园艺学报 ›› 2021, Vol. 48 ›› Issue (5): 897-907.doi: 10.16420/j.issn.0513-353x.2020-0608
江锡兵1, 章平生1, 徐阳1, 吴聪连2, 张东北2, 龚榜初1,*(), 吴开云1, 赖俊声2
收稿日期:
2020-09-03
修回日期:
2020-11-17
出版日期:
2021-05-25
发布日期:
2021-06-07
通讯作者:
龚榜初
E-mail:gongbc@126.com
基金资助:
JIANG Xibing1, ZHANG Pingsheng1, XU Yang1, WU Conglian2, ZHANG Dongbei2, GONG Bangchu1,*(), WU Kaiyun1, LAI Junsheng2
Received:
2020-09-03
Revised:
2020-11-17
Online:
2021-05-25
Published:
2021-06-07
Contact:
GONG Bangchu
E-mail:gongbc@126.com
摘要:
为深入了解栗属植物种内、种间杂交F1代群体遗传多样性和变异规律,以及不同亲本遗传效应和配置方式对杂交F1代的影响,以锥栗种内、锥栗和板栗种间9个杂交组合235份F1代单株及其亲本为材料,利用32对高多态性栗属SSR标记对其基因组DNA进行PCR扩增和毛细管电泳,统计数据并进行遗传参数、分子方差、UPGMA聚类和PCA分析。结果表明:32对SSR引物在235个子代中共扩增出278个多态性位点,平均观测等位基因数8.69个,Shannon’s多样性指数(I)、基因遗传多样性(Hs)和基因流(Nm)平均值分别为1.3707、0.6574和1.5951,遗传分化系数(Fst)显示杂交F1代85.18%的变异存在于组合内;不同组合Shannon’s 多样性指数范围为0.8816 ~ 1.1317,显示其子代均存在丰富的遗传多样性,且子代遗传多样性水平受不同父、母本遗传效应以及亲本配置影响;分子方差分析表明栗杂交F1代群体遗传变异主要来源于组合内(78.06%),与遗传分化系数结果较为一致;不同杂交组合遗传距离和UPGMA聚类显示,具有相同亲本的正反交组合C3和C5遗传距离最近,最先聚到一起,其次是具有相同母本或相同父本的组合,分别聚到一起;杂交子代PCA散点图进一步验证了杂交组合聚类分析结果,同一组合内或遗传距离较近的组合多数子代能聚到一起,同时,不同组合子代又存在交叉重叠现象,说明存在较为广泛的基因交流,且子代分离现象明显。
中图分类号:
江锡兵, 章平生, 徐阳, 吴聪连, 张东北, 龚榜初, 吴开云, 赖俊声. 栗杂交F1代SSR标记遗传多样性分析[J]. 园艺学报, 2021, 48(5): 897-907.
JIANG Xibing, ZHANG Pingsheng, XU Yang, WU Conglian, ZHANG Dongbei, GONG Bangchu, WU Kaiyun, LAI Junsheng. Genetic Diversity of F1 Hybrids of Chestnut Based on SSR Markers[J]. Acta Horticulturae Sinica, 2021, 48(5): 897-907.
组合编号 Combination No. | 杂交组合 Combination | 子代数量 Number of hybrids |
---|---|---|
C1 | YLZ 26 × YLZ 14 | 14 |
C2 | YLZ 26 × YLZ 15 | 30 |
C3 | YLZ 24 × YLZ 1 | 30 |
C4 | YLZ 24 × YLZ 15 | 30 |
C5 | YLZ 1 × YLZ 24 | 30 |
C6 | YLZ 1 × YLZ 2 | 17 |
C7 | YLZ 14 × YLZ 1 | 24 |
C8 | 魁栗 Kuili × YLZ 15 | 30 |
C9 | 魁栗 Kuili × YLZ 1 | 30 |
表1 栗杂交组合概况
Table 1 Cross combination of chestnut
组合编号 Combination No. | 杂交组合 Combination | 子代数量 Number of hybrids |
---|---|---|
C1 | YLZ 26 × YLZ 14 | 14 |
C2 | YLZ 26 × YLZ 15 | 30 |
C3 | YLZ 24 × YLZ 1 | 30 |
C4 | YLZ 24 × YLZ 15 | 30 |
C5 | YLZ 1 × YLZ 24 | 30 |
C6 | YLZ 1 × YLZ 2 | 17 |
C7 | YLZ 14 × YLZ 1 | 24 |
C8 | 魁栗 Kuili × YLZ 15 | 30 |
C9 | 魁栗 Kuili × YLZ 1 | 30 |
引物名称 Primer name | 重复碱基 Repeat base | 引物序列 Primer sequence | 退火温度/℃ Annealing temperature |
---|---|---|---|
CmTCR2 | (CA)23 | F:ATCAGAGTGGGAAGCCAGAA;R:GGGTACAGTGGCAAGACA | 52 |
CmTCR4 | (AC)21 | F:CATAGGTTCAAACCATACCCGTG;R:CTCATCTTTGTAGGGTATAATACC | 52 |
CmTCR10 | (TG)15 | F:CACTATTTTATCATGGACGG;R:CGAATTGAGAGTTCATACTC | 50 |
CmTCR13 | (AC)7 | F:GTAACTTGAAGCAGTGTGAAC;R:CGCATCATAGTGAGTGACAG | 55 |
CmTCR19 | (AG)20 | F:AAGTCAGCAACACCATATGC;R:CCCACTGTTCATGAGTTTCT | 56 |
CmTCR22 | (AC)7 | F:GAACATGATGATTGGCCTC;R:CCAAACATGACATATGTCCC | 50 |
CmTCR25 | (GT)28 | F:TCGATGCCATGTTGATTGTT;R:GGTTTTGGGGACGTGTTAGG | 52 |
CsCAT5 | (GA)20 | F:CATTTTCTCATTGTGGCTGC;R:CACTTGCACATCCAATTAGG | 59 |
CsCAT7 | (TG)8CG(TG)4 | F:GAACATGATGATTGGCCTC;R:CCAAACATGACATATGTCCC | 58 |
CsCAT8 | (GT)7(GA)20 | F:CTGCAAGACAAGAATTACAC;R:GAATAACCTGCAGAAGGC | 56 |
CsCAT15 | (TC)12 | F:TTCTGCGACCTCGAAACCGA;R:GCTAGGGTTTTCATTTCTAG | 60 |
CsCAT18 | (CA)12CG(CA)10 | F:GCTTGATTGCACTGATAACC;R:CACATGAGCGCGTGCTCAGAAG | 55 |
CsCAT26 | (CT)25 | F:GAGACTTGAGATTGCAAAGG;R:CTCACATTCAGTTAACAC | 55 |
CsCAT31 | (TG)4T(TG)17 | F:CCCTTTAAATACTGTGTGTG;R:CTACAGGAACACTCTGAATAG | 56 |
CsCAT33 | (GA)5GG(GA)11 | F:CTCGGAAACCAAACATGAATC;R:CGTTTTTGCTTCTTAGATTCC | 58 |
