[1] |
Atreya P L, Atreya C D, Pirone T D. 1991. Amino acids substitutions in the coat protein result in loss of insect transmissibility of a plant virus. Proceedings of the National Academy of Sciences of the United States of America, 88:7887-7891.
|
[2] |
Atreya P L, Lopez-Moya J J, Chu M, Atreya C D, Pirone T P. 1995. Mutational analysis of the coat protein N-terminal amino acids involved in Potyvirus transmission by aphid. Journal of General Virology, 76(2):265-270.
doi: 10.1099/0022-1317-76-2-265
URL
|
[3] |
Bar-Joseph M, Marcus R, Lee R F. 1989. The continuous challenge of citrus tristeza virus control. Annual Review Phytopathology, 27:291-316.
doi: 10.1146/annurev.py.27.090189.001451
URL
|
[4] |
Barzegar A, Rahimian H, Sohi H H. 2010. Comparison of the minor coat protein gene sequences of aphid-transmissible and-nontransmissible isolates of citrus tristeza virus. Journal of General Plant Pathology, 76(2):143-151.
doi: 10.1007/s10327-009-0216-7
URL
|
[5] |
Callaway A, Giesman-Cookmeyer D, Gillock E T, Sit T L, Lommel S A. 2001. The multifunctional capsid proteins of plant RNA viruses. Annual Review of Phytopathology, 39:419-460.
pmid: 11701872
|
[6] |
Chen A, Walker G, Carter D, Ng J. 2011. A virus capsid component mediates virion retention and transmission by its insect vector. Proceedings of the National Academy of Sciences of the United States of America, 108:16777-16782.
|
[7] |
Damerval C, Vienne D D, Zivy M, Thiellement H. 1986. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis, 7(1):52-54.
doi: 10.1002/(ISSN)1522-2683
URL
|
[8] |
Drucker M, Froissart R, Hebrard E, Uzest M, Ravallec M Esperandieu P, Mani J C, Pugnière M, Roquet F, Fereres A, Blanc S. 2002. Intracellular distribution of viral gene products regulates a complex mechanism of cauliflower mosaic virus acquisition by its aphid vector. Proceedings of the National Academy of Sciences of the United States of America, 99:2422-2427.
|
[9] |
Fajinmi A A. 2019. Interactive Effect of blackeye cowpea mosaic virus and cucumber mosaic virus on Vigna unguiculata. Horticultural Plant Journal, 5(2):88-92.
doi: 10.1016/j.hpj.2019.01.001
URL
|
[10] |
Harper S J, Cowell S J, Dawson W O. 2018. Bottlenecks and complementation in the aphid transmission of citrus tristeza virus populations. Archives of Virology, 163:3373-3376.
doi: 10.1007/s00705-018-4009-1
URL
|
[11] |
Harper S J, Killiny N, Tatineni S, Gowda S, Cowell S J, Shilts T, Dawson W O. 2016. Sequence variation in two genes determines the efficacy of transmission of citrus tristeza virus by the brown citrus aphid. Archives of Virology, 161:3555-3559.
doi: 10.1007/s00705-016-3070-x
URL
|
[12] |
Karasev A V, Boyko V P, Gowda S, Nikolaeva O V, Hilf M E, Koonin E V, Niblett C L, Cline K, Gumpf D J, Lee R F, Garnsey S M, Lewandowski D J, Dawson W O. 1995. Complete sequence of the citrus tristeza virus RNA genome. Virology, 208:511-520.
doi: 10.1006/viro.1995.1182
URL
|
[13] |
Karasev A V, Hilf M E, Garnsey S M, Dawson W O. 1997. Transcriptional strategy of Closteroviruses:mapping the 5′ termini of the citrus tristeza virus subgenomic RNAs. Journal of Virology, 71(8):6233-6236.
doi: 10.1128/jvi.71.8.6233-6236.1997
URL
|
[14] |
Killiny N, Harper S J, Alfaress S, Mohtar C E, Dawson W O. 2016. Minor coat and heat-shock proteins are involved in binding of citrus tristeza virus to the foregut of its aphid vector,Toxoptera citricida. Applied and Environmental Microbiology, 82:1914-1916.
|
[15] |
Leh V, Jacquot E, Geldreich A, Haas M, Blanc S, Keller M, Yot P. 2001. Interaction between the open reading frame III product and the coat protein is required for transmission of cauliflower mosaic virus by aphids. Journal of Virology, 75(1):100-106.
doi: 10.1128/JVI.75.1.100-106.2001
URL
|
[16] |
Li Ling-di, Zhou Chang-yong, Tian Xiao, Wang Yong-jiang, Tang Ke-zhi, Zhou Yan, Li Zhong-an, Liu Jin-xiang. 2013. Development and application of a real-time RT-PCR approach for quantification of CTV in Toxoptera citricida . Scientia Agricultura Sinica, 46(3):525-533. (in Chinese)
|
|
李玲娣, 周常勇, 田晓, 王永江, 唐科志, 周彦, 李中安, 刘金香. 2013. 褐色橘蚜中CTV实时荧光定量RT-PCR检测方法的建立及应用. 中国农业科学, 46(3):525-533.
