园艺学报 ›› 2021, Vol. 48 ›› Issue (5): 921-933.doi: 10.16420/j.issn.0513-353x.2020-0526
蔡柔荻, 厉雪, 陈燕, 徐小萍, 陈晓慧, 赖钟雄*(), 林玉玲*()
收稿日期:
2020-12-23
修回日期:
2021-03-22
出版日期:
2021-05-25
发布日期:
2021-06-07
通讯作者:
赖钟雄,林玉玲
E-mail:Laizx01@163.com;buliang84@163.com
基金资助:
CAI Roudi, LI Xue, CHEN Yan, XU Xiaoping, CHEN Xiaohui, LAI Zhongxiong*(), LIN Yuling*()
Received:
2020-12-23
Revised:
2021-03-22
Online:
2021-05-25
Published:
2021-06-07
Contact:
LAI Zhongxiong,LIN Yuling
E-mail:Laizx01@163.com;buliang84@163.com
摘要:
为了解龙眼中双链RNA结合蛋白家族(DRB)的潜在功能,采用生物信息学方法鉴定龙眼DRB基因家族成员,并分析其在龙眼体胚发生早期、不同组织部位和外源脱落酸、水杨酸、茉莉酸甲酯处理下的表达模式。结果显示:龙眼DRB家族的8个成员分布在5个亚组中,并且都具有2 ~ 3个双链RNA结合结构域,内含子数1 ~ 7;龙眼DRB家族含有6种motif;启动子中含有大量光响应元件、激素响应元件和逆境胁迫响应元件;龙眼DRB家族成员在体胚发生的各个阶段、各器官中均有表达,但表达量差异较大;外源脱落酸、水杨酸及茉莉酸甲酯处理显著抑制龙眼DRB家族成员的表达。本研究结果表明,龙眼DRB家族成员高度保守,该家族成员可能参与龙眼体胚及各器官各阶段的生长发育过程,且参与脱落酸、水杨酸及茉莉酸甲酯响应过程。
中图分类号:
蔡柔荻, 厉雪, 陈燕, 徐小萍, 陈晓慧, 赖钟雄, 林玉玲. 龙眼DRB家族全基因组鉴定及其表达分析[J]. 园艺学报, 2021, 48(5): 921-933.
CAI Roudi, LI Xue, CHEN Yan, XU Xiaoping, CHEN Xiaohui, LAI Zhongxiong, LIN Yuling. Genome-wide Identification and Expression Analysis of DRB Gene Family in Dimocarpus longan[J]. Acta Horticulturae Sinica, 2021, 48(5): 921-933.
基因名称 Gene name | 引物名称 Primer name | 引物序列(5′-3′) Sequence |
---|---|---|
DlDRB1 | Dlo_011608.1 | F:CGGGAACTCAGCAAGAAG;R:ACCAACCATGTGCTCAGTC |
DlDRB2 | Dlo_032918.1 | F:GCCGCAATACACAACAGTC;R:TCGAGATGTCCAAGCTGC |
DlDRB3A | Dlo_006566.1 | F:ATCTGCTGCTTTGGATGG;R:TGCAATAGGTGGTGGTCTG |
DlDRB3B | Dlo_004997.1 | F:AGATTCTGGTTTTAGGCTCG;R:GGCCC CAGTTCTCATAGTC |
DlDRB3C | Dlo_031650.1 | F:AATCAGCACAGATGGACCC;R:CAGGGGGAGCAAATGAAG |
DlDRB4A | Dlo_006595.1 | F:CAACCATCCCTCCAAGAC;R:CATTGACCTCAGGAGCTTG |
DlDRB4B | Dlo_010748.1 | F:CACCTCACATGCCGACTTTT;R:TCTCCAACACTCTGCCCAAT |
DlDRB6 | Dlo_015255.1 | F:CGCTGCGTAAAGTGAAGG;R:CCCACAGACAGCTTGCAC |
表1 DlDRB家族qRT-PCR引物
Table 1 qRT-PCR primers of DlDRBs family
基因名称 Gene name | 引物名称 Primer name | 引物序列(5′-3′) Sequence |
---|---|---|
DlDRB1 | Dlo_011608.1 | F:CGGGAACTCAGCAAGAAG;R:ACCAACCATGTGCTCAGTC |
DlDRB2 | Dlo_032918.1 | F:GCCGCAATACACAACAGTC;R:TCGAGATGTCCAAGCTGC |
DlDRB3A | Dlo_006566.1 | F:ATCTGCTGCTTTGGATGG;R:TGCAATAGGTGGTGGTCTG |
DlDRB3B | Dlo_004997.1 | F:AGATTCTGGTTTTAGGCTCG;R:GGCCC CAGTTCTCATAGTC |
DlDRB3C | Dlo_031650.1 | F:AATCAGCACAGATGGACCC;R:CAGGGGGAGCAAATGAAG |
DlDRB4A | Dlo_006595.1 | F:CAACCATCCCTCCAAGAC;R:CATTGACCTCAGGAGCTTG |
DlDRB4B | Dlo_010748.1 | F:CACCTCACATGCCGACTTTT;R:TCTCCAACACTCTGCCCAAT |
DlDRB6 | Dlo_015255.1 | F:CGCTGCGTAAAGTGAAGG;R:CCCACAGACAGCTTGCAC |
