园艺学报 ›› 2021, Vol. 48 ›› Issue (6): 1067-1078.doi: 10.16420/j.issn.0513-353x.2020-0674
收稿日期:
2020-10-19
修回日期:
2021-03-03
出版日期:
2021-06-25
发布日期:
2021-07-07
通讯作者:
邢宇
E-mail:xingyu@bua.edu.cn
基金资助:
GU Si, LIU Lu, LI Anran, ZHANG Weiwei, ZHAO Shuaiqi, XING Yu()
Received:
2020-10-19
Revised:
2021-03-03
Online:
2021-06-25
Published:
2021-07-07
Contact:
XING Yu
E-mail:xingyu@bua.edu.cn
摘要:
通过构建草莓不同发育时期果实的cDNA文库,筛选与促分裂原活化蛋白激酶FvM4K1互作的蛋白,探究FvM4K1参与调控果实发育的分子机理。以森林草莓(Fragraria vesca ‘Hawaii 4')为材料,提取不同发育时期果实的总RNA,建立cDNA文库,其库容为9.6 × 10 6 CFU,重组率96%,插入片段平均长度大于1 000 bp。同时构建诱饵载体pGBKT7-FvM4K1,并检测其在酵母中无自激活活性。利用共转化方法,从文库中筛选到13个与FvM4K1互作的蛋白。通过Gene Ontology(GO)通路注释表明候选互作蛋白主要集中在细胞代谢过程及具有催化活性的分子过程。候选蛋白预测功能主要集中在调控花粉发育和花粉管伸长以及开花时间等。筛选到的13个蛋白编码基因在果实发育过程中表达模式不同,其中4个蛋白预测功能与草莓果实发育密切相关。
中图分类号:
谷思, 刘璐, 李安然, 张伟伟, 赵帅琪, 邢宇. 草莓果实酵母双杂交文库的构建及FvM4K1互作蛋白的筛选[J]. 园艺学报, 2021, 48(6): 1067-1078.
GU Si, LIU Lu, LI Anran, ZHANG Weiwei, ZHAO Shuaiqi, XING Yu. Construction of Yeast Two Hybrid Library and Screening of FvM4K1 Interacting Protein in the Fruit of Fragraria vesca[J]. Acta Horticulturae Sinica, 2021, 48(6): 1067-1078.
蛋白 Protein number | 基因 Gene number | 正向序列(5′-3′) Sequence of forward primer | 反向序列(5′-3′) Sequence of reverse primer |
---|---|---|---|
XP_004302175 | LOC101293013 | TGGAACGACTTCATCAATG | GCACCAATACAGTCAACA |
XP_004303711 | LOC101305492 | TCCATACCAAGTGAACCA | CATAAGCCTCTCCTCCTT |
XP_004299172 | LOC101296956 | CGTGCCTGCTAATAATGA | GAGTGTTGTTCCGTATCC |
XP_004299687 | LOC101307208 | CTCGGAGCAACAATAACA | TGACATTGAGGTGAAGGA |
XP_011466791 | LOC101304014 | CTGTGGTGTTCTTGTCTG | CAGCCTTGACATTCTCTT |
XP_011470680 | LOC101297868 | AGGTCCTGATGAAGAGTT | CATAGCACTGTCTAAGCATA |
XP_004306495 | LOC101308794 | AGAAGACAACGAAGACAAG | CAAGTGGAGGAAGGAGTA |
XP_004299659 | LOC101299003 | ATGTCCACGACCAAGAAG | GATTGGGAGGCATTTAGC |
XP_004303975 | LOC101290785 | GATGGGATGTTTCTGCTAT | TTCCTCCTTACACCTATCAA |
XP_004297088 | LOC101313011 | AGATCATCATCGACACCTA | CACCAATGGCATAAGACA |
XP_004307305 | LOC101294984 | CTAAGTGCTTCTTCTGACAT | ACAGGATGAGGTTGATGA |