CsCAT38 | (CT)7 | F:CTAGAAATGAAAACCCTAGC;R:CGTGAACCACGTATCTACC | 54 |
CsCAT41 | (AG)20 | F:AAGTCAGCAACACCATATGC;R:CCCACTGTTCATGAGTTTCT | 60 |
EMCs2 | (CGG)7 | F:GCTGATATGGCAATGCTTTTCCTC;R:GCCCTCCAGCCTCACCTTCATCAG | 56 |
EMCs4 | (GGC)7 | F:CGCCGAACTCACCGACCTC;R:GCCAAAACGACACCCAATCC | 56 |
EMCs15 | (CAC)9 | F:CTCTTAGACTCCTTCGCCAATC;R:CAGAATCAAAGAAGAGAAAGGTC | 56 |
ICMA003 | (GA)19 | F:TGTCTGCCTGAAACCATTTCT;R:GGGACCCACAAGTCTCATGT | 60 |
ICMA010 | (CT)6(GT)17 | F:GTTGGAGAGGTCGTCTCACG;R:ATTGCGAGGAAAAGGAAACA | 60 |
ICMA012s | (AC)14 | F:TCCACAGCAAGATCCAAACA;R:ATGATTTGGCCATCACAAGA | 60 |
ICMA014 | (CA)13 | F:GGTGATATTTTTGGCATCATCA;R:GGGTCCTCCACCACAATTAG | 60 |
ICMA017s | (TG)17 | F:CAAGCGGAAATGTTTTCTCA;R:CTTTGGATCAAATGGCGTCT | 60 |
ICMA022 | (CAG)6 | F:CGATGTCTGCGTCAAATCTC;R:CTGCTGGGACAGCTGATGTA | 60 |
KT010a | (GA)10 | F:TAATGTGAAAGAGAGAGGGG;R:ACCGGCCACAAAGAATCAAG | 55 |
KT024a | (GA)12 | F:CACCCACTACCAGTAGTTGT;R:AACATCAACCCACTAACTTT | 55 |
PRA86 | (CT)n | F:ATCCCTGCACCAAGAACAAG;R:GTTTCTTGCCTTTGGTCTCTTGCCAT | 55 |
PRD21 | (TG)n | F:GTGGAACAAGCATCCAACTG;R:GTTTCTTCATGCGTGATGCAGCTTAGT | 55 |
PRD26 | (GA)n | F:TCCTGAACAAGTCAAGGTGC;R:GTTTCTTTCACACCACTGTGTTGCCTA | 55 |
PRD52 | (AG)n | F:CTTGTCATGGTGCATTGGTG;R:GTTTCTTCCGCAGTGGTGATCCATTAT | 55 |
表2 32对SSR引物序列
Table 2 Thirty-two pairs of SSR primer sequences
引物名称 Primer name | 重复碱基 Repeat base | 引物序列 Primer sequence | 退火温度/℃ Annealing temperature |
---|---|---|---|
CmTCR2 | (CA)23 | F:ATCAGAGTGGGAAGCCAGAA;R:GGGTACAGTGGCAAGACA | 52 |
CmTCR4 | (AC)21 | F:CATAGGTTCAAACCATACCCGTG;R:CTCATCTTTGTAGGGTATAATACC | 52 |
CmTCR10 | (TG)15 | F:CACTATTTTATCATGGACGG;R:CGAATTGAGAGTTCATACTC | 50 |
CmTCR13 | (AC)7 | F:GTAACTTGAAGCAGTGTGAAC;R:CGCATCATAGTGAGTGACAG | 55 |
CmTCR19 | (AG)20 | F:AAGTCAGCAACACCATATGC;R:CCCACTGTTCATGAGTTTCT | 56 |
CmTCR22 | (AC)7 | F:GAACATGATGATTGGCCTC;R:CCAAACATGACATATGTCCC | 50 |
CmTCR25 | (GT)28 | F:TCGATGCCATGTTGATTGTT;R:GGTTTTGGGGACGTGTTAGG | 52 |
CsCAT5 | (GA)20 | F:CATTTTCTCATTGTGGCTGC;R:CACTTGCACATCCAATTAGG | 59 |
CsCAT7 | (TG)8CG(TG)4 | F:GAACATGATGATTGGCCTC;R:CCAAACATGACATATGTCCC | 58 |
CsCAT8 | (GT)7(GA)20 | F:CTGCAAGACAAGAATTACAC;R:GAATAACCTGCAGAAGGC | 56 |
CsCAT15 | (TC)12 | F:TTCTGCGACCTCGAAACCGA;R:GCTAGGGTTTTCATTTCTAG | 60 |
CsCAT18 | (CA)12CG(CA)10 | F:GCTTGATTGCACTGATAACC;R:CACATGAGCGCGTGCTCAGAAG | 55 |
CsCAT26 | (CT)25 | F:GAGACTTGAGATTGCAAAGG;R:CTCACATTCAGTTAACAC | 55 |
CsCAT31 | (TG)4T(TG)17 | F:CCCTTTAAATACTGTGTGTG;R:CTACAGGAACACTCTGAATAG | 56 |
CsCAT33 | (GA)5GG(GA)11 | F:CTCGGAAACCAAACATGAATC;R:CGTTTTTGCTTCTTAGATTCC | 58 |
CsCAT38 | (CT)7 | F:CTAGAAATGAAAACCCTAGC;R:CGTGAACCACGTATCTACC | 54 |
CsCAT41 | (AG)20 | F:AAGTCAGCAACACCATATGC;R:CCCACTGTTCATGAGTTTCT | 60 |
EMCs2 | (CGG)7 | F:GCTGATATGGCAATGCTTTTCCTC;R:GCCCTCCAGCCTCACCTTCATCAG | 56 |
EMCs4 | (GGC)7 | F:CGCCGAACTCACCGACCTC;R:GCCAAAACGACACCCAATCC | 56 |
EMCs15 | (CAC)9 | F:CTCTTAGACTCCTTCGCCAATC;R:CAGAATCAAAGAAGAGAAAGGTC | 56 |
ICMA003 | (GA)19 | F:TGTCTGCCTGAAACCATTTCT;R:GGGACCCACAAGTCTCATGT | 60 |
ICMA010 | (CT)6(GT)17 | F:GTTGGAGAGGTCGTCTCACG;R:ATTGCGAGGAAAAGGAAACA | 60 |
ICMA012s | (AC)14 | F:TCCACAGCAAGATCCAAACA;R:ATGATTTGGCCATCACAAGA | 60 |
ICMA014 | (CA)13 | F:GGTGATATTTTTGGCATCATCA;R:GGGTCCTCCACCACAATTAG | 60 |
ICMA017s | (TG)17 | F:CAAGCGGAAATGTTTTCTCA;R:CTTTGGATCAAATGGCGTCT | 60 |
