园艺学报 ›› 2021, Vol. 48 ›› Issue (9): 1653-1664.doi: 10.16420/j.issn.0513-353x.2020-0561
郭学民*(), 王芯蕊, 王影影, 李政, 苗宁宁, 王昭君
收稿日期:
2021-06-18
修回日期:
2021-08-20
出版日期:
2021-09-25
发布日期:
2021-09-30
通讯作者:
郭学民
E-mail:xueminguo@126.com
基金资助:
GUO Xuemin*(), WANG Xinrui, WANG Yingying, LI Zheng, MIAO Ningning, WANG Zhaojun
Received:
2021-06-18
Revised:
2021-08-20
Online:
2021-09-25
Published:
2021-09-30
Contact:
GUO Xuemin
E-mail:xueminguo@126.com
摘要:
以龙须枣(Ziziphus jujuba Mill var. tortuosa)一年生枝条的扭曲枝段和直立枝段为试验材料,采用木材切片法和木材离析技术,观察比较枝条形态、解剖结构特点及导管分子特征。扭曲枝段和直立枝段解剖结构的差异主要表现在异常次生结构的数量、形态和分布上。与直立枝段相比较,扭曲枝段附加维管束数量较多,出现3个附加维管束相毗邻,相对集中于枝条内弯处;木间韧皮部的数量与直立枝段相差不多,其末端膨大,与直立枝段的略带弯曲的椭圆柱状不同,相对集中分布于枝条外弯处;髓维管束数量略微减少。从细胞水平看,扭曲枝段内弯处和外弯处导管分子均属于网纹导管、单穿孔,具有多种形态。其中,内弯处两端有尾和两端倾斜的导管分子数分别比其外弯处少28.0%和20.2%,两端无尾、一端倾斜和两端水平的导管分子数分别多17.9%、375.0%和200.0%,一端有尾导管分子数相同,导管分子端壁倾角比外弯处大10.1%,导管分子长度比外弯处的短16.4%,直径比外弯处的小18.6%。提出 “异常结构—空间差异—相互协调”的假说。龙须枣的曲枝性可能是由附加维管束、木间韧皮部和髓维管束等3种异常次生结构的数量、机械拉力、同化产物的输导和利用在空间上的差异和相互协调所造成的枝条不同位置的生长速率和受力不均衡的结果。
中图分类号:
郭学民, 王芯蕊, 王影影, 李政, 苗宁宁, 王昭君. 龙须枣曲枝的解剖学观察[J]. 园艺学报, 2021, 48(9): 1653-1664.
GUO Xuemin, WANG Xinrui, WANG Yingying, LI Zheng, MIAO Ningning, WANG Zhaojun. Anatomical Observation on the Tortuousness of Ziziphus jujuba var. tortuosa Branches[J]. Acta Horticulturae Sinica, 2021, 48(9): 1653-1664.
图1 龙须枣枝条形态 TB:扭曲枝段;TS:直立枝段;IS:扭曲枝段内弯处;OS:扭曲枝段外弯处。
Fig. 1 The branch shape of Ziziphus jujuba var. tortuosa TB:Twisted tortuous branch segment;TS:Twisted straight branch segment;IS;The inner bend of twisted tortuous branch segment;OS:The outer bend of twisted tortuous branch segment.