XP_011463919 | LOC101291534 | CTCAAGAAGCAGCCTAAG | GATGGTCTGTAATCAGCAG |
XP_004291272 | LOC101305235 | GATTGACAACCTGGACAG | CATCTTATCATTCACGACCA |
表1 与FvM4K1互作蛋白的荧光引物
Table 1 Fluorescent primers for FvM4K1 interacting protein
蛋白 Protein number | 基因 Gene number | 正向序列(5′-3′) Sequence of forward primer | 反向序列(5′-3′) Sequence of reverse primer |
---|---|---|---|
XP_004302175 | LOC101293013 | TGGAACGACTTCATCAATG | GCACCAATACAGTCAACA |
XP_004303711 | LOC101305492 | TCCATACCAAGTGAACCA | CATAAGCCTCTCCTCCTT |
XP_004299172 | LOC101296956 | CGTGCCTGCTAATAATGA | GAGTGTTGTTCCGTATCC |
XP_004299687 | LOC101307208 | CTCGGAGCAACAATAACA | TGACATTGAGGTGAAGGA |
XP_011466791 | LOC101304014 | CTGTGGTGTTCTTGTCTG | CAGCCTTGACATTCTCTT |
XP_011470680 | LOC101297868 | AGGTCCTGATGAAGAGTT | CATAGCACTGTCTAAGCATA |
XP_004306495 | LOC101308794 | AGAAGACAACGAAGACAAG | CAAGTGGAGGAAGGAGTA |
XP_004299659 | LOC101299003 | ATGTCCACGACCAAGAAG | GATTGGGAGGCATTTAGC |
XP_004303975 | LOC101290785 | GATGGGATGTTTCTGCTAT | TTCCTCCTTACACCTATCAA |
XP_004297088 | LOC101313011 | AGATCATCATCGACACCTA | CACCAATGGCATAAGACA |
XP_004307305 | LOC101294984 | CTAAGTGCTTCTTCTGACAT | ACAGGATGAGGTTGATGA |
XP_011463919 | LOC101291534 | CTCAAGAAGCAGCCTAAG | GATGGTCTGTAATCAGCAG |
XP_004291272 | LOC101305235 | GATTGACAACCTGGACAG | CATCTTATCATTCACGACCA |
图3 初级文库24个克隆中插入片段PCR鉴定 Marker是DL2000;1 ~ 24为PCR 样品。
Fig. 3 PCR identification of inserts in the primary library Marker is DL2000;1-24 are PCR products.
图5 次级文库24个克隆中插入片段PCR鉴定 Marker是DL2000;1 ~ 24为PCR样品。
Fig. 5 PCR identification of inserts in the secondary library Marker is DL2000;1-24 are PCR products.
图6 pGBKT7-FvM4K1诱饵蛋白自激活检测 +:pGBKT7-53/pGADT7-T(阳性对照);-:pGBKT7-Lam/pGADT7-T(阴性对照);空载:pGBKT7;诱饵蛋白:pGBKT7-FvM4K1/pGADT7。
Fig. 6 Self-activation assay of pGBKT7-FvM4K1 bait protein +:pGBKT7-53/pGADT7-T(Positive control);-:pGBKT7-Lam/pGADT7-T(Nagative control);Empty:pGBKT7;Bait protein:pGBKT7-FvM4K1/pGADT7.
图8 与FvM4K1互作的13个候选蛋白与其一对一验证 + 为阳性对照;-为阴性对照。
Fig. 8 One-to-one verification of FvM4K1 candidate interaction protein + is positive control;- is negative control.