基因名 Gene name | 基因ID Accession No. | CDS/bp | 氨基酸数/aa Amino acid | pI | 分子量/ kD Mw | 染色体位置 Genomic location | 注释到拟南芥中 Annotated members of Arabidopsis thaliana | 糖基化位点 N-glycosyl sites | 亚细胞定位 Subcellular location |
---|---|---|---|---|---|---|---|---|---|
DlDRB1 | Dlo_011608.1 | 1 164 | 387 | 6.68 | 41 832.07 | scaffold2177;19929;24057;+ | AT1G09700.1 (DRB1) | 1 | 线粒体Mitochondrial |
DlDRB2 | Dlo_032918.1 | 1 389 | 462 | 9.14 | 50 375.63 | scaffold905;239727;242523;- | AT12G28380.1 (DRB2) | 1 | 细胞质Cytoplasmic |
DlDRB3A | Dlo_006566.1 | 1 431 | 476 | 9.45 | 52 055.49 | scaffold1488;15186;16811;+ | AT3G26932.1 (DRB3) | 4 | 细胞质Cytoplasmic |
DlDRB3B | Dlo_004997.1 | 1 716 | 571 | 9.09 | 63 187.06 | scaffold1339;54033;56503;+ | AT3G26932.1 (DRB3) | 4 | 细胞质Cytoplasmic |
DlDRB3C | Dlo_031650.1 | 1 749 | 582 | 8.66 | 63 734.75 | scaffold839;144409;147126;- | AT3G26932.1 (DRB3) | 2 | 细胞质Cytoplasmic |
DlDRB4A | Dlo_006595.1 | 801 | 266 | 6.20 | 29 386.63 | scaffold149;147015;151451;- | AT3G62800.1 (DRB4) | 0 | 细胞核Nuclear |
DlDRB4B | Dlo_010748.1 | 1 599 | 532 | 6.45 | 58 942.26 | scaffold202;352210;357863;- | AT3G62800.1 (DRB4) | 0 | 细胞核Nuclear |
DlDRB6 | Dlo_015255.1 | 1 371 | 456 | 9.42 | 48 959.58 | scaffold288;75960;78995;+ | 无 No result | 2 | 细胞核Nuclear |
表2 DlDRB家族基本理化性质分析
Table 2 Basic physicochemical property of DlDRB family
基因名 Gene name | 基因ID Accession No. | CDS/bp | 氨基酸数/aa Amino acid | pI | 分子量/ kD Mw | 染色体位置 Genomic location | 注释到拟南芥中 Annotated members of Arabidopsis thaliana | 糖基化位点 N-glycosyl sites | 亚细胞定位 Subcellular location |
---|---|---|---|---|---|---|---|---|---|
DlDRB1 | Dlo_011608.1 | 1 164 | 387 | 6.68 | 41 832.07 | scaffold2177;19929;24057;+ | AT1G09700.1 (DRB1) | 1 | 线粒体Mitochondrial |
DlDRB2 | Dlo_032918.1 | 1 389 | 462 | 9.14 | 50 375.63 | scaffold905;239727;242523;- | AT12G28380.1 (DRB2) | 1 | 细胞质Cytoplasmic |
DlDRB3A | Dlo_006566.1 | 1 431 | 476 | 9.45 | 52 055.49 | scaffold1488;15186;16811;+ | AT3G26932.1 (DRB3) | 4 | 细胞质Cytoplasmic |
DlDRB3B | Dlo_004997.1 | 1 716 | 571 | 9.09 | 63 187.06 | scaffold1339;54033;56503;+ | AT3G26932.1 (DRB3) | 4 | 细胞质Cytoplasmic |
DlDRB3C | Dlo_031650.1 | 1 749 | 582 | 8.66 | 63 734.75 | scaffold839;144409;147126;- | AT3G26932.1 (DRB3) | 2 | 细胞质Cytoplasmic |
DlDRB4A | Dlo_006595.1 | 801 | 266 | 6.20 | 29 386.63 | scaffold149;147015;151451;- | AT3G62800.1 (DRB4) | 0 | 细胞核Nuclear |
DlDRB4B | Dlo_010748.1 | 1 599 | 532 | 6.45 | 58 942.26 | scaffold202;352210;357863;- | AT3G62800.1 (DRB4) | 0 | 细胞核Nuclear |