图2 龙须枣直立枝段与扭曲枝段枝皮的解剖结构比较 1:直立枝段;2:扭曲枝段。a1:完整的枝条横切,示5个分散的附加维管束(AB)、2个木间韧皮部(IP)和4个髓维管束(MB);a2:枝条横切,内弯处切口用箭头示出,以及枝条的10个附加维管束中有9个(包括2个毗邻附加维管束和4个单独附加维管束,其中1个毗邻附加维管束含3个附加维管束,另1个含2个附加维管束)相对集中在内弯处,而5个木间韧皮部中有4个相对集中在枝条外弯处;b:枝皮,示表皮(Ep)、周皮(Pe)、皮层(Co)、次生韧皮部纤维带(SB)和次生韧皮部(SP);c:枝皮外侧纵切,示封闭型皮孔(Le)的结构、2条平行的次生韧皮纤维带(SB)和2个分泌腔(SC);d1:1个偏心的起源于次生木质部(SX)的附加维管束横切图,示其木质部的非对称性结构和外侧的次生韧皮纤维带;d2:正心的、起源于外周薄壁细胞的附加维管束横切;e1:2个毗邻的正心的起源于外周薄壁细胞的附加维管束(AB)与1个正在发育的正心的起源于外周薄壁细胞的附加维管束(圆圈)横切图,示次生韧皮纤维带位于附加维管束内侧;e2:1个偏心的、来源于次生木质部分裂的附加维管束,示其与次生木质部相连接(箭头)及其外侧弧状次生韧皮纤维带;f1:源于外周薄壁细胞的附加维管束(AB)纵切图,示周韧维管束独立于次生木质部,沿枝条轴向伸长;g1:附加维管束的纵切,箭头指向垂直于枝条长轴方向排列的木质部细胞;h1:附加维管束末端的纵切放大图,示由排列不规则的次生木质部细胞构成的球形末端;i1:2个毗邻相连的附加维管束横切;j1:1个偏心的、起源于次生木质部的附加维管束横切放大图,与次生木质部相连接;f2:3个毗邻附加维管束横切,示1个起源于外周薄壁细胞的附加维管束(左)和2个由次生木质部分裂形成的附加维管束相互连接,以及次生韧皮纤维带的局部分布;g2:1个起源于外周薄壁细胞的附加维管束纵切,示其梭形形态以及位于附加维管束内侧的次生韧皮纤维带;h2:1个由次生木质部裂分形成的附加维管束纵切,示其椭圆形形态、位于附加维管束外侧的次生韧皮纤维带以及2个分泌腔;k1:枝条纵切,示2个起源于外周薄壁细胞(独立于次生木质部)的附加维管束(AB),次生韧皮纤维带(SB)在其内侧,和起源于次生木质部(与次生木质部相连)的附加维管束(AB)(左),次生韧皮纤维带(SB)在其外侧(双箭头);i2、j2:1个与次生木质部连接的附加维管束纵切,示2条位于附加维管束外侧的次生韧皮纤维带。PX. 初生木质部;Sc. 石细胞;Pi. 髓。
Fig. 2 Comparison of anatomical structures of bark between twisted straight and twisted tortuous branch segments of Ziziphus jujuba var. tortuosa branches 1. Twisted straight branch segment;2. Twisted tortuous branch segment. a1. Complete branch transection,showing distribution of five scattered auxillary bundles(AB),two interxylary phloems(IP)and four medullary bundles(MB);a2. Transection of the branch,showing the incision(arrow)marking the inner bend of twisted tortuous branch segment,and that nine of the ten auxillary bundles which consisted of two adjacent auxillary bundles and four separate auxillary bundles,in which one adjacent auxillary bundle contained three auxillary bundles,and the other contained two auxillary bundles,were relatively concentrated on the inner bend of the branch,while four of the five interxylary phloems were relatively concentrated on the outer bend of the branch;b. The bark,showing epidermis(Ep),periderm(Pe),cortex(Co),secondary phloem fiber band(SB)and secondary phloem(SP);c. Longitudinal section of the bark,showing the structure of the closed lenticel (Le),two parallel secondary phloem fiber bands(SB)and two secretory cavities(SC);d1. Detailed view of one off-center auxillary bundle transection formed by the fission of secondary xylem(SX),showing the asymmetric structure of its xylem and lateral secondary phloem fiber band;d2. Transection of an in-center auxillary bundle originated from peripheral parenchyma cells;e1. Two in-center auxillarybundles(AB)originated from peripheral parenchyma cells and one developing and in-center auxillary bundle(circle)originated from peripheral parenchyma cells,showing the secondary phloem fiber band on the inside of auxillary bundles;e2. Transection of a off-center auxillary bundle formed by the fission of secondary xylem,showing the pattern of its connection with secondary xylem(arrow)and its outer arc-shaped secondary phloem fiber band;f1. Longitudinal section of one auxillary bundle(AB)originated from peripheral parenchyma cells,the arrow showing some secondary xylem cells arranged perpendicular to the long axis of the branch. h1. Longitudinal section through the end of one auxillary bundle,showing a spherical end of an auxillary bundle consisting of irregularly arranged secondary xylem cells;i1. Transection