蛋白号 Protein number | 基因号 Gene number | 蛋白名称 Protein name | 相关蛋白功能预测 Speculative function | |
---|---|---|---|---|
XP_004302175 | LOC101293013 | 似E3泛素蛋白连接酶ARI8 Probable E3 ubiquitin-protein ligase ARI8 | 花结构,胚胎发育,延迟开花等 Flower structure,embryonic development,delayed flowering | |
XP_004303711 | LOC101305492 | 似TIFY 11A蛋白 Protein TIFY 11A-like | 昼夜节律,气孔开关,开花时间 Circadian rhythm,stomata switch,flowering time | |
XP_004299172 | LOC101296956 | 豇豆球蛋白 Vignain | 细胞循环,初生根生长,花粉发育 Cell cycle,primary root growth,pollen development | |
XP_004299659 | LOC101299003 | 磷酸-2-脱氢-3-脱氧庚酸醛缩酶2,类叶绿体 Phospho-2-dehydro-3-deoxyheptonate aldolase 2,chloroplastic-like | 提高幼苗光响应能力,花粉萌发,花粉管伸长,细胞壁结构,向重力性 Improve the light response ability of seedlings,pollen germination,pollen tube elongation,cell wall structure,gravity | |
XP_004303975 | LOC101290785 | 亚硫酸氧化酶 Sulfite oxidase | 抗氧反应,花粉萌发,花粉管伸长 Antioxidant response,pollen germination,pollen tube elongation | |
XP_004299687 | LOC101307208 | Transcription factor bHLH96 | DNA结合蛋白 | |
XP_011466791 | LOC101304014 | 果糖二磷酸醛缩酶,胞质同工酶样亚型X2 Fructose-bisphosphate aldolase, cytoplas-mic isozyme-like isoform X2 | 花粉萌发,花粉管伸长,细胞壁结构,向重力性 Pollen germination,pollen tube elongation,cell wall structure,gravity | |
XP_011470680 | LOC101297868 | 未表征的甲基转移酶At2g41040,似氯 塑料的同工型X3 Uncharacterized Methyltransferase At2g41040, chloroplastic-like isoform X3 | 提高幼苗光响应能力 Improve the light response ability of seedlings | |
XP_004306495 | LOC101308794 | 营养细胞壁蛋白gp1 Vegetative cell wall protein gp1 | 未知Unknown | |
XP_004297088 | LOC101313011 | S-腺苷甲硫氨酸合酶2 S-adenosylmethionine synthase 2 | 响应水杨酸、油菜素内酯,种子萌发、花粉萌发、花粉管伸长,细胞壁 Response to salicylic acid,brassinolide,seed germination,pollen germination,pollen tube elongation,cell wall | |
XP_004307305 | LOC101294984 | 尿酸降解双功能蛋白TTL亚型X1 Uric acid degradation bifunctional protein TTL isoform X1 | 未知Unknown | |
XP_011463919 | LOC101291534 | 40S核糖体蛋白S10 40S ribosomal protein S10 | 核糖体蛋白Ribosomal protein | |
XP_004291272 | LOC101305235 | E3泛素蛋白连接酶AIP2 E3 ubiquitin-protein ligase AIP2 | 脱落酸信号通路中负调控因子 Negative regulator of abscisic acid signaling pathway |
表2 酵母双杂交文库筛选获得与FvM4K1互作蛋白及其功能推测
Table 2 Screening of yeast two-hybrid library to obtain protein interacting with FvM4K1 and its functional prediction
蛋白号 Protein number | 基因号 Gene number | 蛋白名称 Protein name | 相关蛋白功能预测 Speculative function | |
---|---|---|---|---|
XP_004302175 | LOC101293013 | 似E3泛素蛋白连接酶ARI8 Probable E3 ubiquitin-protein ligase ARI8 | 花结构,胚胎发育,延迟开花等 Flower structure,embryonic development,delayed flowering | |
XP_004303711 | LOC101305492 | 似TIFY 11A蛋白 Protein TIFY 11A-like | 昼夜节律,气孔开关,开花时间 Circadian rhythm,stomata switch,flowering time | |
XP_004299172 | LOC101296956 | 豇豆球蛋白 Vignain | 细胞循环,初生根生长,花粉发育 Cell cycle,primary root growth,pollen development | |