DlDRB6 | Dlo_015255.1 | 1 371 | 456 | 9.42 | 48 959.58 | scaffold288;75960;78995;+ | 无 No result | 2 | 细胞核Nuclear |
图1 拟南芥(At)、水稻(Os)、玉米(Zm)、甜橙(Cs)和龙眼(Dl)DRB家族成员进化树(A)、基因结构(B)与保守motif分布图(C)
Fig. 1 Phylogenetic tree(A),genetic structure(B)and conserved motif distribution(C)ofDRB family in five species:Arabidopsis(At),rice(Os),corn(Zm),sweet orange(Cs)and longan(Dl)
图5 龙眼DRB家族在不同体胚发生阶段的相对表达量 EC:胚性愈伤组织;IcpEC:不完全胚性紧实结构;GE:球形胚。不同小写字母表示不同体胚发生阶段在0.05水平差异显著。
Fig. 5 Relative expression of DlDRB family at different stages of early somatic embryogenesis in longan EC:Embryonic callus;IcpEC:Incomplete embryonic compact structure;GE:Globular embryo.Different lowercase letters indicate significant different at 0.05 level between different stages of early somatic embryogenesis.
图6 DlDRB家族在脱落酸、水杨酸、茉莉酸甲酯处理下的相对表达量 **表示在0.01的水平上显著(t-检验)。
Fig. 6 Relative expression of DlDRB family in longan EC under ABA,SA,MeJA treatments ** indicates significant at the 0.01 probability level(t-test).
[1] |
Chang K Y, Ramos A. 2005. The double-stranded RNA-binding motif,a versatile macro-molecular docking platform. FEBS Journal, 272(9):2109-2117.
doi: 10.1111/ejb.2005.272.issue-9 URL |
[2] | Chen Xiaohui. 2018. Cloning and function analysis of DlDCLs in somatic embryogenesis of Dimocarpus longan Lour. [M. D. Dissertation]. Fuzhou:Fujian Agriculture and Forestry University. (in Chinese) |
陈晓慧. 2018. 龙眼体胚发生过程中DlDCLs的克隆与功能分析[硕士论文]. 福州:福建农林大学. | |
[3] | Chen Xiaohui, Bai Yu, Chen Xu, Li Hansheng, Lin Yuling, Lai Zhongxiong. 2017b. Molecular characterization and expression patterns of the DCL gene family during somatic embryogenesis in Dimocarpus longan Lour . Acta Botanica Boreali-Occidentalia Sinica, 37(11):120-2129. (in Chinese) |
陈晓慧, 白玉, 陈旭, 李汉生, 林玉玲, 赖钟雄. 2017b. 龙眼体胚发生过程中DCL基因的分子特性及表达分析. 西北植物学报, 37(11):2120-2129. | |
[4] | Chen Xiaohui, Bai Yu, Li Hansheng, Chen Xu, Liu Yuling, Lai Zhongxiong. 2017a. Promoter analysis and spatial and temporal expression of the DCL family gene in Dimocarpus longan Lour . Acta Botanica Boreali-Occidentalia Sinica, 37(10):1926-1933. (in Chinese) |
陈晓慧, 白玉, 李汉生, 陈旭, 林玉玲, 赖钟雄. 2017a. 龙眼DCL家族基因的启动子分析及时空表达. 西北植物学报, 37(10):1926-1933. | |
[5] |
Clavel M, Pélissier T, Montavon T, Tschopp M A, Pouch-Pélissier M N, Descombin J, Jean V, Dunoyer P, Bousquet-Antonelli C, Deragon J M. 2016. Evolutionary history of double-stranded RNA binding proteins in plants;identification of new cofactors involved in easiRNA biogenesis. Plant Molecular Biology, 91(1-2):131-147.
