTTGGAGGCGATT |
ERF35 | c125424.graph_c0 | F:GGGGAGAGCATAGCGATACA | R:GCTTACGTCATTTTCTGGGC |
ERF105 | c126492.graph_c0 | F:TCGCTCGTACTTGTCACACC | R:GCTGACCATCAAAGGCAACT |
RAV2 | c126935.graph_c1 | F:GAGGATGATCGGCTGGGAGT | R:AGCTGCTGCAAGGCACTACA |
ERF60 | c129543.graph_c0 | F:TGGCCAATAAGAATCACCAA | R:CCAAAAAGGATCTGACGAGG |
ERF33 | c46214.graph_c0 | F:GCCTGTTCTTTGATTTTGGT | R:TCATGAGCTGATCTTCCCTC |
WRKY33 | c142932.graph_c0 | F:CCACTGAAAACCAATCGTAC | R:CTTAGACTTCTTATCGCAAC |
NAC72 | c51471.graph_c0 | F:ATGTTGGGGTTGGATAAGAA | R:CGGAATAGAAGAAGCAGAAGAG |
NAC74 | c136256.graph_c0 | F:AGTCCATAGTATGCGCCACC | R:TGACTGCGGTTTTCTTTTGA |
NAC29 | c130635.graph_c0 | F:GAAACGGGAACATTGGTAGT | R:AATGAATGAGATGCTGGTGT |
NAC91 | c136368.graph_c0 | F:ATCATCGCTAAATTCATTCC | R:ACTTTACCACCTCTACCAAC |
表1 荧光定量PCR中所用差异表达基因及其引物序列
Table 1 Differentially expressed genes and their primer sequences in qRT-PCR
基因名称 Gene name | 基因 ID Gene ID | 引物序列(5′-3′) Primer sequence | |
---|---|---|---|
Ejactin | c158550.graph_c1 | F:GGATTTGCTGGTGATGATGC; | R:CCGTGCTCAATGGGATACTT |
ERF37 | c106174.graph_c0 | F:GCTGGGTGAGGAGATAACGG | R:AAGATGCGAAGACGGTGGTG |
ERF73 | c123742.graph_c0 | F:GCTTTCCTGAGGCGGACGAT | R:AATTGAGCTTGGAGGCGATT |
ERF35 | c125424.graph_c0 | F:GGGGAGAGCATAGCGATACA | R:GCTTACGTCATTTTCTGGGC |
ERF105 | c126492.graph_c0 | F:TCGCTCGTACTTGTCACACC | R:GCTGACCATCAAAGGCAACT |
RAV2 | c126935.graph_c1 | F:GAGGATGATCGGCTGGGAGT | R:AGCTGCTGCAAGGCACTACA |
ERF60 | c129543.graph_c0 | F:TGGCCAATAAGAATCACCAA | R:CCAAAAAGGATCTGACGAGG |
ERF33 | c46214.graph_c0 | F:GCCTGTTCTTTGATTTTGGT | R:TCATGAGCTGATCTTCCCTC |
WRKY33 | c142932.graph_c0 | F:CCACTGAAAACCAATCGTAC | R:CTTAGACTTCTTATCGCAAC |
NAC72 | c51471.graph_c0 | F:ATGTTGGGGTTGGATAAGAA | R:CGGAATAGAAGAAGCAGAAGAG |
NAC74 | c136256.graph_c0 | F:AGTCCATAGTATGCGCCACC | R:TGACTGCGGTTTTCTTTTGA |
NAC29 | c130635.graph_c0 | F:GAAACGGGAACATTGGTAGT | R:AATGAATGAGATGCTGGTGT |
NAC91 | c136368.graph_c0 | F:ATCATCGCTAAATTCATTCC | R:ACTTTACCACCTCTACCAAC |
图1 枇杷不同阶段花果低温处理后超氧阴离子产生速率,MDA和脯氨酸含量,SOD、APX和CAT活性的变化 不同字母表示差异显著(P ≤ 0.05)。
Fig. 1 Changes in superoxide anion generation rate,MDA content,proline content,SOD activity,APX activity,and CAT activity in response to low temperature stress in different developmental stages of flowers and young fruits * Different letters are significantly different at P ≤ 0.05.