of two adjacent auxillary bundles;j1. Detailed view of transection of one off-center auxillary bundle formed by the fission of secondary xylem,showing its connection with secondary xylem;f2. Transection of three adjacent auxillary bundles connected together,showing one auxillary bundle(Left)originated from peripheralparenchyma cells and two auxillary bundles formed by the fission of secondary xylem,the pattern of their interconnection and the distribution of secondary phloem fiber band;g2. Longitudinal section of one auxillary bundle originated from peripheral parenchyma cells,showing its fusiform shape and secondary phloem band located in the inner side of the auxillary bundle;h2. Longitudinal section of one auxillary bundle fiberformed by the fission of secondary xylem,showing its oval shape,secondary phloem fiber band located outside the auxillary bundle and two secretory cavities;k1. Tangential section of one branch, showing two auxillary bundles(AB)originated from peripheral parenchyma cells(Independent of the secondary xylem),in which the secondary phloem fiber band(SB)was on its inner side,and one auxillary bundle(AB) (Left)formed by the fission of secondary xylem(Associated with the secondary xylem),in which the secondary phloem fiber band(SB)was outside it(double arrows);i2,j2. Section of one auxillary bundle connecting with secondary xylem,Longitudinal showing two secondary phloem fiber bands located outside the auxillary bundle. PX. Primary xylem;Sc. Sclereid;Pi. Pith.
图3 龙须枣直立枝段与扭曲枝段次生木质部和髓的解剖结构比较 1:直立枝段;2:扭曲枝段。a1:次生木质部横切,示导管(V)和单列射线(UR);b1:次生木质部纵切,示网纹导管和单列射线的高度;c1:枝条横切,示木间韧皮部(IP)与次生木质部(SX)外的次生韧皮纤维带分布;d1:木间韧皮部外侧横切放大图,示韧皮部的组成;e1:木间韧皮部髓端放大图,示单向形成层(UC);f1:次生木质部切向切面,示木间韧皮部横切面的椭圆形形态;g1:髓横切;h1. 髓纵切;i2:图2中a2的局部放大,示4个木间韧皮部的分布及其末端膨大的形态和1个髓维管束(MB)形态;j1. 1个近对称的髓维管束横切放大图,示其近对称性形态;k1. 1个椭圆形髓维管束横切放大图,示其非对称性形态;l1:髓维管束中央纵切,中央韧皮组织和外侧次生木质部。AB:附加维管束;SB:次生韧皮纤维带;PX:初生木质部;Pi:髓。
Fig. 3 Comparison of anatomical structures of secondary xylem and pith between twisted straight and twisted tortuous branch segments of Z. jujuba var. tortuosa branches 1. Twisted straight branch segment;2. Twisted tortuous branch segment. a1. Transection of secondary xylem,showing vessels(V)and uniserate rays (UR);b1. Tangential section of secondary xylem,showing reticulate vessel and the height of uniserate ray;c1. Transection of the branch, showing the distribution of interxylary phloems(IP)and secondary phloem fiber band outside secondary xylem;d1. Detailed view of transaction of the outer part of an interxylary phloem,showing composition of the phloem;e1. Detailed view of pith end of interxylary phloem,showing unidirectional cambium;f1. Tangential section of secondary xylem,showing the oval shape of the interxylary phloem transection;g1. Transection of the pith;h1. Longitudinal section of pith;i2. Detailed view of figure a2 in fig.2,showing the distributions of four interxylary phloems and their shapes of enlarged ends,and the shape of one medullary bundle(MB);j1. Detailed view of one medullary bundle transection,showing its nearly symmetrical shape;k1. Detailed view of one elliptical medullary bundle transection,showing its asymmetric shape;l1. Detailed view of longitudinal section through one medullary bundle,showing central phloem tissue and peripheral secondary xylem. AB:Auxillary bundles;SB:Secondary phloem fiber band;PX:Primary xylem;Pi:Pith.