ICMA022 | (CAG)6 | F:CGATGTCTGCGTCAAATCTC;R:CTGCTGGGACAGCTGATGTA | 60 |
KT010a | (GA)10 | F:TAATGTGAAAGAGAGAGGGG;R:ACCGGCCACAAAGAATCAAG | 55 |
KT024a | (GA)12 | F:CACCCACTACCAGTAGTTGT;R:AACATCAACCCACTAACTTT | 55 |
PRA86 | (CT)n | F:ATCCCTGCACCAAGAACAAG;R:GTTTCTTGCCTTTGGTCTCTTGCCAT | 55 |
PRD21 | (TG)n | F:GTGGAACAAGCATCCAACTG;R:GTTTCTTCATGCGTGATGCAGCTTAGT | 55 |
PRD26 | (GA)n | F:TCCTGAACAAGTCAAGGTGC;R:GTTTCTTTCACACCACTGTGTTGCCTA | 55 |
PRD52 | (AG)n | F:CTTGTCATGGTGCATTGGTG;R:GTTTCTTCCGCAGTGGTGATCCATTAT | 55 |
引物 Primer | Na 观测等位 基因数 Observed number of alleles | Ne 有效等位 基因数 Effective number of alleles | Ho 观测杂合度 Observed heterozygosity | He 期望杂合度 Expected heterozygosity | I Shannon’s 信息指数 Shannon’s information index | PIC 多态信息量 Polymorphism information content | Hs 基因遗传 多样性 Genetic diversity | Fst 遗传分化 系数 Genetic differentiation coefficient | Nm 基因流 Gene flow |
---|---|---|---|---|---|---|---|---|---|
CmTCR2 | 12 | 2.900 | 0.1362 | 0.6565 | 1.3106 | 0.6040 | 0.6551 | 0.1438 | 1.4885 |
CmTCR4 | 14 | 6.242 | 0.3191 | 0.8416 | 2.0650 | 0.8222 | 0.8398 | 0.1771 | 1.1617 |
CmTCR10 | 9 | 3.383 | 0.2255 | 0.7059 | 1.4277 | 0.6612 | 0.7044 | 0.0880 | 2.5921 |
CmTCR13 | 24 | 6.627 | 0.6979 | 0.8509 | 2.2389 | 0.8324 | 0.8491 | 0.2213 | 0.8799 |
CmTCR19 | 10 | 2.708 | 0.7021 | 0.6320 | 1.3254 | 0.5829 | 0.6307 | 0.2265 | 0.8539 |
CmTCR22 | 10 | 5.400 | 0.1160 | 0.8165 | 1.8446 | 0.7898 | 0.8148 | 0.1766 | 1.1656 |
CmTCR25 | 5 | 1.622 | 0.8681 | 0.3842 | 0.7621 | 0.3555 | 0.3834 | 0.1375 | 1.5685 |
CsCAT5 | 15 | 5.866 | 0.1453 | 0.8313 | 2.0510 | 0.8090 | 0.8295 | 0.1548 | 1.3679 |
CsCAT7 | 11 | 6.504 | 0.1064 | 0.8481 | 2.0124 | 0.8279 | 0.8462 | 0.1480 | 1.4392 |
CsCAT8 | 9 | 3.823 | 0.3362 | 0.7400 | 1.5976 | 0.7041 | 0.7384 | 0.1156 | 1.9126 |
CsCAT15 | 3 | 2.003 | 0.6045 | 0.5018 | 0.8262 | 0.4252 | 0.5008 | 0.1249 | 1.7513 |
CsCAT18 | 10 | 4.617 | 0.3191 | 0.7851 | 1.7221 | 0.7513 | 0.7834 | 0.1376 | 1.5672 |
CsCAT26 | 16 | 4.370 | 0.3830 | 0.7728 | 1.7692 | 0.7389 | 0.7712 | 0.1329 | 1.6317 |
CsCAT31 | 7 | 2.574 | 0.7362 | 0.6128 | 1.2025 | 0.5645 | 0.6115 | 0.1165 | 1.8964 |
CsCAT33 | 7 | 3.453 | 0.2298 | 0.7119 | 1.3586 | 0.6547 | 0.7104 | 0.1385 | 1.5555 |
CsCAT38 | 4 | 3.179 | 0.3191 | 0.6869 | 1.2163 | 0.6218 | 0.6854 | 0.1060 | 2.1091 |
CsCAT41 | 11 | 3.960 | 0.4890 | 0.7491 | 1.6583 | 0.7152 | 0.7475 | 0.1336 | 1.6215 |
EMCs2 | 10 | 1.966 | 0.4851 | 0.4923 | 1.0327 | 0.4492 | 0.4912 | 0.0977 | 2.3093 |
EMCs4 | 9 | 5.025 | 0.3277 | 0.8027 | 1.7567 | 0.7721 | 0.8010 | 0.1515 | 1.4001 |
EMCs15 | 4 | 1.597 | 0.6128 | 0.3747 | 0.5832 | 0.3070 | 0.3739 | 0.3356 | 0.4949 |
ICMA003 | 7 | 3.354 | 0.2255 | 0.7033 | 1.4438 | 0.6588 | 0.7018 | 0.0889 | 2.5608 |
ICMA010 | 10 | 3.408 | 0.2298 | 0.7081 | 1.4312 | 0.6556 | 0.7066 | 0.1069 | 2.0896 |
ICMA012s | 9 | 2.969 | 0.0723 | 0.6646 | 1.3763 | 0.6147 | 0.6632 | 0.1517 | 1.3980 |
ICMA014 | 5 | 2.049 | 0.1149 | 0.5130 | 0.7752 | 0.3973 | 0.5119 | 0.1109 | 2.0043 |
ICMA017s | 10 | 4.942 | 0.0936 | 0.7994 | 1.8036 | 0.7705 | 0.7977 | 0.1350 | 1.6023 |
ICMA022 | 4 | 1.886 | 0.5872 | 0.4707 | 0.7813 | 0.3965 | 0.4697 | 0.1374 | 1.5700 |
KT010a | 5 | 2.077 | 0.4723 | 0.5196 | 0.8241 | 0.4123 | 0.5185 | 0.1045 | 2.1415 |
KT024a | 2 | 1.693 | 0.5617 | 0.4103 | 0.5997 | 0.3256 | 0.4095 | 0.1116 | 1.9897 |
PRA86 | 6 | 4.339 | 0.1745 | 0.7711 | 1.6289 | 0.7399 | 0.7695 | 0.1820 | 1.1238 |