数据库 Database | 注释数量 Number of annotated unigene | 比例/% Percentage of annotated unigene |
---|---|---|
Nr | 38 093 | 97.80 |
Swiss-Prot | 22 119 | 56.79 |
KEGG | 14 813 | 38.03 |
eggNOG | 35 024 | 89.92 |
KOG | 20 989 | 53.89 |
GO | 25 436 | 65.30 |
Pfam | 27 156 | 69.72 |
表2 基因功能注释结果统计
Table 2 The statistical result of unigene functional annotation
数据库 Database | 注释数量 Number of annotated unigene | 比例/% Percentage of annotated unigene |
---|---|---|
Nr | 38 093 | 97.80 |
Swiss-Prot | 22 119 | 56.79 |
KEGG | 14 813 | 38.03 |
eggNOG | 35 024 | 89.92 |
KOG | 20 989 | 53.89 |
GO | 25 436 | 65.30 |
Pfam | 27 156 | 69.72 |
GO分类 GO classification | GO序列号 GO accession | 注释功能(词条) Term | 差异基因数 DEGs number | -3 ℃ vs 25 ℃ | ||
---|---|---|---|---|---|---|
花蕾 Flower bud | 花 Flower | 幼果 Young fruit | ||||
生物学过程 Biological process | GO:0008152 | 代谢过程Metabolic process | 2 193 | 298 | 781 | 1 239 |
GO:0009987 | 细胞过程Cellular process | 2 127 | 248 | 661 | 1 075 | |
GO:0044699 | 单一生物过程Single-organism process | 1 863 | 230 | 585 | 1 033 | |
GO:0051179 | 定位Localization | 790 | 108 | 276 | 546 | |
GO:0065007 | 生物调控Biological regulation | 616 | 142 | 270 | 427 | |
GO:0071840 | 细胞组分或生物合成 Cellular component organization or biogenesis | 465 | 40 | 132 | 293 | |
GO:0050896 | 应激反应Response to stimulus | 457 | 94 | 193 | 279 | |
GO:0023052 | 信号Signaling | 122 | 24 | 47 | 77 | |
GO:0051704 | 多生物过程Multi-organism process | 114 | 11 | 39 | 73 | |
GO:0032502 | 发育过程Developmental process | 94 | 25 | 35 | 46 | |
GO:0040007 | 生长Growth | 75 | 2 | 16 | 41 | |
GO:0022414 | 生殖过程Reproductive process | 59 | 15 | 25 | 44 | |
GO:0000003 | 再生Reproduction | 55 | 0 | 26 | 46 | |
GO:0032501 | 多细胞生物过程Multicellular organismal process | 48 | 17 | 22 | 17 | |
GO:0022610 | 生物粘附Biological adhesion | 17 | 0 | 3 | 6 | |
GO:0002376 | 免疫系统过程Immune system process | 7 | 0 | 2 | 0 | |
GO:0048511 | 节律过程Rhythmic process | 3 | 0 | 1 | 1 | |
细胞组分 Cellular component | GO:0005623 | 细胞Cell | 1 808 | 283 | 718 | 1 229 |
GO:0044464 | 细胞部分Cell part | 1 796 | 280 | 710 | 1 222 | |
GO:0043226 | 细胞器Organelle | 1 260 | 201 | 485 | 858 | |
GO:0016020 | 膜Membrane | 1 642 | 294 | 623 | 1 024 | |
GO:0044425 | 膜部分Membrane part | 1 293 | 234 | 495 | 805 | |
GO:0044422 | 细胞器部分Organelle part | 621 | 67 | 218 | 418 | |
GO:0032991 | 大分子复合物Macromolecular complex | 552 | 42 | 208 | 361 | |
GO:0031974 | 膜封闭的管腔Membrane-enclosed lumen | 160 | 11 | 40 | 112 | |
GO:0005576 | 细胞外区域Extracellular region | 87 | 18 | 45 | 61 | |
GO:0030054 | 细胞连接Cell junction | 15 | 4 | 6 | 5 | |
GO:0055044 | 共质体Symplast | 14 | 4 | 5 | 5 | |
GO:0019012 | 病毒Virion | 4 | 0 | 1 | 4 | |
GO:0044423 | 病毒部分Virion part | 4 | 0 | 1 | 4 | |
GO:0009295 | 内核Nucleoid | 11 | 0 | 5 | 6 | |
GO:0044421 | 细胞外区域Extracellular region part | 28 | 3 | 21 | 26 | |
分子功能 | GO:0003824 | 催化活性Catalytic activity | 1 949 | 308 | 725 | 1 222 |
Molecular | GO:0005488 | 联结Binding | 1 670 | 321 | 688 | 1 024 |
function | GO:0005215 | 转运活动Transporter activity | 402 | 53 | 144 | 277 |
GO:0005198 | 结构分子活动Structural molecule activity | 178 | 9 | 102 | 85 | |
GO:0001071 | 核酸联结转录因子活性 Nucleic acid binding transcription factor activity | 109 | 40 | 64 | 68 | |
GO:0016209 | 抗氧化活性Antioxidant activity | 40 | 10 | 21 | 21 | |
GO:0009055 | 电子载体活动Electron carrier activity | 35 | 5 | 13 | 20 | |
GO:0060089 | 分子传感器活动Molecular transducer activity | 36 | 5 | 7 | 8 | |
GO:0004871 | 信号传导活动Signal transducer activity | 36 | 10 | 18 | 23 | |
GO:0000988 | 转录因子活性,蛋白质结合 Transcription factor activity,protein binding | 16 | 4 | 3 | 12 | |
GO:0045735 | 营养库活性Nutrient reservoir activity | 5 | 1 | 3 | 2 | |
GO:0031386 | 蛋白质标签Protein tag | 5 | 0 | 0 | 2 | |
GO:0016530 | 金属伴侣活性Metallochaperone activity | 1 | 1 | 1 | 1 | |
GO:0045182 | 翻译调控活性Translation regulator activity | 2 | 0 | 0 | 2 |
表3 枇杷3个发育阶段花果低温处理与对照比较组中差异表达基因在GO各分类中的数量
