园艺学报 ›› 2021, Vol. 48 ›› Issue (4): 733-748.doi: 10.16420/j.issn.0513-353x.2020-0069
收稿日期:
2020-08-20
出版日期:
2021-04-25
发布日期:
2021-04-29
通讯作者:
李梦
E-mail:mli@njau.edu.cn
基金资助:
Received:
2020-08-20
Online:
2021-04-25
Published:
2021-04-29
Contact:
LI Meng
E-mail:mli@njau.edu.cn
摘要:
全基因组测序可以获得物种的基因组序列信息,对于探索物种起源和进化过程及基因的开发利用等研究至关重要。本文中综述了7种重要果树(苹果、柑橘、葡萄、梨、草莓、香蕉和桃)的全基因组测序研究进展,探讨果树全基因组测序目前存在的问题,并对未来果树全基因组测序、DNA测序技术的选择、测序后的研究方向、测序数据的开放性等问题进行讨论。
中图分类号:
黄威剑, 李梦. 果树全基因组测序现状与展望[J]. 园艺学报, 2021, 48(4): 733-748.
HUANG Weijian, LI Meng. Status and Prospects Whole Genome Sequencing in Fruit Trees[J]. Acta Horticulturae Sinica, 2021, 48(4): 733-748.
测序技术代数 Sequencing technolog generation | DNA扩增方式 DNA amplification method | 测序平台 Sequencing platform | 平均读长/bp Average read length | 正确率/% Accuracy | 成本/($·Gb-1) Cost | 测序时间/h Sequencing time |
---|---|---|---|---|---|---|
一代1st | 质粒扩增Plasmid amplification | Sanger | 700 | 99.9 | 500 000.00 | 1 |
二代2nd | 乳液PCR Emulsion PCR | Roche 454 | 700 | 99 | 9 500.00 | 23 |
SOLiD | 120 | 99.9 | 50.00 | 144 | ||
桥式PCR Bridge PCR | Solexa | 300 | 99.9 | 20.00 | 19 ~ 40 | |
三代3rd | 单分子测序 | PacBio RSⅡ | 10 000 | 85 ~ 90 | 1 000.00 | 0.5 ~ 6 |
Single molecule sequencing | MinION | 200 ~ 500 | 70 ~ 90 | 1 000.00 | 48 |
表1 三代测序技术指标汇总
Table 1 Three generations of sequencing technology
测序技术代数 Sequencing technolog generation | DNA扩增方式 DNA amplification method | 测序平台 Sequencing platform | 平均读长/bp Average read length | 正确率/% Accuracy | 成本/($·Gb-1) Cost | 测序时间/h Sequencing time |
---|---|---|---|---|---|---|
一代1st | 质粒扩增Plasmid amplification | Sanger | 700 | 99.9 | 500 000.00 | 1 |
二代2nd | 乳液PCR Emulsion PCR | Roche 454 | 700 | 99 | 9 500.00 | 23 |
SOLiD | 120 | 99.9 | 50.00 | 144 | ||
桥式PCR Bridge PCR | Solexa | 300 | 99.9 | 20.00 | 19 ~ 40 | |
三代3rd | 单分子测序 | PacBio RSⅡ | 10 000 | 85 ~ 90 | 1 000.00 | 0.5 ~ 6 |
Single molecule sequencing | MinION | 200 ~ 500 | 70 ~ 90 | 1 000.00 | 48 |
物种 Species | 测序材料 Sequencing material | 测序方法 Sequencing method | 基因组/ Mb Genome size | 组装全 长/Mb Assembly | 基因 数量 Number of gene | 重复 序列 比率 /% Repeat | 总序列 骨架数 Scaffold Total | Contig N50/kb | 基因组杂 合度/% Genomic Hetero- zygosity | 测序深度 Sequencing depth | 倍性 Ploidy | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
苹果Apple (Malus× domestica) | 金冠Golden Delicious | Sanger, Roche454 | 742.3 | 603.9 | 57 386 | 67 | 1 629 | 16.7 | 缺失 Deficiency | 16.9× | 二倍体 Diploid | Velasco et al., |