图4 龙须枣扭曲枝段导管分子形态 A. 两端近水平,两端具尾;B. 两端倾斜,一端具尾;C. 两端倾斜,两端无尾;D. 一端近水平,一端具尾;E. 两端近水平,两端无尾;E. 两端倾斜,两端具尾。
Fig. 4 Vessel element shapes in twisted tortuous branch segment of Ziziphus jujuba var. tortuosa branches A. Both end walls are horizontal,and tails in both end walls;B. Both end walls are slope,and tail in one end wall;C. Both end walls are slope,and no tail in either end wall;D. One end wall is horizontal,and tail in one end wall;E. Both end walls are near horizontal,and no tail in either end walls;F. Both end walls are slope,and tails in both end walls.
部位 Position | 大小/µm Size | 尾类型 Tail type | |||
---|---|---|---|---|---|
长度 Length | 直径 Diameter | 两端有尾 Both tail | 一端有尾 One tail | 两端无尾 No tail | |
内弯侧 Inner bend | 259.3 ± 79.1 | 39.8 ± 11.5 | 18 | 36 | 46 |
外弯侧 Outer bend | 310.3 ± 31.2** | 48.9 ± 11.4* | 25 | 36 | 39 |
表1 龙须枣扭曲枝段中导管分子大小与尾类型
Table 1 Size and frequency of tail types of vessel elements in twisted tortuous branch segment of Z. jujuba var. tortuosa
部位 Position | 大小/µm Size | 尾类型 Tail type | |||
---|---|---|---|---|---|
长度 Length | 直径 Diameter | 两端有尾 Both tail | 一端有尾 One tail | 两端无尾 No tail | |
内弯侧 Inner bend | 259.3 ± 79.1 | 39.8 ± 11.5 | 18 | 36 | 46 |
外弯侧 Outer bend | 310.3 ± 31.2** | 48.9 ± 11.4* | 25 | 36 | 39 |
材料 Material | 端壁类型比例/% End wall type | 端壁倾角/° End wall slope | ||
---|---|---|---|---|
两端倾斜 Both end walls are slope | 一端倾斜 One end wall is slope | 两端水平 Both end walls are horizontal | ||
内弯处The inner bend | 75 | 19 | 6 | 53.2 ± 13.9** |
外弯处The outer bend | 94 | 4 | 2 | 48.3 ± 11.9 |
表2 龙须枣扭曲枝段中导管分子端壁类型与端壁倾角
Table 2 Frequency of types of end wall slope of vessel elements in twisted tortuous branch segment of Z. jujuba var. tortuosa
材料 Material | 端壁类型比例/% End wall type | 端壁倾角/° End wall slope | ||
---|---|---|---|---|
两端倾斜 Both end walls are slope | 一端倾斜 One end wall is slope | 两端水平 Both end walls are horizontal | ||
内弯处The inner bend | 75 | 19 | 6 | 53.2 ± 13.9** |
外弯处The outer bend | 94 | 4 | 2 | 48.3 ± 11.9 |
[1] | Carlquist S. 2013. Interxylary phloem:diversity and functions. Brittonia, 62(4):477-495. |
[2] | Cui Hong-wen. 2011. Introduction of eight new varieties of ornamental jujube. Yantai Fruits,(4):18-20. (in Chinese) |
崔洪文. 2011. 介绍八种观赏枣新优品种. 烟台果树,(4):18-20. | |
[3] | Diao Yi, Han Hong-bo, Jiang Jian, Zheng Yi. 2014. RAPD analysis of different Ziziphus jujuba Mill. varieties. Hubei Agricultural Sciences, 53(1):114-115,121. (in Chinese) |
刁毅, 韩洪波, 蒋健, 郑毅. 2014. 不同枣品种的RAPD分析. 湖北农业科学, 53(1):114-115,121. | |
[4] | Dui Bao-feng. 2013. Twisted and vigorous Ziziphus jujuba‘Tortuosa’. Flowers,(2):10. (in Chinese) |
兑宝峰. 2013. 虬曲苍劲的龙须枣. 花卉,(2):10. | |
[5] | Franssen J M. 1980. Phototropism in seedlings of sunflower,Helianthus annuus L. Wageningen:Meded. Landbouwhogesch:1-84. |