Table 3 The number of DEGs in GO classification in low-temperature treatment and control comparison groups of three developmental stages of flowers and young fruits in loquat
GO分类 GO classification | GO序列号 GO accession | 注释功能(词条) Term | 差异基因数 DEGs number | -3 ℃ vs 25 ℃ | ||
---|---|---|---|---|---|---|
花蕾 Flower bud | 花 Flower | 幼果 Young fruit | ||||
生物学过程 Biological process | GO:0008152 | 代谢过程Metabolic process | 2 193 | 298 | 781 | 1 239 |
GO:0009987 | 细胞过程Cellular process | 2 127 | 248 | 661 | 1 075 | |
GO:0044699 | 单一生物过程Single-organism process | 1 863 | 230 | 585 | 1 033 | |
GO:0051179 | 定位Localization | 790 | 108 | 276 | 546 | |
GO:0065007 | 生物调控Biological regulation | 616 | 142 | 270 | 427 | |
GO:0071840 | 细胞组分或生物合成 Cellular component organization or biogenesis | 465 | 40 | 132 | 293 | |
GO:0050896 | 应激反应Response to stimulus | 457 | 94 | 193 | 279 | |
GO:0023052 | 信号Signaling | 122 | 24 | 47 | 77 | |
GO:0051704 | 多生物过程Multi-organism process | 114 | 11 | 39 | 73 | |
GO:0032502 | 发育过程Developmental process | 94 | 25 | 35 | 46 | |
GO:0040007 | 生长Growth | 75 | 2 | 16 | 41 | |
GO:0022414 | 生殖过程Reproductive process | 59 | 15 | 25 | 44 | |
GO:0000003 | 再生Reproduction | 55 | 0 | 26 | 46 | |
GO:0032501 | 多细胞生物过程Multicellular organismal process | 48 | 17 | 22 | 17 | |
GO:0022610 | 生物粘附Biological adhesion | 17 | 0 | 3 | 6 | |
GO:0002376 | 免疫系统过程Immune system process | 7 | 0 | 2 | 0 | |
GO:0048511 | 节律过程Rhythmic process | 3 | 0 | 1 | 1 | |
细胞组分 Cellular component | GO:0005623 | 细胞Cell | 1 808 | 283 | 718 | 1 229 |
GO:0044464 | 细胞部分Cell part | 1 796 | 280 | 710 | 1 222 | |
GO:0043226 | 细胞器Organelle | 1 260 | 201 | 485 | 858 | |
GO:0016020 | 膜Membrane | 1 642 | 294 | 623 | 1 024 | |
GO:0044425 | 膜部分Membrane part | 1 293 | 234 | 495 | 805 | |
GO:0044422 | 细胞器部分Organelle part | 621 | 67 | 218 | 418 | |
GO:0032991 | 大分子复合物Macromolecular complex | 552 | 42 | 208 | 361 | |
GO:0031974 | 膜封闭的管腔Membrane-enclosed lumen | 160 | 11 | 40 | 112 | |
GO:0005576 | 细胞外区域Extracellular region | 87 | 18 | 45 | 61 | |
GO:0030054 | 细胞连接Cell junction | 15 | 4 | 6 | 5 | |
GO:0055044 | 共质体Symplast | 14 | 4 | 5 | 5 | |
GO:0019012 | 病毒Virion | 4 | 0 | 1 | 4 | |
GO:0044423 | 病毒部分Virion part | 4 | 0 | 1 | 4 | |
GO:0009295 | 内核Nucleoid | 11 | 0 | 5 | 6 | |
GO:0044421 | 细胞外区域Extracellular region part | 28 | 3 | 21 | 26 | |
分子功能 | GO:0003824 | 催化活性Catalytic activity | 1 949 | 308 | 725 | 1 222 |
Molecular | GO:0005488 | 联结Binding | 1 670 | 321 | 688 | 1 024 |
function | GO:0005215 | 转运活动Transporter activity | 402 | 53 | 144 | 277 |
GO:0005198 | 结构分子活动Structural molecule activity | 178 | 9 | 102 | 85 | |
GO:0001071 | 核酸联结转录因子活性 Nucleic acid binding transcription factor activity | 109 | 40 | 64 | 68 | |
GO:0016209 | 抗氧化活性Antioxidant activity | 40 | 10 | 21 | 21 | |
GO:0009055 | 电子载体活动Electron carrier activity | 35 | 5 | 13 | 20 | |
GO:0060089 | 分子传感器活动Molecular transducer activity | 36 | 5 | 7 | 8 | |
GO:0004871 | 信号传导活动Signal transducer activity | 36 | 10 | 18 | 23 | |
GO:0000988 | 转录因子活性,蛋白质结合 Transcription factor activity,protein binding | 16 | 4 | 3 | 12 | |
GO:0045735 | 营养库活性Nutrient reservoir activity | 5 | 1 | 3 | 2 | |
GO:0031386 | 蛋白质标签Protein tag | 5 | 0 | 0 | 2 | |
GO:0016530 | 金属伴侣活性Metallochaperone activity | 1 | 1 | 1 | 1 | |
GO:0045182 | 翻译调控活性Translation regulator activity | 2 | 0 | 0 | 2 |
COG 分类 COG classification | 分类名称 Classification name | -3 ℃ vs 25 ℃ | ||
---|---|---|---|---|
花蕾 Flower bud | 花 Flower | 幼果 Young fruit | ||
A | RNA 加工和修饰RNA processing and modification | 0 | 0 | 1 |
B | 染色质结构与动态Chromatin structure and dynamics | 0 | 0 | 1 |
C | 能量产生与转换Energy production and conversion | 41 | 81 | 132 |
D | 细胞周期控制,细胞分裂,染色体分割 Cell cycle control,cell division,chromosome partitioning | 7 | 7 | 13 |
E | 氨基酸转运与代谢Amino acid transport and metabolism | 27 | 72 | 184 |