doi: 10.1007/s11103-016-0448-9 URL |
[6] |
Doornbos R F, Geraats B P, Kuramae E E, van Loon L C, Bakker P A. 2011. Effects of jasmonic acid,ethylene,and salicylic acid signaling on the rhizosphere bacterial community ofArabidopsis thaliana. Molecular Plant Microbe Interactions, 24(4):395-407.
doi: 10.1094/MPMI-05-10-0115 URL |
[7] | Eamens A L, Smith N A, Curtin S J, Wang M B, Waterhouse P M. 2009. The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. Cold Spring Harbor Laboratory Press, 15(12):2219-2235. |
[8] |
Eamens A L, Kim K W, Curtin S J, Waterhouse P M. 2012a. DRB2 is required for microRNA biogenesis inArabidopsis thaliana. PLoS ONE, 7(4):e35933.
doi: 10.1371/journal.pone.0035933 URL |
[9] | Eamens A L, Wook K K, Waterhouse P M. 2012b. DRB2,DRB3 and DRB5 function in a non-canonical microRNA pathway inArabidopsis thaliana. Plant Signaling & Behavior, 7(10):1224-1229. |
[10] |
Feng L, Xia R, Liu Y L. 2019. Comprehensive characterization of miRNA and PHAS loci in the diploid strawberry(Fragaria vesca)genome. Horticultural Plant Journal, 5(6):255-267.
doi: 10.1016/j.hpj.2019.11.004 |
[11] |
Fukudome A, Kanaya A, Egami M, Nakazawa Y, Hiraguri A, Moriyama H, Fukuhara T. 2011. Specific requirement of DRB4,a dsRNA-binding protein,for the in vitro dsRNA-cleaving activity of Arabidopsis Dicer-like 4. RNA, 17:750-760.
doi: 10.1261/rna.2455411 pmid: 21270136 |
[12] | Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens-annual review of phytopathology. Peronospora Pseudomonas Erysiphe Alternaria Botrytis, 43(1):205. |
[13] |
Hiraguri A, Itoh R, Kondo N, Nomura Y, Aizawa D, Murai Y, Koiwa H, Seki M, Shinozaki K, Fukuhara T. 2005. Specific interactions between Dicer-like proteins and HYL1/DRB- family dsRNA-binding proteins inArabidopsis thaliana. Plant Molecular Biology, 57(2):173-188.
doi: 10.1007/s11103-004-6853-5 URL |
[14] |
Jakubiec A, Yang S W, Chua N H. 2011. Arabidopsis DRB4 protein in antiviral defense against Turnip yellow mosaic virus infection. The Plant Journal, 69(1):14-25.
doi: 10.1111/tpj.2011.69.issue-1 URL |
[15] | Joseph L P, Jackson M J, Eamens A L. 2019. DRB1,DRB2 and DRB4 are required for appropriate regulation of the microRNA399/PHOSPHATE2 expression module inArabidopsis thaliana. Plants(Basel), 8(5):124. |
[16] |
Kiyota E, Okada R, Kondo N, Hiraguri A, Moriyama H, Fukuhara T. 2011. An Arabidopsis RNase III-like protein,AtRTL2,cleaves double-stranded RNAin vitro. Journal of Plant Research, 124(3):405-414.