[6] | Guo Xue-min, Xiao Xiao, Liang Li-song, Zhang Li-bin, Gao Rong-fu, Wang Gui-xi. 2011. Effects of grafted Prunus persica‘21th Century’on the characters of vessel elements in root system of P. persica stock. Acta Horticulturae Sinica, 38(6):1147-1152. (in Chinese) |
郭学民, 肖啸, 梁丽松, 张立彬, 高荣孚, 王贵禧. 2011. ‘21世纪’桃对其砧木毛桃根系导管分子性状的影响. 园艺学报, 38(6):1147-1152. | |
[7] | Hu Zheng-hai. 2010. Plant anatomy. Beijing: Higher Education Press:251. (in Chinese) |
胡正海. 2010. 植物解剖学. 北京: 高等教育出版社:251. | |
[8] | Hu Zheng-hai, Zhang Hong. 1993. Abnormal structural anatomy of plants. Beijing: Higher Education Press:8-20,41-59,124-128. (in Chinese) |
胡正海, 张泓. 1993. 植物异常结构解剖学. 北京: 高等教育出版社:8-20,41-59,124-128. | |
[9] |
Kato T, Morita M T, Fukaki H, Yamauchi Y, Uehara M, Niihama M, Tasaka M. 2002. SGR2,a phospholipase-like protein,and ZIG/SGR4,a SNARE,are involved in the shoot gravitropism of Arabidopsis. Plant Cell, 14:33-46.
doi: 10.1105/tpc.010215 URL |
[10] | Klynstra F B, Lycklama J C, Siebers A M, Burggraaf P D. 1964. On the anatomy of the woody stem of the twisted hazel,Corylus avellana L. ‘Contorta’. Plant Biology, 13:189-208. |
[11] | Li Zheng-li. 1996. Plant tissue sectioning. Beijing: Beijing University Press:91-92. (in Chinese) |
李正理. 1996. 植物组织制片学. 北京: 北京大学出版社:91-92. | |
[12] |
Lin J, Gunter L E, Harding S A, Kopp R F, Mccoyd R P, Tsai C J, Tuskan G A, Sart L B. 2007. Development of AFLP and RAPD markers linked to a locus associated with twisted growth in corkscrew willow(Salix matsudana‘Tortuosa’). Tree Physiology, 27:1575-1583.
doi: 10.1093/treephys/27.11.1575 URL |
[13] | Ma Guang-yue, Chen Hong-yu, Shen Zhong-mei, Li Ying. 2012. Screening of culture-substrate of ornamental tailihong and Long jujube varieties. Journal of Shanxi Agricultural Sciences, 40(11):1169-1171,1184. (in Chinese) |
马光跃, 陈红玉, 申仲妹, 李瑛. 2012. 观赏枣胎里红、龙枣盆栽基质的筛选. 山西农业科学, 40(11):1169-1171,1184. | |
[14] | Ma Guang-yue, Chen Hong-yu, Shen Zhong-mei, Zhang Jin-mei. 2011. Effect of ratios of rootstock to scion in grafting propagation on germination and growth in three cultivars of ornamental Chinese Jujube. Journal of Shanxi Agricultural Sciences, 39(3):235-237. (in Chinese) |
马光跃, 陈红玉, 申仲妹, 张金梅. 2011. 不同砧穗比对3个观赏枣品种萌芽及生长的影响. 山西农业科学, 39(3):235-237. | |
[15] | Ma Guang-yue, Chen Hong-yu, Yang Jun-qiang, Shen Zhong-mei. 2017. Study on root seedling planting and grafting of ornamental jujube in the same year. Journal of Shanxi Agricultural Sciences, 45(4):591-595. (in Chinese) |
马光跃, 陈红玉, 杨俊强, 申仲妹. 2017. 当年定植根蘖苗高接观赏枣试验. 山西农业科学, 45(4):591-595. | |
[16] |
Martínezalcantára B, Rodriguez-Gamir J, Martínez-Cuenca M R, Iglesias D J, Primo-Millo E, Forner-Giner M A. 2013. Relationship between hydraulic conductance and citrus dwarfing by the Flying Dragon rootstock(Poncirus trifoliata L. Raft var. monstruosa). Trees, 27:629-638.