F | 核苷酸转运与代谢Nucleotide transport and metabolism | 7 | 19 | 56 |
G | 碳水化合物转运与代谢Carbohydrate transport and metabolism | 120 | 150 | 274 |
H | 辅酶转运与代谢Coenzyme transport and metabolism | 26 | 36 | 73 |
I | 脂质转运与代谢Lipid transport and metabolism | 66 | 82 | 156 |
J | 翻译,核糖体结构与生物合成Translation,ribosomal structure and biogenesis | 33 | 89 | 156 |
K | 转录Transcription | 26 | 25 | 33 |
L | 复制,重组与修复Replication,recombination and repair | 15 | 16 | 35 |
M | 细胞壁/膜/包膜生物合成Cell wall/membrane/envelope biogenesis | 36 | 43 | 73 |
N | 细胞运动Cell motility | 2 | 1 | 4 |
O | 翻译后修饰,蛋白质折叠,分子伴侣 Posttranslational modification,protein turnover,chaperones | 59 | 71 | 141 |
P | 无机离子转运与代谢Inorganic ion transport and metabolism | 46 | 80 | 122 |
Q | 次生代谢物生物合成,转运与代谢 Secondary metabolites biosynthesis,transport and catabolism | 42 | 69 | 123 |
R | 一般功能预测General function prediction only | 85 | 126 | 261 |
S | 功能未知Function unknown | 29 | 40 | 48 |
T | 信号转导机制Signal transduction mechanisms | 67 | 70 | 101 |
U | 细胞内运输,分泌和囊泡运输 Intracellular trafficking,secretion,and vesicular transport | 0 | 1 | 8 |
V | 防御机制Defense mechanisms | 10 | 22 | 47 |
W | 细胞外结构Extracellular structures | 0 | 0 | 1 |
X | 移动元件:原噬菌体,转座子Mobilome:prophages,transposons | 7 | 9 | 7 |
Y | 细胞核结构Nuclear structure | 0 | 0 | 0 |
Z | 细胞骨架Cytoskeleton | 2 | 3 | 2 |
表4 枇杷3个发育阶段花果低温处理与对照比较组中差异表达基因在COG各分类中的数量
Table 4 The number of DEGs in COG classification in low-temperature treatment and control comparison groups of three developmental stages of flowers and young fruits in loquat
COG 分类 COG classification | 分类名称 Classification name | -3 ℃ vs 25 ℃ | ||
---|---|---|---|---|
花蕾 Flower bud | 花 Flower | 幼果 Young fruit | ||
A | RNA 加工和修饰RNA processing and modification | 0 | 0 | 1 |
B | 染色质结构与动态Chromatin structure and dynamics | 0 | 0 | 1 |
C | 能量产生与转换Energy production and conversion | 41 | 81 | 132 |
D | 细胞周期控制,细胞分裂,染色体分割 Cell cycle control,cell division,chromosome partitioning | 7 | 7 | 13 |
E | 氨基酸转运与代谢Amino acid transport and metabolism | 27 | 72 | 184 |
F | 核苷酸转运与代谢Nucleotide transport and metabolism | 7 | 19 | 56 |
G | 碳水化合物转运与代谢Carbohydrate transport and metabolism | 120 | 150 | 274 |
H | 辅酶转运与代谢Coenzyme transport and metabolism | 26 | 36 | 73 |
I | 脂质转运与代谢Lipid transport and metabolism | 66 | 82 | 156 |
J | 翻译,核糖体结构与生物合成Translation,ribosomal structure and biogenesis | 33 | 89 | 156 |
K | 转录Transcription | 26 | 25 | 33 |
L | 复制,重组与修复Replication,recombination and repair | 15 | 16 | 35 |
M | 细胞壁/膜/包膜生物合成Cell wall/membrane/envelope biogenesis | 36 | 43 | 73 |
N | 细胞运动Cell motility | 2 | 1 | 4 |
O | 翻译后修饰,蛋白质折叠,分子伴侣 Posttranslational modification,protein turnover,chaperones | 59 | 71 | 141 |
P | 无机离子转运与代谢Inorganic ion transport and metabolism | 46 | 80 | 122 |
Q | 次生代谢物生物合成,转运与代谢 Secondary metabolites biosynthesis,transport and catabolism | 42 | 69 | 123 |
R | 一般功能预测General function prediction only | 85 | 126 | 261 |
S | 功能未知Function unknown | 29 | 40 | 48 |
T | 信号转导机制Signal transduction mechanisms | 67 | 70 | 101 |
U | 细胞内运输,分泌和囊泡运输 Intracellular trafficking,secretion,and vesicular transport | 0 | 1 | 8 |
V | 防御机制Defense mechanisms | 10 | 22 | 47 |
W | 细胞外结构Extracellular structures | 0 | 0 | 1 |
X | 移动元件:原噬菌体,转座子Mobilome:prophages,transposons | 7 | 9 | 7 |
Y | 细胞核结构Nuclear structure | 0 | 0 | 0 |
Z | 细胞骨架Cytoskeleton | 2 | 3 | 2 |
图2 枇杷花蕾低温处理与对照比较差异基因代谢通路富集图
Fig. 4 Pathway assignment based on Kyoto Encyclopedia of Genes and Genomes(KEGG)in low-temperature treatment and control comparison group of flower bud in loquat
图3 枇杷花低温处理与对照比较差异基因代谢通路富集图
Fig. 3 Pathway assignment based on Kyoto Encyclopedia of Genes and Genomes(KEGG)in low-temperature treatment and control comparison group of flower in loquat
图4 枇杷幼果低温处理与对照比较差异基因代谢通路富集图