PRD21 | 10 | 3.005 | 0.5872 | 0.6687 | 1.3184 | 0.6100 | 0.6673 | 0.2533 | 0.7369 |
PRD26 | 6 | 3.403 | 0.1745 | 0.7076 | 1.4798 | 0.6737 | 0.7061 | 0.1145 | 1.9328 |
PRD52 | 4 | 1.529 | 0.6426 | 0.3468 | 0.6400 | 0.3116 | 0.3461 | 0.1814 | 1.1278 |
均值 Mean | 8.69 | 3.510 | 0.3793 | 0.6588 | 1.3707 | 0.6111 | 0.6574 | 0.1482 | 1.5951 |
表3 杂交F1代32对SSR引物的遗传参数
Table 3 Genetic parameters of 32 pairs of SSR primers in F1 hybrids
引物 Primer | Na 观测等位 基因数 Observed number of alleles | Ne 有效等位 基因数 Effective number of alleles | Ho 观测杂合度 Observed heterozygosity | He 期望杂合度 Expected heterozygosity | I Shannon’s 信息指数 Shannon’s information index | PIC 多态信息量 Polymorphism information content | Hs 基因遗传 多样性 Genetic diversity | Fst 遗传分化 系数 Genetic differentiation coefficient | Nm 基因流 Gene flow |
---|---|---|---|---|---|---|---|---|---|
CmTCR2 | 12 | 2.900 | 0.1362 | 0.6565 | 1.3106 | 0.6040 | 0.6551 | 0.1438 | 1.4885 |
CmTCR4 | 14 | 6.242 | 0.3191 | 0.8416 | 2.0650 | 0.8222 | 0.8398 | 0.1771 | 1.1617 |
CmTCR10 | 9 | 3.383 | 0.2255 | 0.7059 | 1.4277 | 0.6612 | 0.7044 | 0.0880 | 2.5921 |
CmTCR13 | 24 | 6.627 | 0.6979 | 0.8509 | 2.2389 | 0.8324 | 0.8491 | 0.2213 | 0.8799 |
CmTCR19 | 10 | 2.708 | 0.7021 | 0.6320 | 1.3254 | 0.5829 | 0.6307 | 0.2265 | 0.8539 |
CmTCR22 | 10 | 5.400 | 0.1160 | 0.8165 | 1.8446 | 0.7898 | 0.8148 | 0.1766 | 1.1656 |
CmTCR25 | 5 | 1.622 | 0.8681 | 0.3842 | 0.7621 | 0.3555 | 0.3834 | 0.1375 | 1.5685 |
CsCAT5 | 15 | 5.866 | 0.1453 | 0.8313 | 2.0510 | 0.8090 | 0.8295 | 0.1548 | 1.3679 |
CsCAT7 | 11 | 6.504 | 0.1064 | 0.8481 | 2.0124 | 0.8279 | 0.8462 | 0.1480 | 1.4392 |
CsCAT8 | 9 | 3.823 | 0.3362 | 0.7400 | 1.5976 | 0.7041 | 0.7384 | 0.1156 | 1.9126 |
CsCAT15 | 3 | 2.003 | 0.6045 | 0.5018 | 0.8262 | 0.4252 | 0.5008 | 0.1249 | 1.7513 |
CsCAT18 | 10 | 4.617 | 0.3191 | 0.7851 | 1.7221 | 0.7513 | 0.7834 | 0.1376 | 1.5672 |
CsCAT26 | 16 | 4.370 | 0.3830 | 0.7728 | 1.7692 | 0.7389 | 0.7712 | 0.1329 | 1.6317 |
CsCAT31 | 7 | 2.574 | 0.7362 | 0.6128 | 1.2025 | 0.5645 | 0.6115 | 0.1165 | 1.8964 |
CsCAT33 | 7 | 3.453 | 0.2298 | 0.7119 | 1.3586 | 0.6547 | 0.7104 | 0.1385 | 1.5555 |
CsCAT38 | 4 | 3.179 | 0.3191 | 0.6869 | 1.2163 | 0.6218 | 0.6854 | 0.1060 | 2.1091 |
CsCAT41 | 11 | 3.960 | 0.4890 | 0.7491 | 1.6583 | 0.7152 | 0.7475 | 0.1336 | 1.6215 |
EMCs2 | 10 | 1.966 | 0.4851 | 0.4923 | 1.0327 | 0.4492 | 0.4912 | 0.0977 | 2.3093 |
EMCs4 | 9 | 5.025 | 0.3277 | 0.8027 | 1.7567 | 0.7721 | 0.8010 | 0.1515 | 1.4001 |
EMCs15 | 4 | 1.597 | 0.6128 | 0.3747 | 0.5832 | 0.3070 | 0.3739 | 0.3356 | 0.4949 |
ICMA003 | 7 | 3.354 | 0.2255 | 0.7033 | 1.4438 | 0.6588 | 0.7018 | 0.0889 | 2.5608 |
ICMA010 | 10 | 3.408 | 0.2298 | 0.7081 | 1.4312 | 0.6556 | 0.7066 | 0.1069 | 2.0896 |
ICMA012s | 9 | 2.969 | 0.0723 | 0.6646 | 1.3763 | 0.6147 | 0.6632 | 0.1517 | 1.3980 |
ICMA014 | 5 | 2.049 | 0.1149 | 0.5130 | 0.7752 | 0.3973 | 0.5119 | 0.1109 | 2.0043 |
ICMA017s | 10 | 4.942 | 0.0936 | 0.7994 | 1.8036 | 0.7705 | 0.7977 | 0.1350 | 1.6023 |
ICMA022 | 4 | 1.886 | 0.5872 | 0.4707 | 0.7813 | 0.3965 | 0.4697 | 0.1374 | 1.5700 |
KT010a | 5 | 2.077 | 0.4723 | 0.5196 | 0.8241 | 0.4123 | 0.5185 | 0.1045 | 2.1415 |
KT024a | 2 | 1.693 | 0.5617 | 0.4103 | 0.5997 | 0.3256 | 0.4095 | 0.1116 | 1.9897 |
PRA86 | 6 | 4.339 | 0.1745 | 0.7711 | 1.6289 | 0.7399 | 0.7695 | 0.1820 | 1.1238 |