金冠Golden Delicious | Illumina HiSeq, PacBio RS II | 701 | 632.4 | 53 922 | 60 | 缺失 Deficiency | 111.6 | 缺失 Deficiency | 131× | 二倍体 Diploid | Li et al. | |
金冠双单倍 体 GDDH13 | Illumina HiSeq, PacBio RS II | 651 | 649.7 | 42 140 | 57.3 | 280 | 699 | 缺失 Deficiency | 835× | 双单倍体 Double haploid | Daccord et al., | |
寒富HFTH1 | Illumina HiSeq, PacBio RS II | 708.5 | 658.9 | 44 677 | 59.8 | 502 | 6 990 | 缺失 Deficiency | 552× | 三倍体 Triploid | Zhang et al., | |
柑橘 Citrus | 甜橙Sweet Orange (C.sinensis) | Illumina GAII | 367 | 320.5 | 29 445 | 20 | 4 811 | 49.89 | 50 | 214× | 二倍体 Diploid | Xu et al. |
克里曼丁橘 Clemenules (C. clementina) | Sanger | 302 | 310 | 24 533 | 44.7 | 2 931 | 115.9 | 缺失 Deficiency | 6.94× | 单倍体 Haploid | Wu et al. | |
枳柚 Swingle Citrumelo (C. paradise Macf. × Poncirus trifoliata(L.) Raf.) | Illumina HiSeq | 380 | 280.6 | 29 054 | 16.8 | 66 319 | 11.4 | 缺失 Deficiency | 15× | 不可用 Not Available | Zhang et al., | |
柚Pummelo (C. grandis) | Illumina HiSeq, PacBio RS II | 380.8 | 344.8 | 30 123 | 45.8 | 1 612 | 2 180 | 缺失 Deficiency | 427× | 单倍体 Haploid | Wang et al., | |
温州蜜橘 Satsuma(C. unshiuMarc.) | Illumina HiSeq, PacBio RS II | 不可用 Not Available | 359 | 29 024 | 39.5 | 20 876 | 缺失 Deficiency | 0.44 | 缺失 Deficiency | 二倍体 Diploid | Shimizu et al., | |
莽山野柑 Mangshan Mandarin (C. reticulata) | Illumina HiSeq | 344.3 | 334 | 28 820 | 50.1 | 42 714 | 24.7 | 缺失 Deficiency | 199.7× | 二倍体 Diploid | Wang et al., | |
香港金橘 Hongkong Kumquat (Fortunella hindsii) | Illumina HiSeq, PacBio | 389 | 373.6 | 32 257 | 14.3 | 900 | 2 200 | 0.8 | 145× | 二倍体 Diploid | Zhu et al. | |
葡萄Grape (Vitis vinifera) | 黑皮诺 PN40024 | Sanger | 475 | 487.1 | 30 434 | 41.4 | 3 514 | 65.9 | 2.6 | 8.4× | 单倍体 Haploid | Jaillon et al., |
赤霞珠 Cabernet Sauvignon | PacBio RS II | 633 | 591.4 | 36 687 | 51.1 | 1 314 | 2 170 | 缺失 Deficiency | 缺失 Deficiency | 二倍体 Diploid | Chin et al., | |
霞多丽 Chardonnay | Illumina HiSeq, PacBio RS II, MiSeq | 580 | 490 | 29 675 | 38.7 | 缺失 Deficiency | 935 | 缺失 Deficiency | 115× | 二倍体 Diploid | Roach et al., | |
霞多丽 FPS 04 | Illumina HiSeq, PacBio RS II | 600 | 606 | 38 020 | 47.3 | 684 | 1 240 | 缺失 Deficiency | 220× | 二倍体 Diploid | Zhou et al., | |
梨 Pear | 砀山酥梨 Dangshan Suli (Pyrus bretschneideriRehd.) | Illumina HiSeq | 527 | 512 | 42 812 | 53.1 | 2 103 | 35.7 | 1.99 | 194× | 二倍体 Diploid | Wu et al. |
西洋梨 Bartlett (P. communisL.) | Roche 454 | 600 | 577.3 | 43 419 | 34.1 | 142 083 | 6.53 | 缺失 Deficiency | 11.4× | 单倍体 Haploid | Chagne et al., | |