Fig. 4 Pathway assignment based on Kyoto Encyclopedia of Genes and Genomes(KEGG)in low-temperature treatment and control comparison group of young fruit in loquat
Unigene 编号 Unigene ID | 转录组log2值 RNA-seq log2 FC | qRT-PCR相对表达量 qRT-PCR relative expression | 表达 Express | Nr注释 Nr_ annotation | 来源 Source | ||||
---|---|---|---|---|---|---|---|---|---|
花蕾 Flower bud | 花 Flower | 幼果 Young fruit | 花蕾 Flower bud | 花 Flower | 幼果 Young fruit | ||||
c106174.graph_c0 | 1.88 | 1.90 | 1.56 | 2.86 ± 0.32 | 3.45 ± 0.46 | 2.26 ± 0.34 | 上调Up | ERF37 | 枇杷Eriobotrya japonica |
c123742.graph_c0 | 3.34 | 2.37 | 1.39 | 1.59 ± 0.23 | 4.78 ± 0.35 | 2.56 ± 0.21 | 上调Up | ERF73 | 苹果Malus × domestica |
c125424.graph_c0 | 3.29 | 3.67 | 3.91 | 6.57 ± 0.58 | 4.23 ± 0.52 | 3.12 ± 0.29 | 上调Up | ERF35 | 枇杷Eriobotrya japonica |
c126935.graph_c1 | 2.85 | 2.16 | 1.42 | 1.23 ± 0.15 | 1.85 ± 0.20 | 1.36 ± 0.16 | 上调Up | ERF105 | 苹果Malus × domestica |
c129543.graph_c0 | 2.75 | 2.63 | 1.57 | 1.28 ± 0.12 | 2.35 ± 0.24 | 3.42 ± 0.21 | 上调Up | RAV2 | 枇杷Eriobotrya japonica |
c46214.graph_c0 | 1.55 | 3.52 | 4.65 | 0.79 ± 0.12 | 5.48 ± 0.35 | 2.59 ± 0.38 | 上调Up | ERF60 | 苹果Malus × domestica |
c126492.graph_c0 | -1.90 | -2.04 | -2.54 | -1.02 ± 0.11 | -3.05± 0.36 | -2.13± 0.22 | 下调Down | ERF33 | 苹果Malus × domestica |
c142932.graph_c0 | 2.13 | 2.87 | 1.42 | 1.36 ± 0.21 | 1.25 ± 0.15 | 1.49 ± 0.23 | 上调Up | WRKY33 | 苹果Malus × domestica |
c51471.graph_c0 | 4.92 | 4.59 | 4.00 | 6.89 ± 0.71 | 7.68 ± 0.68 | 6.21 ± 0.52 | 上调Up | NAC 72 | 苹果Malus × domestica |
c130635.graph_c | 1.92 | 2.95 | 1.78 | 2.06 ± 0.16 | 3.46 ± 0.42 | 2.76 ± 0.31 | 上调Up | NAC74 | 梨Pyrus bretschneideri |
c136256.graph_c0 | 3.65 | 2.69 | 2.57 | 4.69 ± 0.53 | 3.76 ± 0.47 | 2.63 ± 0.18 | 上调Up | NAC29 | 苹果Malus × domestica |
c136368.graph_c0 | 1.22 | 1.01 | 1.00 | 0.69 ± 0.10 | 1.38 ± 0.20 | 1.54 ± 0.23 | 上调Up | NAC91 | 苹果Malus × domestica |
表6 枇杷部分低温胁迫响应转录因子相对表达量
Table 6 Relative expression of partial low temperature responding transcription factors in loquat
Unigene 编号 Unigene ID | 转录组log2值 RNA-seq log2 FC | qRT-PCR相对表达量 qRT-PCR relative expression | 表达 Express | Nr注释 Nr_ annotation | 来源 Source | ||||
---|---|---|---|---|---|---|---|---|---|
花蕾 Flower bud | 花 Flower | 幼果 Young fruit | 花蕾 Flower bud | 花 Flower | 幼果 Young fruit | ||||
c106174.graph_c0 | 1.88 | 1.90 | 1.56 | 2.86 ± 0.32 | 3.45 ± 0.46 | 2.26 ± 0.34 | 上调Up | ERF37 | 枇杷Eriobotrya japonica |
c123742.graph_c0 | 3.34 | 2.37 | 1.39 | 1.59 ± 0.23 | 4.78 ± 0.35 | 2.56 ± 0.21 | 上调Up | ERF73 | 苹果Malus × domestica |
c125424.graph_c0 | 3.29 | 3.67 | 3.91 | 6.57 ± 0.58 | 4.23 ± 0.52 | 3.12 ± 0.29 | 上调Up | ERF35 | 枇杷Eriobotrya japonica |
c126935.graph_c1 | 2.85 | 2.16 | 1.42 | 1.23 ± 0.15 | 1.85 ± 0.20 | 1.36 ± 0.16 | 上调Up | ERF105 | 苹果Malus × domestica |
c129543.graph_c0 | 2.75 | 2.63 | 1.57 | 1.28 ± 0.12 | 2.35 ± 0.24 | 3.42 ± 0.21 | 上调Up | RAV2 | 枇杷Eriobotrya japonica |
c46214.graph_c0 | 1.55 | 3.52 | 4.65 | 0.79 ± 0.12 | 5.48 ± 0.35 | 2.59 ± 0.38 | 上调Up | ERF60 | 苹果Malus × domestica |
c126492.graph_c0 | -1.90 | -2.04 | -2.54 | -1.02 ± 0.11 | -3.05± 0.36 | -2.13± 0.22 | 下调Down | ERF33 | 苹果Malus × domestica |
c142932.graph_c0 | 2.13 | 2.87 | 1.42 | 1.36 ± 0.21 | 1.25 ± 0.15 | 1.49 ± 0.23 | 上调Up | WRKY33 | 苹果Malus × domestica |
c51471.graph_c0 | 4.92 | 4.59 | 4.00 | 6.89 ± 0.71 | 7.68 ± 0.68 | 6.21 ± 0.52 | 上调Up | NAC 72 | 苹果Malus × domestica |
c130635.graph_c | 1.92 | 2.95 | 1.78 | 2.06 ± 0.16 | 3.46 ± 0.42 | 2.76 ± 0.31 | 上调Up | NAC74 | 梨Pyrus bretschneideri |
c136256.graph_c0 | 3.65 | 2.69 | 2.57 | 4.69 ± 0.53 | 3.76 ± 0.47 | 2.63 ± 0.18 | 上调Up | NAC29 | 苹果Malus × domestica |
c136368.graph_c0 | 1.22 | 1.01 | 1.00 | 0.69 ± 0.10 | 1.38 ± 0.20 | 1.54 ± 0.23 | 上调Up | NAC91 | 苹果Malus × domestica |
[1] |
An D, Yang J, Zhang P. 2012. Transcriptome profiling of low temperature treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. BMC Genomics, 13:64.