XP_004299659 | LOC101299003 | 磷酸-2-脱氢-3-脱氧庚酸醛缩酶2,类叶绿体 Phospho-2-dehydro-3-deoxyheptonate aldolase 2,chloroplastic-like | 提高幼苗光响应能力,花粉萌发,花粉管伸长,细胞壁结构,向重力性 Improve the light response ability of seedlings,pollen germination,pollen tube elongation,cell wall structure,gravity | |
XP_004303975 | LOC101290785 | 亚硫酸氧化酶 Sulfite oxidase | 抗氧反应,花粉萌发,花粉管伸长 Antioxidant response,pollen germination,pollen tube elongation | |
XP_004299687 | LOC101307208 | Transcription factor bHLH96 | DNA结合蛋白 | |
XP_011466791 | LOC101304014 | 果糖二磷酸醛缩酶,胞质同工酶样亚型X2 Fructose-bisphosphate aldolase, cytoplas-mic isozyme-like isoform X2 | 花粉萌发,花粉管伸长,细胞壁结构,向重力性 Pollen germination,pollen tube elongation,cell wall structure,gravity | |
XP_011470680 | LOC101297868 | 未表征的甲基转移酶At2g41040,似氯 塑料的同工型X3 Uncharacterized Methyltransferase At2g41040, chloroplastic-like isoform X3 | 提高幼苗光响应能力 Improve the light response ability of seedlings | |
XP_004306495 | LOC101308794 | 营养细胞壁蛋白gp1 Vegetative cell wall protein gp1 | 未知Unknown | |
XP_004297088 | LOC101313011 | S-腺苷甲硫氨酸合酶2 S-adenosylmethionine synthase 2 | 响应水杨酸、油菜素内酯,种子萌发、花粉萌发、花粉管伸长,细胞壁 Response to salicylic acid,brassinolide,seed germination,pollen germination,pollen tube elongation,cell wall | |
XP_004307305 | LOC101294984 | 尿酸降解双功能蛋白TTL亚型X1 Uric acid degradation bifunctional protein TTL isoform X1 | 未知Unknown | |
XP_011463919 | LOC101291534 | 40S核糖体蛋白S10 40S ribosomal protein S10 | 核糖体蛋白Ribosomal protein | |
XP_004291272 | LOC101305235 | E3泛素蛋白连接酶AIP2 E3 ubiquitin-protein ligase AIP2 | 脱落酸信号通路中负调控因子 Negative regulator of abscisic acid signaling pathway |
[1] |
Almeida J R, D'Amico E, Preuss A, Carbone Fde Vos C R, Deiml B, Martens S. 2007. Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry(Fragaria × ananassa). Archives of Biochemistry and Biophysics, 465 (1):61-71.
doi: 10.1016/j.abb.2007.04.040 URL |
[2] |
Bush S M, Krysan P J. 2007. Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther,inflorescence,and embryo development. J Exp Bot, 58:2181-2191.
doi: 10.1093/jxb/erm092 URL |
[3] |
Castillejo C,de la Fuente J I,Iannetta P,Botella M Á,Valpuesta V. 2004. Pectin esterase gene family in strawberry fruit:study of FaPE1,a ripening-specific isoform. Journal of Experimental Botany, 55 (398):909-918.
doi: 10.1093/jxb/erh102 URL |
[4] |
Chaiwongsar S, Otegui M S, Jester P J, Monson S S, Krysan P J. 2006. The protein kinase genes MAP3KƐ1 and MAP3KƐ2 are required for pollen viability in Arabidopsis thaliana. The Plant Journal, 48:193-205.
doi: 10.1111/tpj.2006.48.issue-2 URL |
[5] |
Cheng Z y, Zhang J, Yin B, Liu Y, Wang B, Li H, Lu H. 2019. γVPE plays an important role in programmed cell death for xylem fiber cells by activating protease CEP1 maturation inArabidopsis thaliana. International Journal of Biological Macromolecules, 137:703-711.