西洋梨 BartlettDHv2.0 (P. communisL.) | PacBio SII | 528 | 496.9 | 37 445 | 49.7 | 494 | 5 300 | 缺失 Deficiency | 63× | 双单倍体 Double haploid | Linsmith et al., | |
山西杜梨 Shanxi Duli (P. betuleafolia) | Illumina HiSeq, PacBio | 511 | 532.7 | 59 522 | 46.4 | 139 | 1 570 | 1.54 | 缺失 Deficiency | 缺失 Deficiency | Dong et al., | |
草莓 Strawberry | 森林草莓 Hawaii 4 (Fragaria vesca) | Roche 454, SOLiD, Illumina HiSeq | 240 | 209.8 | 34 809 | 23 | 3 263 | 13 000 | 缺失 Deficiency | 39× | 二倍体 Diploid | Shulaev et al., |
Reikou (F. ananassa) | Roche 454, Illumina HiSeq | 692 | 698 | 45 377 | 5 | 7 598 | 46.8 | 缺失 Deficiency | 缺失 Deficiency | 八倍体 Octoploid | Hirakawa et al. | |
卡麦罗莎草莓 Camarosa (F. ananassa) | Illumina HiSeq, PacBio RS II | 813.4 | 660 | 108 087 | 36 | 25 426 | 79.9 | 缺失 Deficiency | 615× | 八倍体 Octoploid | Edger et al., | |
黄毛草莓 Ruegen(F. nilgerrensis) | Illumina HiSeq, PacBio SMRT | 276 | 270.3 | 28 780 | 43.4 | 257 | 85 000 | 缺失 Deficiency | 152× | 二倍体 Diploid | Zhang et al., | |
香蕉 Banana | 彭亨香蕉 DH-Pahang (Musa acuminata) | Sanger, Roche454, Illumina GAIIx | 523 | 472.2 | 36 542 | 44 | 7 513 | 43.1 | 缺失 Deficiency | 50× | 双单倍体 Double haploid | D'Hont et al., |
Pisang Klutuk Wulung(M. balbisiana) | Illumina HiSeq | 432.7 | 341.4 | 36 638 | 29.5 | 63 245 | 7.9 | 缺失 Deficiency | 41.4× | 二倍体 Diploid | Davey et al., | |
阿宽蕉(M. itinerans) | Illumina HiSeq | 615.2 | 462.1 | 32 456 | 38.9 | 7 194 | 33.9 | 0.25 | 120.7× | 二倍体 Diploid | Wu et al. | |
DH-PKW(M. balbisiana) | Illumina HiSeq, PacBio, | 492 | 430 | 35 148 | 55.8 | 294 | 1 830 | 缺失 Deficiency | 417× | 双单倍体 Double haploid | Wang et al., | |
桃Peach (Prunus persica) | Lovell | Sanger | 265 | 224.6 | 27 852 | 37.14 | 202 | 294 | 缺失 Deficiency | 8.47× | 二倍体 Diploid | Verde et al., |
表2 7种已测序果树汇总
Table 2 Summary of seven sequenced fruit trees
物种 Species | 测序材料 Sequencing material | 测序方法 Sequencing method | 基因组/ Mb Genome size | 组装全 长/Mb Assembly | 基因 数量 Number of gene | 重复 序列 比率 /% Repeat | 总序列 骨架数 Scaffold Total | Contig N50/kb | 基因组杂 合度/% Genomic Hetero- zygosity | 测序深度 Sequencing depth | 倍性 Ploidy | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
苹果Apple (Malus× domestica) | 金冠Golden Delicious | Sanger, Roche454 | 742.3 | 603.9 | 57 386 | 67 | 1 629 | 16.7 | 缺失 Deficiency | 16.9× | 二倍体 Diploid | Velasco et al., |
金冠Golden Delicious | Illumina HiSeq, PacBio RS II | 701 | 632.4 | 53 922 | 60 | 缺失 Deficiency | 111.6 | 缺失 Deficiency | 131× | 二倍体 Diploid | Li et al. | |