doi: 10.1186/1471-2164-13-64 URL |
[2] |
Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biology, 11:R106.
doi: 10.1186/gb-2010-11-10-r106 URL |
[3] |
Bates L S, Waldren R P, Teare I D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39:205-207.
doi: 10.1007/BF00018060 URL |
[4] | Beauchamp C O, Fridovich I. 1981. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels. Anal Biochem, 44:867-880. |
[5] | Berg J M, Tymoczko J L, Stryer L. 2010. Glycolysis and gluconeogenesis. Biochemistry,7th edn. New York:WH Freeman. |
[6] |
Bocian A, Zwierzykowski Z, Rapacz M, Koczyk G, Ciesiołka D, Kosmala A. 2015. Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance. J Appl Genet, 56:439-449.
doi: 10.1007/s13353-015-0293-6 URL |
[7] |
Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72:248-254.
pmid: 942051 |
[8] |
Chen J H, Tian Q A, Pang T, Jiang L B, Wu R L, Xia X L, Yin W L. 2014. Deep-sequencing transcriptome analysis of low temperature perception in a desert tree,Populus euphratica. BMC Genomics, 15(1):326.
doi: 10.1186/1471-2164-15-326 URL |
[9] | Chen Jun-wei, Sun Jun, Li Xiao-ying, Xu Hong-xia, Zhou Xiao-yin, Jiang Lu-hua. 2017. Study on later flowering cultivation techniques to avoid freezing in white loquat. Journal of Zhejiang Agricultural Sciences, 58(3):417-419,425. (in Chinese) |
陈俊伟, 孙钧, 李晓颖, 徐红霞, 周晓音, 姜路花. 2017. 白肉枇杷晚花避冻栽培技术探讨. 浙江农业科学, 58(3):417-419,425. | |
[10] |
Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Zhang X, Ma H, Ming F. 2014. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol, 55:604-619.
doi: 10.1093/pcp/pct204 URL pmid: 24399239 |
[11] |
Cheng H Y, Song S Q. 2008. Possible involvement of reactive oxygen species scavenging enzymes in desiccation sensitivity of Antiaris toxicaria seeds and axes. J Integr Plant Biol, 50:1549-1556.
doi: 10.1111/jipb.2008.50.issue-12 URL |
[12] | Cong Qing, Ni Xiao-xiang, Cheng Long-jun. 2020. Ectopic express of EgrNAC1 enhances cold tolerance and sensitivity to drought and salt in Arabidopsis thaliana. Journal of Nuclear Agriculture Sciences, 34(7):567-575. (in Chinese) |
从青, 倪晓祥, 程龙军. 2020. 异源表达EgrNAC1提高拟南芥抗寒性和对干旱、高盐的敏感性. 核农学报, 34(7):567-575. | |
[13] | Degenkolbe T, Giavalisco P, Zuther E, Seiwert B, Hincha D K, Willmitzer L. 2012. Differential remodeling of the lipidome during cold acclimation in natural accessions of Arabidopsis thaliana. Plant J, 32:972-982. |
[14] |
Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. 1981. Leaf senescence:correlated with increased levels of membrane-permeability and lipid peroxidation,and decreased levels of superoxide dismutase and catalase. J Exp Bot, 32:93-101.
doi: 10.1093/jxb/32.1.93 URL |
[15] | Du Wen-li, Chen Zhong-shan, Xu Rui-xiang, Xu Tong-wei, Gao Shan, Wen Qing-fang. 2021. Physiological response and differentially expressed genes analysis of transcriptome in Momordica charantia L. leaf under cold stress. Journal of Nuclear Agriculture Sciences, 35(2):338-348. (in Chinese) |
杜文丽, 陈中钐, 许端祥, 徐同伟, 高山, 温庆放. 2021. 低温胁迫下苦瓜叶片转录组差异基因分析及生理响应特征. 核农学报, 35(2):338-348. | |
[16] |
Elstner E F, Heupel A. 1976. Inhibition of nitrite formation from hydroxylammonium chloride:a simple assay for superoxide dismutase. Anal Biochem, 70:616-620.