doi: 10.1007/s00468-012-0817-1 URL |
[17] | Mi Nan. 2012. Characteristics of ornamental jujube varieties and their garden application value. Modern Agricultural Science and Technology,(3):245-246. (in Chinese) |
米楠. 2012. 观赏枣品种特性及其园林应用价值. 现代农业科技,(3):245-246. | |
[18] |
Neto da C I L, Pace M R, Douglas N A, Nee M H, de Sá C F C, Moore M J, Angyalossy V. 2020. Diversity,distribution,development,and evolution of medullary bundles in Nyctaginaceae. American Journal of Botany, 107(5):707-725.
doi: 10.1002/ajb2.v107.5 URL |
[19] | Peng Jian-ying, Shu Huai-rui, Peng Shi-qi. 2002. To address the problem of infraspecific classification of Ziziphus jujuba Mill. using RAPD data. Acta Phytotaxonomica Sinica, 40(1):89-94. (in Chinese) |
彭建营, 束怀瑞, 彭士琪. 2002. 用RAPD技术探讨中国枣的种下划分. 植物分类学报,(1):89-94. | |
[20] |
Smith D C, Mehlenbacher S A. 1996. Inheritance of contorted growth in hazelnut. Euphytica, 89(2):211-213.
doi: 10.1007/BF00034607 URL |
[21] |
Sperry J S, Hacke U G. 2004. Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes. American Journal of Botany, 91(3):369-385.
doi: 10.3732/ajb.91.3.369 pmid: 21653393 |
[22] | Tyree M T, Zimmermann M H. 2002. Xylem structure and the ascent of sap. Berlin,Heidelberg,New York:Sringer-Verlag:2-5. |
[23] | Wang Kai-ji, Ni De-xiang. 1998. Dictionary of plant biology. Shanghai: Shanghai Science and Technology Education Press:61. (in Chinese) |
王凯基, 倪德祥. 1998. 植物生物学词典. 上海: 上海科技教育出版社:61. | |
[24] |
Wheeler E A, Baas P, Gasson P E. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bull, 10:219-332.
doi: 10.1163/22941932-90000496 URL |
[25] | Xia Shu-rang. 2010. Present situation and development prospect of ornamental jujube resources. China Fruit & Vegetable,(9):3. (in Chinese) |
夏树让. 2010. 工艺观赏枣资源现状及发展前景. 中国果菜,(9):3. | |
[26] | Zhang Wei-gong. 1999. The treasure of potted dates——Ziziphus jujuba‘Tortuosa’. Northwest Horticulture,(5):28. (in Chinese) |
张卫共. 1999. 盆枣珍品——龙须枣. 西北园艺,(5):28. | |
[27] | Zhang Yu-xiu, Liu Pei-wei. 2015. Intexylary phloem:definition,distribution,development and function. Hubei Agricultural Sciences, 54(15):3589-3592. (in Chinese) |
张玉秀, 刘培卫. 2015. 木间韧皮部的定义、分布、发育和生理功能. 湖北农业科学, 54(15):3589-3592. | |
[28] |
Zheng T C, Li L L, Zhang Q X. 2018. Advances in research on tortuous traits of plants. Euphytica, 214(12):1-15.