doi: 10.1007/s10265-010-0382-x URL |
[17] | Kurihara Y, Takashi Y, Watanabe Y. 2006. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA(New York), 12(2):206-212. |
[18] |
Kwon T. 2016. A double-stranded RNA binding protein,HYL1,regulates plant immunity via the jasmonic acid pathway. Journal of Plant Biology, 59(5):506-514.
doi: 10.1007/s12374-016-0303-1 URL |
[19] | Lai Zhongxiong, Pan Liangzhen, Chen Zhenguang. 1997. Establishment and maintenance of longan embryogenic cell lines. Journal of Fujian Agricultural University,(2):33-40. (in Chinese) |
赖钟雄, 潘良镇, 陈振光. 1997. 龙眼胚性细胞系的建立与保持. 福建农业大学学报,(2):33-40. | |
[20] | Lim G H, Hoey T, Zhu S, Clavel M, Yu K, Navarre D, Kachroo A, Deragon J M, Kachroo P. 2018. COP1,a negative regulator of photomorphogenesis,positively regulates plant disease resistance via double-stranded RNA binding proteins. PLoS Pathogens, 14(3):e1006894. |
[21] |
Lin Y L, Lai Z X. 2010. Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Science, 178(4):359-365.
doi: 10.1016/j.plantsci.2010.02.005 URL |
[22] | Lin Y, Min J, Lai R, Wu Z, Chen Y, Yu L, Cheng C, Jin Y, Tian Q, Liu Q, Liu W, Zhang C, Lin L, Zhang D, Thu M, Zhang Z, Liu S, Zhong C, Fang X, Wang J, Yang H, Varshney RK, Yin Y, Lai Z. 2017. Genome-wide sequencing of longan(Dimocarpus longan Lour.)provides insights into molecular basis of its polyphenol-rich characteristics. Gigascience, 6(5):1-14. |
[23] |
Manavella P A, Hagmann J, Ott F, Laubinger S, Franz M, Macek B, Weigel D. 2012. Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell, 151(4):859-870.
doi: S0092-8674(12)01238-X pmid: 23141542 |
[24] | Masliah G, Barraud P, Allain F H. 2013. RNA recognition by double-stranded RNA binding domains:a matter of shape and sequence. Cellular and Molecular Life Sciences, 70(11):1875-1895. |
[25] |
Montavon T, Kwon Y, Zimmermann A, Hammann P, Vincent T, Cognat V, Bergdoll M, Michel F, Dunoyer P. 2018. Characterization of DCL4 missense alleles provides insights into its ability to process distinct classes of dsRNA substrates. The Plant Journal, 95(2):204-218.
doi: 10.1111/tpj.13941 pmid: 29682831 |
[26] | Morel G M. 1960. Producing virus-free Cymbidium. American Orchid Soc Bulletin, 29(1):495-497. |
[27] | Pélissier T, Clavel M, Chaparro C, Pouch-Pélissier M N, Vaucheret H, Deragon J M. 2011. Double-stranded RNA binding proteins DRB2 and DRB4 have an antagonistic impact on polymerase IV-dependent siRNA levels inArabidopsis. RNA(New York), 17(8):1502-1510. |
[28] | Ren Yi-ran, Zhao Qiang, Zhao Xian-yan, Hao Yu-jin, You Chun-xiang. 2016. Expression and function analysis of apple MdDRB1 gene . Acta Horticulturae Sinica, 43(6):1033-1043. (in Chinese) |
任怡然, 赵强, 赵先炎, 郝玉金, 由春香. 2016. 苹果MdDRB1的表达与功能分析. 园艺学报, 43(6):1033-1043. | |
[29] |
Sawano H, Matsuzaki T, Usui T, Tabara M, Fukudome A, Kanaya A, Tanoue D, Hiraguri A, Horiguchi G, Ohtani M, Demura T, Kozaki T, Ishii K, Moriyama H, Fukuhara T. 2017. Double-stranded RNA-binding protein DRB3 negatively regulates anthocyanin biosynthesis by modulating PAP1 expression in Arabidopsis thaliana. Journal of Plant Research, 130(1):45-55.