pmid: 817618 |
[17] | Fujikawa S, Kasuga J, Takata N, Arakawa K. 2009. Factors related to change of deep supercooling capability in xylem parenchyma cells of tress// Gusta L,Wisnieswski M,Tanino K K. Plant cold hardiness from the laboratory to the field. Wallingford: CABI Press. |
[18] |
Hamilton C A, Good A G, Taylor G J. 2001. Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol, 125:2068-2077.
pmid: 11299386 |
[19] |
Kawamura Y, Uemura M. 2003. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J, 36:141-154.
pmid: 14535880 |
[20] |
Kim C Y, Vo K, Nguyen C D, Jeong D H, Lee S K, Kumar M, Kim S R, Park S H, Kim J J, Jeon J S. 2016. Functional analysis of a cold-responsive rice WRKY gene,OsWRKY71. Plant Biotechnol Rep, 10(1):13-23.
doi: 10.1007/s11816-015-0383-2 URL |
[21] |
Klotke J, Kopka J, Gatzke N, Heyer A. 2004. Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation-evidence for a role of raffinose in cold acclimation. Plant Cell Environ, 27:1395-1404
doi: 10.1111/pce.2004.27.issue-11 URL |
[22] | Klowden M J. 2007. Physiological systems in insects. Burlington: Academic Press. |
[23] |
Kovi M R, Ergon A, Rognli O A. 2016. Freezing tolerance revisited effects of variable temperatures on gene regulation in temperate grasses and legumes. Curr Opin Plant Biol, 33:140-146.
doi: 10.1016/j.pbi.2016.07.006 URL |
[24] |
Lei X, Xiao Y, Xia W, Mason A S, Yang Y, Ma Z, Peng M. 2014. RNA-seq analysis of oil palm under cold stress reveals a different C-repeat binding factor(CBF)mediated gene expression pattern in Elaeis guineensis compared to other species. PLoS ONE, 9:e114482.
doi: 10.1371/journal.pone.0114482 URL |
[25] | Liu Jiao-jiao, Wang Xue-min, Ma Lin, Cui Miao-miao, Cao Xiao-yu, Zhao Wei. 2020. Isolation,identification,and response to abiotic stress of MsWRKY42 gene from Medicago sativa L. Scientia Agricultura Sinica, 53(17):3455-3466. (in Chinese) |
刘佼佼, 王学敏, 马琳, 崔苗苗, 曹晓宇, 赵威. 2020. 紫花苜蓿MsWRKY42的分离、鉴定及其对非生物胁迫的响应. 中国农业科学, 53(17):3455-3466. | |
[26] |
Liu J Y, Men J L, Chang M C, Feng C P, Yuan L G. 2017. iTRAQ based quantitative proteome revealed metabolic changes of Flammulina velutipes mycelia in response to cold stress. J Proteom, 156:75-84.
doi: 10.1016/j.jprot.2017.01.009 URL |
[27] |
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. 1998. Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression,respectively,in Arabidopsis. Plant Cell, 10:1391-1406.
pmid: 9707537 |
[28] |
Lv J H, Liu Z B, Liu Y H, Ou L J, Deng M H, Wang J, Song J S, Ma Y Q, Chen W C, Zhang Z Q, Dai X Z, Zou X X. 2020. Comparative transcriptome analysis between cytoplasmic male sterile line and its maintainer during the floral bud development of pepper. Horticultural Plant Journal, 6(2):89-98.
doi: 10.1016/j.hpj.2020.01.004 URL |
[29] |
Mittler R. 2002. Oxidative stress,antioxidants and stress tolerance. Trends Plant Sci, 7:405-410.
pmid: 12234732 |
[30] |
Moellering E R, Muthan B, Benning C. 2010. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science, 330:226-228.
doi: 10.1126/science.1191803 pmid: 20798281 |
[31] | Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 22:867-880. |
[32] | Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi- Shinozaki. 2012. NAC transcription factors in plant abiotic stress responses. BBA Gene Regul Mech, 1819:97-103. |
[33] |
Nakashima K, Tran L S, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. 2007. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 51:617-630.
pmid: 17587305 |
[34] |
Qu Y T, Mei D, Zhang Z Q, Dong J L, Tao W. 2016. Overexpression of the Medicago falcata NAC transcription factor MfNAC3 enhances cold tolerance in Medicago truncatula. Environ Exp Bot, 129:67-76.
doi: 10.1016/j.envexpbot.2015.12.012 URL |
[35] |
Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K. 2010. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genom, 284:173-183.
doi: 10.1007/s00438-010-0557-0 URL |
[36] |
Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, Baren M J, Salzberg S L, Wold B J, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotech, 28(5):511-515.
doi: 10.1038/nbt.1621 URL |
[37] |
Wang Z Q, Xu X Y, Gong Q Q, Xie C, Fan W, Yang J L, Lin Q S, Zheng S J. 2014. Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants. J Proteom, 98:189-205.
doi: 10.1016/j.jprot.2013.12.023 URL |
[38] |
Xu H X, Li X Y, Chen J W. 2017. Comparative transcriptome profiling of freezing stress responses in loquat(Eriobotrya japonica) fruitlets. J Plant Res, 130:893-907.