doi: 10.1007/s10681-017-2087-x URL |
[1] | 杨植, 张川疆, 杨芯芳, 董梦怡, 王振磊, 闫芬芬, 吴翠云, 王玖瑞, 刘孟军, 林敏娟. 枣与酸枣杂交后代果实遗传倾向及混合遗传分析[J]. 园艺学报, 2023, 50(1): 36-52. |
[2] | 王建新, 马廷军. 枣新品种‘佳油1号’[J]. 园艺学报, 2022, 49(S2): 55-56. |
[3] | 张玉平, 武 阳, 路东晔, 姚砚武, 潘青华. 枣新品种‘平安葫芦枣’[J]. 园艺学报, 2022, 49(S2): 57-58. |
[4] | 王晓玲, 仇晓靖, 刘淑怡, 李智慧, 李旭茂, 毛永民, 申连英. 仁用酸枣新品种‘丽园珍珠4号’[J]. 园艺学报, 2022, 49(S2): 59-60. |
[5] | 王晓玲, 仇晓靖, 李旭茂, 刘淑怡, 李智慧, 毛永民, 申连英. 酸枣新品种‘丽园珍珠8号’[J]. 园艺学报, 2022, 49(S2): 61-62. |
[6] | 王晓玲, 仇晓靖, 李智慧, 刘淑怡, 李旭茂, 毛永民, 申连英. 酸枣新品种‘丽园珍珠10号’[J]. 园艺学报, 2022, 49(S2): 63-64. |
[7] | 王晓玲, 仇晓靖, 李智慧, 刘淑怡, 李旭茂, 毛永民, 申连英. 酸枣新品种‘丽园珍珠14号’[J]. 园艺学报, 2022, 49(S2): 65-66. |
[8] | 帕提古丽 • 买买提吐尔逊, 罗青红, 古丽尼沙 • 卡斯木, 盛 伟, 蒋 腾. 新疆大果沙枣新品种‘红铃’[J]. 园艺学报, 2022, 49(S2): 67-68. |
[9] | 帕提古丽 • 买买提吐尔逊, 古丽尼沙 • 卡斯木, 罗青红, 刘丽燕, 刘巧玲, 热依汗 • 阿吾提塔什. 新疆大果沙枣新品种‘雅丰’[J]. 园艺学报, 2022, 49(S2): 69-70. |
[10] | 周军永, 陆丽娟, 孙 俊, 马福利, 刘 茂, 朱淑芳, 孙其宝, . 中晚熟鲜食枣新品种‘高王枣’[J]. 园艺学报, 2022, 49(S1): 35-36. |
[11] | 许海峰, 王中堂, 陈新, 刘志国, 王利虎, 刘平, 刘孟军, 张琼. 冬枣果皮着色相关类黄酮靶向代谢组学及潜在MYB转录因子分析[J]. 园艺学报, 2022, 49(8): 1761-1771. |
[12] | 刘平, 王玖瑞, 刘志国, 王立新, 赵璇, 李建兵, 宋韬亮, 冯建华, 刘孟军. 鲜食枣新品种‘雨虹’[J]. 园艺学报, 2022, 49(8): 1833-1834. |
[13] | 刘青柏, 董胜君, 纪连军, 陈光辉, 丁士富, 于庆福. 酸枣新品种‘国丰’[J]. 园艺学报, 2022, 49(5): 1173-1174. |
[14] | 高玮林, 张力曼, 薛超玲, 张垚, 刘孟军, 赵锦. 枣E类MADS基因在花和果中的表达及其蛋白互作研究[J]. 园艺学报, 2022, 49(4): 739-748. |
[15] | 李亚梅, 马福利, 张山奇, 黄锦秋, 陈梦婷, 周军永, 孙其宝, 孙俊. 酸枣愈伤组织转化体系构建及在ZjBRC1调控ZjYUCCA表达中的应用[J]. 园艺学报, 2022, 49(4): 749-757. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司