doi: 10.1007/s10265-016-0886-0 URL |
[30] | Tang Xiangrong, Wu Hao, Jia Ming, Yu Xuhong, He Yuke. 2002. Isolation and expressional analysis of cDNA encoding a dsRNA binding protein homologue OsRBPof rice . Journal of Plant Physiology and Molecular Biology, 28(1):41-45. (in Chinese) |
唐向荣, 吴昊, 贾明, 余旭红, 何雨科. 2002. 水稻双链RNA结合蛋白同源基因OsRBP的克隆及其表达的分析. 植物生理与分子生物学学报,(1):41-45. | |
[31] |
Vicente R S, Plasencia J. 2011. Salicylic acid beyond defence:its role in plant growth and development. J Exp Bot, 62(10):3321-3338.
doi: 10.1093/jxb/err031 URL |
[32] | Wang Liping, Jiang Lijuan, Ma Fengwang, Guan Qingmei. 2018. Expression and function analysis of MdHYL1gene in apple under drought tolerance . Journal of Northwest A & F University(Natural Science Edition), 46(7):109-116. (in Chinese) |
王丽平, 姜丽娟, 马锋旺, 管清美. 2018. 苹果HYL1基因在干旱中的表达与功能分析. 西北农林科技大学学报(自然科学版), 46(7):109-116. | |
[33] | Wu Mei-ting, Yang Xiao-yu, Luo Lin-lin, Mo Bei-xin, Liu Lin. 2018. Recent advances in plant microRNA responses to abiotic stresses. Guangdong Agricultural Sciences, 45(3):69-80. (in Chinese) |
吴美婷, 杨晓玉, 罗淋淋, 莫蓓莘, 刘琳. 2018. 植物microRNA响应非生物胁迫研究进展. 广东农业科学, 45(3):69-80. | |
[34] |
Xavier A, Taline E, Dominique L, Stéphanie B, Nicolas B, Virginie G, Hervé V. 2006. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Current Biology, 16(9):927-32
pmid: 16682354 |
[35] |
Yang S W, Chen H Y, Yang J, Machida S, Chua N H, Yuan Y A. 2010. Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing. Structure, 18:594-605.
doi: 10.1016/j.str.2010.02.006 URL |
[36] | You Chun-Xiang. 2010. Cloning and characterization of appleMdDRB gene as well as the extopic expression ofArabidopsis AtmiR393a gene in tobacco[Ph. D. Dissertation]. Tai’an:Shandong Agricultural University. (in Chinese) |
由春香. 2010. 苹果MdDRB基因的克隆鉴定和拟南芥AtmiR393α基因在烟草中的异位表达分析[博士论文]. 泰安:山东农业大学. | |
[37] |
You C X, Zhao Q, Wang X F, Xie X B, Feng X M, Zhao L L, Shu H R, Hao Y J. 2014. A dsRNA-binding protein MdDRB1 associated with miRNA biogenesis modifies adventitious rooting and tree architecture in apple. Plant Biotechnol J, 12(2):183-192.
doi: 10.1111/pbi.12125 URL |
[38] | Zhao Xian-yan. 2015. Functional characterization of MdDRB1 and the two related MircoRNA genes[M. D. Dissertation]. Tai’an;Shandong Agricultural University. (in Chinese) |
赵先炎. 2015. 苹果MdDRB1基因及2个相关MircoRNAs编码基因的功能鉴定[硕士论文]. 泰安:山东农业大学. | |
[39] |
Zhu S, Jeong R D, Lim G H, Yu K, Wang C, Chandra-Shekara A C, Navarre D, Klessig D F, Kachroo A, Kachroo P. 2013. Double-stranded RNA-binding protein 4 is required for resistance signaling against viral and bacterial pathogens. Cell Reports, 4(6):1168-1184.