doi: 10.1016/j.ijbiomac.2019.07.017 URL |
[6] | Deng C, Davis T M. 2001. Molecular identification of the yellow fruit color(c)locus in diploid strawberry:a candidate gene approach. Theoretical and Applied Genetics, 103 (2-3):316-322. |
[7] |
Duan P, Rao Y, Zeng D, Yang Y, Xu R, Zhang B, Li Y. 2014. SMALL GRAIN 1,which encodes a mitogenactivated protein kinase kinase 4,influences grain size in rice. The Plant Journal, 77:547-557.
doi: 10.1111/tpj.2014.77.issue-4 URL |
[8] |
Feng L, Xia R, Liu Y L. 2019. Comprehensive characterization of miRNA and PHAS loci in the diploid strawberry(Fragaria vesca) genome. Horticultural Plant Journal, 5 (6):255-267.
doi: 10.1016/j.hpj.2019.11.004 |
[9] | García J M, Posé S, Muñoz-Blanco J, Quesada M A. Mercado J A. 2009. The polygalacturonase: FaPG1gene plays a key role in strawberry fruit softening. Plant Signaling & Behavior, 4 (8):766-768. |
[10] | Giovannoni J. 2001. Molecular biology of fruit maturation and ripening. Annual Review of Plant Biology, 52 (1):725-749. |
[11] | Gu Si, Cao Xiaoyan, Xing Yu. 2020. cloning and expression of FvM4K1 gene from strawberry. Journal of Beijing Agricultural University, 35 (3):8-12. (in Chinese) |
谷思, 曹小艳, 邢宇. 2020. 森林草莓 FvM4K1基因的克隆及表达分子. 北京农学院学报, 35 (3):8-12. | |
[12] | Guan Y, Meng X, Khanna R, LaMontagne E, Liu Y, Zhang S. 2014a. Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis. PLoS Genetic, 10:e1004384. |
[13] |
Guan Y, Lu J, Xu J, McClure B, Zhang S. 2014b. Two mitogen-activated protein kinases,MPK3 and MPK6,are required for funicular guidance of pollen tubes inArabidopsis. Plant Physiology, 165:528-533.
doi: 10.1104/pp.113.231274 URL |
[14] |
Harpster M H, Brummell D A, Dunsmuir P. 1998. Expression analysis of a ripening-specific,auxin-repressed endo-1,4- β-glucanase gene in strawberry. Plant Physiology, 118 (4):1307-1316.
doi: 10.1104/pp.118.4.1307 URL |
[15] |
Hoffmann T, Kalinowski G, Schwab W. 2006. RNAi-induced silencing of gene expression in strawberry fruit(Fragaria × ananassa)by agroinfiltration:a rapid assay for gene function analysis. The Plant Journal, 48 (5):818-826.
doi: 10.1111/tpj.2006.48.issue-5 URL |
[16] |
Hord C L H, Sun Y J, Pillitteri L J, Torii K U, Wang H, Zhang S, Ma H. 2008. Regulation of Arabidopsis early anther development by the mitogen-activated protein kinases,MPK3 and MPK6,and the ERECTA and related receptor-like kinases. Molecular Plant, 1 (4):645-658.
doi: 10.1093/mp/ssn029 URL |
[17] |
Jia H, Wang Y, Sun M, Li B, Han Y, Zhao Y, Jia W. 2013. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytologist, 198 (2):453-465.
doi: 10.1111/nph.2013.198.issue-2 URL |
[18] | Jia Haifeng, Zhao Mizhen, Wang Qinglian, Fang Jinggui, Zhao Pengcheng, Liu Zhongjie. 2016. The role of auxin and abscisic acid in strawberry fruit development. Jiangsu Agricultural Science,(11):173-176. (in Chinese) |
贾海锋, 赵密珍, 王庆莲, 房经贵, 赵鹏程, 刘众杰. 2016. 生长素和脱落酸在草莓果实发育过程中的作用. 江苏农业科学,(11):173-176. | |
[19] |
Liu Lu, Gu Si, Zhang Weiwei, Zhao Shuaiqi, Li Anran, Xing Yu. 2021. A primary study on FvMOB1 interact with FvM4K1 and response to auxin regulation in Fragraria vesca. Acta Horticulturae Sinica,doi: 10.16420/j.issn.0513-353x.2020-0859. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0859 URL |
刘璐, 谷思, 张伟伟, 赵帅琪, 李安然, 邢宇. 2021. 森林草莓FvMOB1与FvM4K1互作及响应生长素调控初探. 园艺学报,doi: 10.16420/j.issn.0513-353x.2020-0859.