PRD21 | 10 | 3.005 | 0.5872 | 0.6687 | 1.3184 | 0.6100 | 0.6673 | 0.2533 | 0.7369 |
PRD26 | 6 | 3.403 | 0.1745 | 0.7076 | 1.4798 | 0.6737 | 0.7061 | 0.1145 | 1.9328 |
PRD52 | 4 | 1.529 | 0.6426 | 0.3468 | 0.6400 | 0.3116 | 0.3461 | 0.1814 | 1.1278 |
均值 Mean | 8.69 | 3.510 | 0.3793 | 0.6588 | 1.3707 | 0.6111 | 0.6574 | 0.1482 | 1.5951 |
组合编号 Combination No. | Na 观测等位 基因数 Observed number of alleles | Ne 有效等位 基因数 Effective number of alleles | Ho 观测杂合度 Observed heterozygosity | He 期望杂合度 Expected heterozygosity | Hs Nei’s 遗传多样性 Nei’s genetic diversity | I 多态性信息指数 Shannon’s information index |
---|---|---|---|---|---|---|
C1 | 4.22 | 2.96 | 0.3259 | 0.6324 | 0.6098 | 1.1317 |
C2 | 4.31 | 2.55 | 0.3948 | 0.5698 | 0.5603 | 1.0253 |
C3 | 3.43 | 2.63 | 0.3209 | 0.5908 | 0.5809 | 1.0108 |
C4 | 4.19 | 2.70 | 0.3917 | 0.5729 | 0.5634 | 1.0224 |
C5 | 4.66 | 2.79 | 0.3625 | 0.6062 | 0.5961 | 1.1042 |
C6 | 4.25 | 2.67 | 0.4136 | 0.5909 | 0.5735 | 1.0627 |
C7 | 3.88 | 2.25 | 0.4284 | 0.5047 | 0.4942 | 0.8816 |
C8 | 4.81 | 2.94 | 0.3833 | 0.5882 | 0.5784 | 1.1224 |
C9 | 5.16 | 2.73 | 0.3885 | 0.5664 | 0.5569 | 1.0889 |
表4 不同杂交组合F1代遗传参数
Table 4 Genetic parameters of F1 generation in different cross combinations
组合编号 Combination No. | Na 观测等位 基因数 Observed number of alleles | Ne 有效等位 基因数 Effective number of alleles | Ho 观测杂合度 Observed heterozygosity | He 期望杂合度 Expected heterozygosity | Hs Nei’s 遗传多样性 Nei’s genetic diversity | I 多态性信息指数 Shannon’s information index |
---|---|---|---|---|---|---|
C1 | 4.22 | 2.96 | 0.3259 | 0.6324 | 0.6098 | 1.1317 |
C2 | 4.31 | 2.55 | 0.3948 | 0.5698 | 0.5603 | 1.0253 |
C3 | 3.43 | 2.63 | 0.3209 | 0.5908 | 0.5809 | 1.0108 |
C4 | 4.19 | 2.70 | 0.3917 | 0.5729 | 0.5634 | 1.0224 |
C5 | 4.66 | 2.79 | 0.3625 | 0.6062 | 0.5961 | 1.1042 |
C6 | 4.25 | 2.67 | 0.4136 | 0.5909 | 0.5735 | 1.0627 |
C7 | 3.88 | 2.25 | 0.4284 | 0.5047 | 0.4942 | 0.8816 |
C8 | 4.81 | 2.94 | 0.3833 | 0.5882 | 0.5784 | 1.1224 |
C9 | 5.16 | 2.73 | 0.3885 | 0.5664 | 0.5569 | 1.0889 |
亲本 Parent | Na 观测等位 基因数 Observed number of alleles | Ne 有效等位 基因数 Effective number of alleles | Ho 观测杂合度 Observed heterozygosity | He 期望杂合度 Expected heterozygosity | Hs Nei’s 遗传多样性 Nei’s genetic diversity | I 多态性信息指数 Shannon’s information index |
---|---|---|---|---|---|---|
魁栗 Kuili | 1.6250 | 1.6250 | 0.3750 | 0.6250 | 0.3125 | 0.4332 |
YLZ 1 | 1.5000 | 1.5000 | 0.5000 | 0.5000 | 0.2500 | 0.3466 |
YLZ 2 | 1.8750 | 1.8750 | 0.1250 | 0.8750 | 0.4375 | 0.6065 |
YLZ 14 | 1.5562 | 1.5562 | 0.4438 | 0.5562 | 0.2781 | 0.3949 |
YLZ 15 | 1.6562 | 1.6562 | 0.3438 | 0.6562 | 0.3281 | 0.4549 |
YLZ 24 | 1.6875 | 1.6875 | 0.3125 | 0.6875 | 0.3438 | 0.4765 |
YLZ 26 | 1.8438 | 1.8438 | 0.1562 | 0.8438 | 0.4219 | 0.5848 |
均值 Mean | 1.6920 | 1.6920 | 0.3080 | 0.6920 | 0.3460 | 0.4800 |
表5 各杂交亲本遗传参数
Table 5 Genetic parameters of parents
亲本 Parent | Na 观测等位 基因数 Observed number of alleles | Ne 有效等位 基因数 Effective number of alleles | Ho 观测杂合度 Observed heterozygosity | He 期望杂合度 Expected heterozygosity | Hs Nei’s 遗传多样性 Nei’s genetic diversity | I 多态性信息指数 Shannon’s information index |
---|---|---|---|---|---|---|
魁栗 Kuili | 1.6250 | 1.6250 | 0.3750 | 0.6250 | 0.3125 | 0.4332 |
YLZ 1 | 1.5000 | 1.5000 | 0.5000 | 0.5000 | 0.2500 | 0.3466 |
YLZ 2 | 1.8750 | 1.8750 | 0.1250 | 0.8750 | 0.4375 | 0.6065 |