|
[17] |
Liu J, Li L, Zhao H, Zhou Y, Wang H, Li Z, Zhou C. 2019. Titer variation of citrus tristeza virus in aphids at different acquisition access periods and its association with transmission efficiency. Plant Disease, 103(5):874-879.
doi: 10.1094/PDIS-05-18-0811-RE
URL
|
[18] |
Liu S, He X, Park G, Josefsson C, Perry K L. 2002. A conserved capsid protein surface domain of cucumber mosaic virus is essential for efficient aphid vector transmission. Journal of Virology, 76(19):9756-9762.
doi: 10.1128/JVI.76.19.9756-9762.2002
URL
|
[19] |
Moreno A, Hébrard E, Uzest M, Blanc S, Fereres A. 2005. A single amino acid position in the helper component of cauliflower mosaic virus can change the spectrum of transmitting vector species. Journal of Virology, 79:13587-13593.
doi: 10.1128/JVI.79.21.13587-13593.2005
URL
|
[20] |
Moreno P, Ambrós S, Albiach-Martí M R, Guerri J, Pena L. 2008. Citrus tristeza virus:a pathogen that changed the course of the citrus industry. Molecular Plant Pathology, 9(2):251-268.
doi: 10.1111/mpp.2008.9.issue-2
URL
|
[21] |
Ng J C, Falk B W. 2006. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annual Review of Phytopathology, 44:183-212.
doi: 10.1146/annurev.phyto.44.070505.143325
URL
|
[22] |
Roistacher C N, Bar-Jospeh M. 1987. Aphid transmission of citrus tristeza virus:a review. Phytophylactica, 19(2):163-167.
|
[23] |
Ruiz-Ferrer V, Boskovic J, Alfonso C, Rivas G, Llorca O, López-Abella D, López-Moya J J. 2005. Structural analysis of tobacco potyvirus HC-pro oligomers involved in aphid transmission. Journal of Virology, 79(6):3758-3765.
doi: 10.1128/JVI.79.6.3758-3765.2005
URL
|
[24] |
Satyanarayana T, Gowda S, Ayllon M A, Dawson W O. 2004. Closterovirus bipolar virion:evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5’ region. Proceedings of the National Academy of Sciences of the United States of America, 101(3):799-804.
|
[25] |
Sharma S R. 1989. Factors affecting vector transmission of citrus tristeza virus in south Africa. Zentralblatt Für Mikrobiologie, 144:283-294.
doi: 10.1016/S0232-4393(89)80092-7
URL
|
[26] |
Song Zhen, Zou Min, Xu Xiao-feng, Tang Ke-zhi, Liu Ying, Zhou Chang-yong. 2005. DTBIA of citrus tristeza virus detection in new and old leaves of pomelo. Southwest Horticulture, 33(z1):43-45. (in Chinese).
|
|
宋震, 邹敏, 徐小峰, 唐科志, 刘英, 周常勇. 2005. 柚新老枝叶中柑橘衰退病毒的 DTBIA 检测. 西南园艺, 33(z1):43-45.
|
[27] |
Tian Xiao, Li Ling-di, Liu Jin-xiang. 2013. Research progress of the mechanisms of semipersistent viruses transmission by vectors. Biotechnology Bulletin,(7):48-53. (in Chinese).
|
|
田晓, 李玲娣, 刘金香. 2013. 半持久性病毒的介体传播机制研究进展. 生物技术通报,(7):48-53.
|
[28] |
Woolston C J, Covey S N, Penswick J R, Davies J W. 1983. Aphid transmission and a polypeptide are specified by a defined region of the cauliflower mosaic virus genome. Gene, 23(1):15-23.
pmid: 6311674
|
[29] |
Xu Xiao-feng, Zhou Chang-yong, Song Zhen, Wang Xue-feng, Zhou Yan. 2007. Molecular characteristics of CP genes of 4 isolates of citrus tristeza virus and their sub-isolates after single aphid transmission. Acta Phytopathologica Sinica, 37(1):25-30. (in Chinese).
|
|
徐小峰, 周常勇, 宋震, 王雪峰, 周彦. 2007. 4种柑橘衰退病毒源单蚜传毒分离株CP基因的分子特征. 植物病理学报, 37(1):25-30.
|
[30] |
Zhou Y, Zhou C Y, Wang X F, Liu Y Q, Liu K H, Zou Q, Xiang Y, Li Z A. 2011. Influence of the quantity and variability of citrus tristeza virus on transmissibility by single Toxoptera citricida. Journal of Plant Pathology, 93(1):97-103.
|
[31] |
Zhou Yan, Zhou Chang-yong, Wang Xue-feng, Liu Ke-hong, Song Zhen, Li Zhong-an. 2007. Effect of virus sources and host plants on the transmissibility of citrus tristeza virus by single aphid of Toxoptera citricida . Acta Phytophylacica Sinica, 34(6):597-600. (in Chinese)
|
|
周彦, 周常勇, 王雪峰, 刘科宏, 宋震, 李中安. 2007. 毒源和寄主对褐色桔蚜传播柑桔衰退病毒效率的影响. 植物保护学报, 34(6):597-600.
|