doi: 10.16420/j.issn.0513-353x.2020-0859 URL |
|
[20] |
Llop-Tous I, Domınguez-Puigjaner E, Palomer X, Vendrell M. 1999. Characterization of two divergent endo-β-1,4-glucanase cDNA clones highly expressed in the nonclimacteric strawberry fruit. Plant Physiology, 119 (4):1415-1422.
doi: 10.1104/pp.119.4.1415 URL |
[21] | Lo´pez-Bucio J S, Dubrovsky J G, Raya-González J, Ugartechea-Chirino Y, López-Bucio Jde Luna-Valdez L A, Guevara-García A A. 2014. Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development. Journal of Experienmental Botany, 65:169-183. |
[22] |
Lunkenbein S, Coiner Hde Vos C R, Schaart J G, Boone M J, Krens F A, Salentijn E M. 2006. Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry(Fragaria × ananassa). Journal of Agricultural and Food Chemistry, 54 (6):2145-2153.
doi: 10.1021/jf052574z URL |
[23] |
Mercado J A, Trainotti L, Jiménez-Bermúdez L, Santiago-Doménech N, Posé S, Donolli R, Quesada M A. 2010. Evaluation of the role of the endo- β-(1,4)-glucanase gene FaEG3 in strawberry fruit softening. Postharvest Biology and Technology, 55 (1):8-14.
doi: 10.1016/j.postharvbio.2009.08.004 URL |
[24] |
Posé S, Paniagua C, Cifuentes M, Blanco-Portales R, Quesada M A, Mercado J A. 2013. Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly,enhanced tissue integrity,and firmness in ripe strawberry fruits. Journal of Experimental Botany, 64 (12):3803-3815.
doi: 10.1093/jxb/ert210 URL |
[25] | Qian Chun, Zhang Xingguo, Liang Guolu. 2009. Research progress of strawberry fruit ripening and softening related genes. Chinese Vegetables,(22):6-12. (in Chinese) |
钱春, 张兴国, 梁国鲁. 2009. 草莓果实成熟软化相关基因研究进展. 中国蔬菜,(22):6-12. | |
[26] |
Quesada M A, Blanco-Portales R, Posé S, García-Gago J A, Jiménez-Bermúdez S, Muñoz-Serrano A, Munoz-Blanco J. 2009. Antisense down-regulation of the FaPG1 gene reveals an unexpected central role for polygalacturonase in strawberry fruit softening. Plant Physiology, 150 (2):1022-1032.
doi: 10.1104/pp.109.138297 URL |
[27] |
Safoora D, Cyrus G, Bahram B, Mahdi G, Siamak S. 2018. Effect of silicon on growth and development of strawberry under water deficit conditions. Horticultural Plant Journal, 4 (6):226-232.
doi: 10.1016/j.hpj.2018.09.004 URL |
[28] | Serrani J C, Sanjuán R, Ruiz-Rivero O, Fos M, García-Martínez J L. 2007. Gibberellin regulation of fruit set and growth in tomato. Plant Physiology, 45 (1):246-257. |
[29] |
Seymour G B, Østergaard L, Chapman N H, Knapp S, Martin C. 2013. Fruit development and ripening. Annual Review of Plant Biology, 64:219-241.
doi: 10.1146/annurev-arplant-050312-120057 pmid: 23394500 |
[30] |
Sutsawat D, Yamada K, Shiratake K, Kanayama Y, Yamaki S. 2008. Properties of sorbitol dehydrogenase in strawberry fruit and enhancement of the activity by fructose and auxin. Journal of the Japanese Society for Horticultural Science, 77 (3):318-323.