YLZ 14 | 1.5562 | 1.5562 | 0.4438 | 0.5562 | 0.2781 | 0.3949 |
YLZ 15 | 1.6562 | 1.6562 | 0.3438 | 0.6562 | 0.3281 | 0.4549 |
YLZ 24 | 1.6875 | 1.6875 | 0.3125 | 0.6875 | 0.3438 | 0.4765 |
YLZ 26 | 1.8438 | 1.8438 | 0.1562 | 0.8438 | 0.4219 | 0.5848 |
均值 Mean | 1.6920 | 1.6920 | 0.3080 | 0.6920 | 0.3460 | 0.4800 |
变异来源 Variation source | df 自由度 Free degree | 方差总和 Sum of variance | 平均方差 Mean variance | 变异组分 Variant component | 变异率/% Percentage variation | P值 P value |
---|---|---|---|---|---|---|
组合间 Between combinations | 8 | 434.030 | 54.254 | 1.839 | 21.94 | < 0.01 |
组合内 In combinations | 226 | 1 478.723 | 6.543 | 6.543 | 78.06 | < 0.01 |
误差 Error | 234 | 1 912.753 | 8.382 | 100 |
表6 杂交子代群体分子方差分析
Table 6 Molecular variance analysis of hybrids
变异来源 Variation source | df 自由度 Free degree | 方差总和 Sum of variance | 平均方差 Mean variance | 变异组分 Variant component | 变异率/% Percentage variation | P值 P value |
---|---|---|---|---|---|---|
组合间 Between combinations | 8 | 434.030 | 54.254 | 1.839 | 21.94 | < 0.01 |
组合内 In combinations | 226 | 1 478.723 | 6.543 | 6.543 | 78.06 | < 0.01 |
误差 Error | 234 | 1 912.753 | 8.382 | 100 |
[1] | Gao Yuan, Wang Kun, Wang Dajiang, Liu Lijun, Li Lianwen, Piao Jicheng. 2019. Genetic diversity and genetic structure of Malus baccataand Malus prunifolia from China as revealed by fluorescent SSR markers . Acta Horticulturae Sinica, 46(7):1225-1237. (in Chinese) |
高源, 王昆, 王大江, 刘立军, 李连文, 朴继成. 2019. 中国山荆子和楸子种质资源遗传多样性和遗传结构的荧光SSR分析. 园艺学报, 46(7):1225-1237. | |
[2] | Gong Bang-chu, Liu Guo-bin. 2013. ISSR analysis of genetic diversity in natural populations of Castanea henryi . Journal of Plant Genetic Resources, 14(4):581-587. (in Chinese) |
龚榜初, 刘国彬. 2013. 锥栗自然居群遗传多样性的ISSR分析. 植物遗传资源学报, 14(4):581-587. | |
[3] | Gu Guang-shi, Li Ying-lin, Liu Dan, Chen Hui, Zheng Guo-hua, Li Yu. 2020. Development of genome SSR and analysis of genetic diversity in Castanea hernryi . Journal of Forest and Environment, 40(1):54-61. (in Chinese) |
顾光仕, 李颖林, 刘丹, 陈辉, 郑国华, 李煜. 2020. 锥栗基因组SSR开发及农家品种的遗传多样性分析. 森林与环境学报, 40(1):54-61. | |
[4] | Guo Jun, Zhu Jie, Xie Shangqian, Zhang Ye, Ye Beilei, Zheng Liyan, Ling Peng. 2020. Development of SSR molecular markers based on transcriptome and analysis of genetic relationship of germplasm resources in avocado. Acta Horticulturae Sinica, 47(8):1552-1564. (in Chinese) |
郭俊, 朱婕, 谢尚潜, 张叶, 叶蓓蕾, 郑丽燕, 凌鹏. 2020. 油梨转录组SSR分子标记开发与种质资源亲缘关系分析. 园艺学报, 47(8):1552-1564. | |
[5] | Han Guo-hui, Xiang Su-qiong, Wang Wei-xing, Wei Xu, He Bo, Li Xiao-lin, Liang Guo-lu. 2010. Identification and genetic diversity of hybrid progenies from shatian Pummelo by SSR. Scientia Agricultura Sinica, 43(22):4678-4686. (in Chinese) |
韩国辉, 向素琼, 汪卫星, 魏旭, 何波, 李晓林, 梁国鲁. 2010. 沙田柚杂交后代群体的SSR鉴定与遗传多样性分析. 中国农业科学, 43(22):4678-4686. | |
[6] | Huang Jin-feng, Lü Tian-xing, Wang Dong-mei, Yan Zhong-ye, Wang Ying-da, Liu Zhi. 2015. Genetic diversity of hybrid progenies derived from apple cross of‘Hanfu’בYueshuai’analyzed by SSR. Molecular Plant Breeding, 13(5):1040-1044. (in Chinese) |
黄金凤, 吕天星, 王冬梅, 闫忠业, 王颖达, 刘志. 2015. ‘寒富’ב岳帅’苹果杂交后代遗传多样性的SSR分析. 分子植物育种, 13(5):1040-1044. | |
[7] |
Inoue E, Lin N, Hara H, Shuan R. 2009. Development of simple sequence repeat markers in Chinese chestnut and their characterization in diverse chestnut cultivars. Journal of the American Society for Horticultural Science, 134(6):610-617.