doi: 10.1016/j.celrep.2013.08.018 URL |
[1] | 于婷婷, 李 欢, 宁源生, 宋建飞, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果GRAS全基因组鉴定及其对生长素的响应分析[J]. 园艺学报, 2023, 50(2): 397-409. |
[2] | 袁馨, 徐云鹤, 张雨培, 单楠, 陈楚英, 万春鹏, 开文斌, 翟夏琬, 陈金印, 甘增宇. 猕猴桃后熟过程中ABA响应结合因子AcAREB1调控AcGH3.1的表达[J]. 园艺学报, 2023, 50(1): 53-64. |
[3] | 赵雪艳, 王琪, 王莉, 王方圆, 王庆, 李艳. 基于比较转录组的延胡索组织差异性表达分析[J]. 园艺学报, 2023, 50(1): 177-187. |
[4] | 邓朝军, 许奇志, 蒋际谋, 胡文舜, 郑少泉, 陈秀萍, 姜 帆, 许家辉, 苏文炳, 张雅玲, 黄敬峰. 浓香型龙眼新品种‘醇香’[J]. 园艺学报, 2022, 49(S2): 75-76. |
[5] | 邓朝军, 陈秀萍, 许奇志, 蒋际谋, 郑少泉, 胡文舜, 姜 帆, 许家辉, 苏文炳, 张雅玲, 黄敬峰. 浓香型龙眼新品种‘福香’[J]. 园艺学报, 2022, 49(S2): 77-78. |
[6] | 徐小萍, 曹清影, 蔡柔荻, 官庆栩, 张梓浩, 陈裕坤, 徐涵, 林玉玲, 赖钟雄. 龙眼miR408与DlLAC12克隆及其在球形胚发生和非生物胁迫下的表达分析[J]. 园艺学报, 2022, 49(9): 1866-1882. |
[7] | 高彦龙, 吴玉霞, 张仲兴, 王双成, 张瑞, 张德, 王延秀. 苹果ELO家族基因鉴定及其在低温胁迫下的表达分析[J]. 园艺学报, 2022, 49(8): 1621-1636. |
[8] | 邱子文, 刘林敏, 林永盛, 林晓洁, 李永裕, 吴少华, 杨超. 千层金MbEGS基因的克隆与功能分析[J]. 园艺学报, 2022, 49(8): 1747-1760. |
[9] | 郑林, 王帅, 刘语诺, 杜美霞, 彭爱红, 何永睿, 陈善春, 邹修平. 柑橘响应黄龙病菌侵染的NAC基因的克隆及表达分析[J]. 园艺学报, 2022, 49(7): 1441-1457. |
[10] | 钱婕妤, 蒋玲莉, 郑钢, 陈佳红, 赖吴浩, 许梦晗, 付建新, 张超. 百日草花青素苷合成相关MYB转录因子筛选及ZeMYB9功能研究[J]. 园艺学报, 2022, 49(7): 1505-1518. |
[11] | 马维峰, 李艳梅, 马宗桓, 陈佰鸿, 毛娟. 苹果POD家族基因的鉴定与MdPOD15的功能分析[J]. 园艺学报, 2022, 49(6): 1181-1199. |
[12] | 张凯, 麻明英, 王萍, 李益, 金燕, 盛玲, 邓子牛, 马先锋. 柑橘HSP20家族基因鉴定及其响应溃疡病菌侵染表达分析[J]. 园艺学报, 2022, 49(6): 1213-1232. |
[13] | 梁晨, 孙如意, 向锐, 孙艺萌, 师校欣, 杜国强, 王莉. 葡萄生长调控因子GRF家族基因的鉴定及表达分析[J]. 园艺学报, 2022, 49(5): 995-1007. |
[14] | 肖学宸, 刘梦雨, 蒋梦琦, 陈燕, 薛晓东, 周承哲, 吴兴健, 吴君楠, 郭寅生, 叶开温, 赖钟雄, 林玉玲. 龙眼褪黑素合成途径SNAT、ASMT和COMT家族基因鉴定及表达分析[J]. 园艺学报, 2022, 49(5): 1031-1046. |
[15] | 潘鑫峰, 叶方婷, 毛志君, 李兆伟, 范凯. 睡莲WRKY家族的全基因组鉴定和分子进化分析[J]. 园艺学报, 2022, 49(5): 1121-1135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司