doi: 10.2503/jjshs1.77.318 URL |
[31] |
Tohge T, Alseekh S, Fernie A R. 2013. On the regulation and function of secondary metabolism during fruit development and ripening. Journal of Experimental Botany, 65 (16):4599-4611.
doi: 10.1093/jxb/ert443 URL |
[32] |
Trainotti L, Spolaore S, Pavanello A, Baldan B, Casadoro G. 1999. A novel E-type endo- β-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits. Plant Molecular Biology, 40 (2):323-332.
doi: 10.1023/A:1006299821980 URL |
[33] | Wang Chun-fei, Yu Song-lin, Xiao Nian-xiang, Wang Xue-yi. 2007. Advances in cytological studies on fruit growth and development. Chinese Agronomic Bulletin, 23 (7):386-390. (in Chinese) |
王春飞, 郁松林, 肖年湘, 王学义. 2007. 果树果实生长发育细胞学研究进展. 中国农学通报, 23 (7):386-390. | |
[34] |
Wang H, Ngwenyama N, Liu Y, Walker J C, Zhang S. 2007. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. The Plant Cell, 19 (1):63-73.
doi: 10.1105/tpc.106.048298 URL |
[35] |
Wang H, Liu Y, Bruffett K, Lee J, Hause G, Walker J C, Zhang S. 2008a. Haplo-insufficiency of MPK3 in MPK6 mutant background uncovers a novel function of these two MAPKs in Arabidopsis ovule development. The Plant Cell, 20:602-613.
doi: 10.1105/tpc.108.058032 URL |
[36] |
Wang Y, Zhang W Z, Song L F, Zou J J, Su Z, Wu W H. 2008b. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiology, 148 (3):1201-1211.
doi: 10.1104/pp.108.126375 URL |
[37] |
Woolley L C, James D J, Manning K. 2001. Purification and properties of an endo- β-1,4-glucanase from strawberry and down-regulation of the corresponding gene,cel1. Planta, 214 (1):11-21.
URL pmid: 11762160 |
[38] |
Xiong J, Cui X, Yuan X, Yu X, Sun J, Gong Q. 2016. The Hippo/STE 20 homolog SIK1 interacts with MOB1 to regulate cell proliferation and cell expansion in Arabidopsis. Journal of Experimental Botany, 67 (5):1461-1475.
doi: 10.1093/jxb/erv538 URL |
[39] |
Xu J, Zhang S. 2015. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends in Plant Science, 20 (1):56-64.
doi: 10.1016/j.tplants.2014.10.001 URL |
[40] |
Xu R, Duan P, Yu H, Zhou Z, Zhang B, Wang R, Li N. 2018. Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK 6 signaling pathway in rice. Molecular Plant, 11 (6):860-873.
doi: 10.1016/j.molp.2018.04.004 URL |
[41] | Xu Xiaodi, Li Boqiang, Qin Guozheng, Chen Tong, Zhang Zhanquan, Tian Shiping. 2020. Molecular basis and regulation strategies for quality maintenance of postharvest fruit. Acta Horticulturae Sinica, 47 (8):1595-1609. (in Chinese) |
徐小迪, 李博强, 秦国政, 陈彤, 张占全, 田世平. 2020. 果实采后品质维持的分子基础与调控技术研究进展. 园艺学报, 47 (8):1595-1609. | |
[42] |
Zeng Q, Chen J G, Ellis B E. 2011. AtMPK 4 is required for male-specific meiotic cytokinesis in Arabidopsis. Plant J, 67:895-906.
doi: 10.1111/j.1365-313X.2011.04642.x URL |
[43] | Zhang Shaohui, Shen Yuanyue. 2014. Construction and identification of cDNA library of strawberry fruit. Journal of Beijing Agricultural University, 29 (2):12-14. (in Chinese) |
张少会, 沈元月. 2014. 草莓果实cDNA文库的构建及鉴定. 北京农学院学报, 29 (2):12-14. | |
[44] |
Zhou H, Ren S, Han Y, Zhang Q, Qin L, Xing Y. 2017. Identification and analysis of mitogen-activated protein kinase(MAPK)cascades in Fragaria vesca. International Journal of Molecular Sciences, 18 (8):1766.