doi: 10.21273/JASHS.134.6.610 URL |
[8] |
Jiang X B, Tang D, Gong B C. 2017. Genetic diversity and association analysis of Chinese chestnut(Castanea mollissima Blume)cultivars based on SSR markers. Brazilian Journal of Botany, 40(1):235-246.
doi: 10.1007/s40415-016-0321-8 URL |
[9] | Jiang Xi-bing, Tang Dan, Gong Bang-chu, Lai Jun-sheng. 2015. Genetic diversity and association analysis of local cultivars of Chinese chestnut based on SSR makers. Acta Horticulturae Sinica, 42(12):2478-2488. (in Chinese) |
江锡兵, 汤丹, 龚榜初, 赖俊声. 2015. 基于SSR标记的板栗地方品种遗传多样性与关联分析. 园艺学报, 42(12):2478-2488. | |
[10] | Jiang Xi-bing, Zhang Ping-sheng, Yang Long, Wu Qiang, Wu Cong-lian, Wu Xiao-yun, Gong Bang-chu, Lai Jun-sheng. 2019. Genetic variation of leaf phenotypic traits in F1 progeny of interspecific cross between Castanea mollissima and C. henryi . Acta Horticulturae Sinica, 46(11):2129-2142. (in Chinese) |
江锡兵, 章平生, 杨龙, 吴强, 吴聪连, 吴小云, 龚榜初, 赖俊声. 2019. 板栗和锥栗种间杂交F1代叶片表型及其遗传变异研究. 园艺学报, 46(11):2129-2142. | |
[11] |
Kalia R K, Rai M K, Kalia S, Singh R, Dhawan A K. 2011. Microsatellite markers:an overview of the recent progress in plants. Euphytica, 177(3):309-334.
doi: 10.1007/s10681-010-0286-9 URL |
[12] |
Kumar A, Rogstad S H. 1998. A hierarchical analysis of minisatellite DNA diversity in Gambel oak(Quercus gambelii Nutt.;Fagaceae). Molecular Ecology, 7:859-869.
doi: 10.1046/j.1365-294x.1998.00400.x URL |
[13] | Lan Yan-ping, Zhou Lian-di, Yao Yan-wu, Wang Shang-de, Liu Guo-bin. 2010. Analysis of Castanea mollissima germplasm resources by AFLP . Acta Horticulturae Sinica, 37(9):1499-1506. (in Chinese) |
兰彦平, 周连第, 姚研武, 王尚德, 刘国彬. 2010. 中国板栗种质资源的AFLP 分析. 园艺学报, 37(9):1499-1506. | |
[14] | Lang Ping, Huang Hong-wen. 1999. Genetic diversity and geographic variation in natural populations of the endemic Castanea species in China . Acta Batanica Sinica, 41(6):651-657. (in Chinese) |
郎萍, 黄宏文. 1999. 栗属中国特有种居群的遗传多样性及地域差异. 植物学报, 41(6):651-657. | |
[15] | Li Zhi-qiang, Dang Zhi-guo, Zhao Zhi-chang, Huang Jian-feng, Gao Ai-ping, Chen Yeyuan. 2016. Genetic diversity analyze of Mango’s F1 hybrids and construction of genetic map . Molecular Plant Breeding, 14(4):953-958. (in Chinese) |
李志强, 党志国, 赵志常, 黄建峰, 高爱平, 陈业渊. 2016. 芒果杂交F1代群体的遗传多样性分析及遗传图谱的构建. 分子植物育种, 14(4):953-958. | |
[16] | Liu Shuo, Liu Ning, Zhang Qiuping, Zhang Yuping, Zhang Yujun, Xu Ming, Ma Xiaoxue, Liu Weisheng. 2019. Genetic diversity of the apricot germplasms from North & Northeast China. Acta Horticulturae Sinica, 46(6):1045-1056. (in Chinese) |
刘硕, 刘宁, 章秋平, 张玉萍, 张玉君, 徐铭, 马小雪, 刘威生. 2019. 中国华北和东北地区杏种质资源遗传多样性分析. 园艺学报, 46(6):1045-1056. | |
[17] | Liu Wei, Kang Ming, Tian Hua, Huang Hong-wen. 2013. A range wide geographic pattern of genetic diversity and population structure of Castanea mollissima populations inferred from nuclear and chloroplast microsatellites. Tree Genetics & Genomes, 9:975-987. |
[18] | Nishio S, Takada N, Yamamoto T, Terakami H, Sawamura Y, Saito T. 2013. Mapping and pedigree analysis of the gene that controls the easy peel pellicle trait in Japanese chestnut(Castanea crenataSieb. et Zucc.). Tree Genetics & Genomes, 9(3):723-730. |
[19] |
Ouni R, Zborowska A, Sehic J, Choulak S, Hormaza J I, Garkava-Gustavsson L, Mars M. 2020. Genetic diversity and structure of Tunisian local pear germplasm as revealed by SSR markers. Horticultural Plant Journal, 6(2):61-70.
doi: 10.1016/j.hpj.2020.03.003 URL |
[20] |
Slatkin M. 1987. Gene flow and the geographic structure of natural population. Science, 236:787-792.