doi: 10.1007/s10265-017-0942-4 URL |
[39] | Zhang F, Wang Y Q, Zhu K, Zhang Z P, Zhu Z X, Lu F, Zou J Q. 2019. Comparative transcriptome analysis of different salt tolerance sorghum (Sorghum bicolor L. Moench)under salt stress. Scientia Agricultura Sinica, 52(22):4002-4015. (in Chinese) |
张飞, 王艳秋, 朱凯, 张志鹏, 朱振兴, 卢峰, 邹剑秋. 2019. 不同耐盐性高粱在盐逆境下的比较转录组分析. 中国农业科学, 52(22):4002-4015. | |
[40] |
Zhang Y, Dong W, Zhao X H, Song A, Guo K W, Liu Z J, Zhang L S. 2019. Transcriptomic analysis of differentially expressed genes and alternative splicing events associated with crassulacean acid metabolism in orchids. Horticultural Plant Journal, 5(6):268-280.
doi: 10.1016/j.hpj.2019.12.001 |
[41] |
Zheng X, Chen B, Lu G, Han B. 2009. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun, 379:985-999.
doi: 10.1016/j.bbrc.2008.12.163 URL |
[42] |
Zou C, Jiang W, Yu D. 2010. Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot, 61(14):3901-3914.
doi: 10.1093/jxb/erq204 URL |
[43] | Zou C, Yu J. 2010. Analysis of the cold-responsive transcriptome in the mature pollen of Arabidopsis. Plant Biol, 53:400-416. |
[1] | 叶子茂, 申晚霞, 刘梦雨, 王 彤, 张晓楠, 余 歆, 刘小丰, 赵晓春, . R2R3-MYB转录因子CitMYB21对柑橘类黄酮生物合成的影响[J]. 园艺学报, 2023, 50(2): 250-264. |
[2] | 宋艳红, 陈亚铎, 张晓玉, 宋 盼, 刘丽锋, 李 刚, 赵 霞, 周厚成, . 森林草莓FvbHLH130转录因子调控植株提前开花[J]. 园艺学报, 2023, 50(2): 295-306. |
[3] | 韩 睿, 钟雄辉, 陈登辉, 崔 建, 乐祥庆, 颉建明, 康俊根, . 黑腐病菌效应因子XopR的甘蓝靶标基因BobHLH34的克隆及功能分析[J]. 园艺学报, 2023, 50(2): 319-330. |
[4] | 李瑞雅, 宋程威, 牛童非, 魏祯祯, 郭丽丽, 侯小改. ‘海黄’牡丹花挥发性物质释放规律及PsGDS的克隆与表达分析[J]. 园艺学报, 2023, 50(2): 331-344. |
[5] | 张爱玲, 涂红艳, 肖 望, 钟晓晴, 陆秋婵, 成丽萍, 林晓萍, 麦钰玲. 白姜花二倍体与四倍体切花形态与显微结构变化观察[J]. 园艺学报, 2023, 50(2): 345-358. |
[6] | 任 菲, 卢苗苗, 刘吉祥, 陈信立, 刘道凤, 眭顺照, 马 婧. 蜡梅胚胎晚期丰富蛋白基因CpLEA的表达及抗性分析[J]. 园艺学报, 2023, 50(2): 359-370. |
[7] | 蒋 彧, 涂勋良, 何俊蓉. 国兰叶色突变体叶片差异表达基因分析[J]. 园艺学报, 2023, 50(2): 371-381. |
[8] | 田明康, 徐智祥, 刘秀群, 眭顺照, 李名扬, 李志能, . 蜡梅AP2亚家族转录因子鉴定及CpAP2-L11功能研究[J]. 园艺学报, 2023, 50(2): 382-396. |
[9] | 王梦梦, 孙德岭, 陈 锐, 杨迎霞, 张 冠, 吕明杰, 王 倩, 谢添羽, 牛国保, 单晓政, 谭 津, 姚星伟, . 花椰菜核心种质的构建与评价[J]. 园艺学报, 2023, 50(2): 421-431. |
[10] | 杨植, 张川疆, 杨芯芳, 董梦怡, 王振磊, 闫芬芬, 吴翠云, 王玖瑞, 刘孟军, 林敏娟. 枣与酸枣杂交后代果实遗传倾向及混合遗传分析[J]. 园艺学报, 2023, 50(1): 36-52. |
[11] | 刘艺平, 倪梦辉, 吴芳芳, 刘红利, 贺丹, 孔德政. 荷花花器官性状与SSR标记的关联分析[J]. 园艺学报, 2023, 50(1): 103-115. |
[12] | 蔺海娇, 梁雨晨, 李玲, 马军, 张璐, 兰振颖, 苑泽宁. 薰衣草CBF途径相关耐寒基因挖掘与调控网络分析[J]. 园艺学报, 2023, 50(1): 131-144. |
[13] | 赵雪艳, 王琪, 王莉, 王方圆, 王庆, 李艳. 基于比较转录组的延胡索组织差异性表达分析[J]. 园艺学报, 2023, 50(1): 177-187. |
[14] | 邵凤清, 罗秀荣, 王奇, 张宪智, 王文彩. 果实成熟过程中的DNA甲基化调控研究进展[J]. 园艺学报, 2023, 50(1): 197-208. |
[15] | 吕 毅, 隋 静, 薛玉平, 黄海静, 孟艳玲, 王同勇, 杨 鹤, . 无花果新品种‘锦青’[J]. 园艺学报, 2022, 49(S2): 45-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司