doi: 10.3390/ijms18081766 URL |
[1] | 宋艳红, 陈亚铎, 张晓玉, 宋 盼, 刘丽锋, 李 刚, 赵 霞, 周厚成, . 森林草莓FvbHLH130转录因子调控植株提前开花[J]. 园艺学报, 2023, 50(2): 295-306. |
[2] | 何成勇, 赵晓丽, 许腾飞, 高德航, 李世访, 王红清. 草莓病毒1山东分离物全基因组分析[J]. 园艺学报, 2023, 50(1): 153-160. |
[3] | 杨 雷, 李 莉, 董 辉, 冯 佳, 张建军, 范婧芳, 杨秋叶, 杨 莉, . 草莓新品种‘石莓11号’[J]. 园艺学报, 2022, 49(S2): 79-80. |
[4] | 赵 霞, 李 刚, 刘丽锋, 宋艳红, 周厚成. 草莓新品种‘华硕1号’[J]. 园艺学报, 2022, 49(S2): 81-82. |
[5] | 董 静, 常琳琳, 王桂霞, 钟传飞, 隗永青, 孙 健, 孙 瑞, 张宏力, 高用顺, 许利平, 陶 磅, 罗志伟, 张运涛, . 四季草莓新品种‘静红’[J]. 园艺学报, 2022, 49(S1): 61-62. |
[6] | 蔡建法, 莫雪莲, 管思聪, 陈栩, 薛程. 草莓FvYABBY5.1表达特性和功能分析[J]. 园艺学报, 2022, 49(7): 1458-1472. |
[7] | 杨丽媛, 王倩, 王许会, 徐通达, 马军. 草莓生长素合成关键酶FveTAA1保守氨基酸位点T111的生物学功能研究[J]. 园艺学报, 2021, 48(9): 1695-1705. |
[8] | 洪燕红, 叶清华, 李泽坤, 王威, 谢倩, 陈清西, 陈建清. 红花草莓‘莓红’花瓣花色苷积累及其MYB基因的表达分析[J]. 园艺学报, 2021, 48(8): 1470-1484. |
[9] | 张志强, 卢世雄, 马宗桓, 李彦彪, 高彩霞, 陈佰鸿, 毛娟. 草莓LIM家族候选基因的鉴定及在非生物胁迫下的表达[J]. 园艺学报, 2021, 48(8): 1485-1503. |
[10] | 黄倩茹, 牛永浩, 吴宽, 刘占杰, 曹孟籍, 赵磊, 吴云锋. 陕西省草莓病毒种类的LncRNA测序初步鉴定[J]. 园艺学报, 2021, 48(8): 1589-1594. |
[11] | 黄威剑, 李梦. 果树全基因组测序现状与展望[J]. 园艺学报, 2021, 48(4): 733-748. |
[12] | 齐永志, 孙雅如, 王冰, 郭邯菲, 马可, 甄文超. 草莓根系分泌物和腐解物化感作用研究进展[J]. 园艺学报, 2021, 48(4): 778-790. |
[13] | 刘璐, 谷思, 张伟伟, 赵帅琪, 李安然, 邢宇. 森林草莓FvMOB1与FvM4K1互作及响应生长素调控初探[J]. 园艺学报, 2021, 48(11): 2185-2196. |
[14] | 陈道, 张洁, 吴祖建, 丁新伦. 草莓白化相关病毒中国分离物全基因组分析[J]. 园艺学报, 2021, 48(1): 146-152. |
[15] | 罗 贺, 李伟佳, 李 贺, 张志宏. 草莓FaRGA1基因沉默改变开花和匍匐茎抽生特性[J]. 园艺学报, 2020, 47(12): 2331-2339. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司