doi: 10.1126/science.3576198 URL |
[21] |
Tian Hua, Kang Ming, Li Li, Yao Xiao-hong, Huang Hong-wen. 2009. Genetic diversity in natural populations of Castanea mollissima inferred from nuclear SSR markers . Biodiversity Science, 17(3):296-302. (in Chinese)
doi: 10.3724/SP.J.1003.2009.09043 URL |
田华, 康明, 李丽, 姚小洪, 黄宏文. 2009. 中国板栗自然居群微卫星(SSR)遗传多样性. 生物多样性, 17(3):296-302. | |
[22] | Tian Yan-ting, Li Ji-hong, Wang Jin-nan, Xu Dong, Wang Yi-mei, Xing Shi-yan. 2018. Identification and genetic variation analysis of narrow crownPopulus hybrid progeny by SRAP . Journal of Nuclear Agricultural Sciences, 32(5):875-882. (in Chinese) |
田彦挺, 李际红, 王锦楠, 许东, 王艺玮, 邢世岩. 2018. 窄冠型杨树杂交子代SRAP鉴定及其遗传变异研究. 核农学报, 32(5):875-882. | |
[23] | Wright S. 1978. Evolution and the genetics of population. Chicago: The University of Chicago Press. |
[24] | Wu Kai-zhi. 2009. Genetic diversity and correlation of Walnut parents and F1 hybrid progenies[M. D. Dissertation]. Ya’an:Sichuan Agricultural University. (in Chinese) |
吴开志. 2009. 核桃杂交亲本及F1代的遗传多样性与相关性研究[硕士论文]. 雅安:四川农业大学. | |
[25] | Xie Yue, Pan Mei-ling, Zhuang Qi-guo, Luo Xie-mei, Li Ming-zhang. 2013. Construction of ISSR fingerpriting and analysis of genetic diversity in Hongyang kiwifruit and its of hybrid progenies. Genomics and Applied Biology, 32(1):76-82. (in Chinese) |
谢玥, 潘美玲, 庄启国, 罗雪梅, 李明章. 2013. 红阳猕猴桃及其杂交后代的ISSR指纹图谱构建及遗传多样性分析. 基因组学与应用生物学, 32(1):76-82. | |
[26] | Yan Fen-fen, Zheng Xing-juan, Luo Zhi, Wang Jiu-rui, Liu Meng-jun. 2018. Genetic diversity analysis of hybrid progeny from Chinese jujube and wild jujube by SSR. Journal of Northwest Forestry University, 33(3):91-97. (in Chinese) |
闫芬芬, 郑兴娟, 罗智, 王久瑞, 刘孟军. 2018. 枣和酸枣杂交后代遗传多样性的SSR分析. 西北林学院学报, 33(3):91-97. | |
[27] |
Zhang Tian, Li Zuo-zhou, Liu Ya-ling, Jiang Zheng-wang, Huang Hong-mei. 2007. Genetic diversity,gene introgression and homoplasy in sympatric populations of the genusActinidia as revealed by chloroplast microsatellite markers . Biodiversity Science, 15(1):1-22. (in Chinese)
doi: 10.1360/biodiv.060277 URL |
张田, 李作洲, 刘亚令, 姜正旺, 黄宏文. 2007. 猕猴桃属植物的cpSSR遗传多样性及其同域分布物种的杂交渐渗与同塑. 生物多样性, 15(1):1-22. |
[1] | 王 瑞, 洪文娟, 罗 华, 赵丽娜, 陈 颖, 王 君, . 石榴品种SSR指纹图谱构建及杂种父本鉴定[J]. 园艺学报, 2023, 50(2): 265-278. |
[2] | 王梦梦, 孙德岭, 陈 锐, 杨迎霞, 张 冠, 吕明杰, 王 倩, 谢添羽, 牛国保, 单晓政, 谭 津, 姚星伟, . 花椰菜核心种质的构建与评价[J]. 园艺学报, 2023, 50(2): 421-431. |
[3] | 郭燕, 张树航, 李颖, 张馨方, 王英杰, 王广鹏. 燕山板栗种质资源叶片表型性状多样性研究[J]. 园艺学报, 2022, 49(8): 1673-1688. |
[4] | 吕正鑫, 贺艳群, 贾东峰, 黄春辉, 钟敏, 廖光联, 朱壹, 袁开昌, 刘传浩, 徐小彪. 猕猴桃种质资源表型性状遗传多样性分析[J]. 园艺学报, 2022, 49(7): 1571-1581. |
[5] | 朱周俊, 袁德义, 肖诗鑫, 赵君茹, 邹锋, 范晓明. 锥栗新品种‘华栗3号’[J]. 园艺学报, 2022, 49(7): 1613-1614. |
[6] | 李文婷, 李翠晓, 林小清, 郑永钦, 郑正, 邓晓玲. 基于STR位点对广东省柑橘溃疡病菌种群遗传结构的分析[J]. 园艺学报, 2022, 49(6): 1233-1246. |
[7] | 张萌, 单玉莹, 杨业波, 翟飞飞, 王兆山, 巨关升, 孙振元, 李振坚. 中国石斛属植物遗传资源的AFLP分析[J]. 园艺学报, 2022, 49(6): 1339-1350. |
[8] | 杨易, 黎庭耀, 李国景, 陈汉才, 沈卓, 周轩, 吴增祥, 吴新义, 张艳. 基于重测序的长豇豆基因组InDel标记开发及应用[J]. 园艺学报, 2022, 49(4): 778-790. |
[9] | 聂兴华, 李伊然, 田寿乐, 王雪峰, 苏淑钗, 曹庆芹, 邢宇, 秦岭. 中国板栗品种(系)DNA指纹图谱构建及其遗传多样性分析[J]. 园艺学报, 2022, 49(11): 2313-2324. |
[10] | 李世帆, 邵宇纯, 祁豪男, 杨兰, 李小伟, 徐秉良, 陈雅寒. 甘肃省苹果坏死花叶病毒检测及遗传多样性分析[J]. 园艺学报, 2022, 49(11): 2431-2438. |
[11] | 陈明堃, 陈璐, 孙维红, 马山虎, 兰思仁, 彭东辉, 刘仲健, 艾叶. 建兰种质资源遗传多样性分析及核心种质构建[J]. 园艺学报, 2022, 49(1): 175-186. |
[12] | 朱周俊, 袁德义, 范晓明, 王耀辉, 邹锋, 肖诗鑫, 赵君茹. 早熟大果鲜食锥栗新品种‘华栗1号’[J]. 园艺学报, 2022, 49(1): 235-236. |
[13] | 李艳红, 聂俊, 郑锦荣, 谭德龙, 张长远, 史亮亮, 谢玉明. 华南地区樱桃番茄表型性状遗传多样性分析及综合评价[J]. 园艺学报, 2021, 48(9): 1717-1730. |
[14] | 赵玉靖, 卢银, 冯大领, 罗蕾, 吴芳, 杨锐, 陈悦琦, 孙晓雪, 王彦华, 陈雪平, 申书兴, 罗双霞, 赵建军. 大白菜自交系背景选择InDel标记与重要农艺性状的关联分析[J]. 园艺学报, 2021, 48(7): 1282-1294. |
[15] | 赵青, 都真真, 李锡香, 宋江萍, 张晓辉, 阳文龙, 贾会霞, 王海平. 利用SSRseq分子标记的大蒜种质资源遗传多样性研究[J]. 园艺学报, 2021, 48(7): 1397-1408. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司