金冠双单倍 体 GDDH13 | Illumina HiSeq, PacBio RS II | 651 | 649.7 | 42 140 | 57.3 | 280 | 699 | 缺失 Deficiency | 835× | 双单倍体 Double haploid | Daccord et al., | |
寒富HFTH1 | Illumina HiSeq, PacBio RS II | 708.5 | 658.9 | 44 677 | 59.8 | 502 | 6 990 | 缺失 Deficiency | 552× | 三倍体 Triploid | Zhang et al., | |
柑橘 Citrus | 甜橙Sweet Orange (C.sinensis) | Illumina GAII | 367 | 320.5 | 29 445 | 20 | 4 811 | 49.89 | 50 | 214× | 二倍体 Diploid | Xu et al. |
克里曼丁橘 Clemenules (C. clementina) | Sanger | 302 | 310 | 24 533 | 44.7 | 2 931 | 115.9 | 缺失 Deficiency | 6.94× | 单倍体 Haploid | Wu et al. | |
枳柚 Swingle Citrumelo (C. paradise Macf. × Poncirus trifoliata(L.) Raf.) | Illumina HiSeq | 380 | 280.6 | 29 054 | 16.8 | 66 319 | 11.4 | 缺失 Deficiency | 15× | 不可用 Not Available | Zhang et al., | |
柚Pummelo (C. grandis) | Illumina HiSeq, PacBio RS II | 380.8 | 344.8 | 30 123 | 45.8 | 1 612 | 2 180 | 缺失 Deficiency | 427× | 单倍体 Haploid | Wang et al., | |
温州蜜橘 Satsuma(C. unshiuMarc.) | Illumina HiSeq, PacBio RS II | 不可用 Not Available | 359 | 29 024 | 39.5 | 20 876 | 缺失 Deficiency | 0.44 | 缺失 Deficiency | 二倍体 Diploid | Shimizu et al., | |
莽山野柑 Mangshan Mandarin (C. reticulata) | Illumina HiSeq | 344.3 | 334 | 28 820 | 50.1 | 42 714 | 24.7 | 缺失 Deficiency | 199.7× | 二倍体 Diploid | Wang et al., | |
香港金橘 Hongkong Kumquat (Fortunella hindsii) | Illumina HiSeq, PacBio | 389 | 373.6 | 32 257 | 14.3 | 900 | 2 200 | 0.8 | 145× | 二倍体 Diploid | Zhu et al. | |
葡萄Grape (Vitis vinifera) | 黑皮诺 PN40024 | Sanger | 475 | 487.1 | 30 434 | 41.4 | 3 514 | 65.9 | 2.6 | 8.4× | 单倍体 Haploid | Jaillon et al., |
赤霞珠 Cabernet Sauvignon | PacBio RS II | 633 | 591.4 | 36 687 | 51.1 | 1 314 | 2 170 | 缺失 Deficiency | 缺失 Deficiency | 二倍体 Diploid | Chin et al., | |
霞多丽 Chardonnay | Illumina HiSeq, PacBio RS II, MiSeq | 580 | 490 | 29 675 | 38.7 | 缺失 Deficiency | 935 | 缺失 Deficiency | 115× | 二倍体 Diploid | Roach et al., | |
霞多丽 FPS 04 | Illumina HiSeq, PacBio RS II | 600 | 606 | 38 020 | 47.3 | 684 | 1 240 | 缺失 Deficiency | 220× | 二倍体 Diploid | Zhou et al., | |
梨 Pear | 砀山酥梨 Dangshan Suli (Pyrus bretschneideriRehd.) | Illumina HiSeq | 527 | 512 | 42 812 | 53.1 | 2 103 | 35.7 | 1.99 | 194× | 二倍体 Diploid | Wu et al. |
西洋梨 Bartlett (P. communisL.) | Roche 454 | 600 | 577.3 | 43 419 | 34.1 | 142 083 | 6.53 | 缺失 Deficiency | 11.4× | 单倍体 Haploid | Chagne et al., | |
西洋梨 BartlettDHv2.0 (P. communisL.) | PacBio SII | 528 | 496.9 | 37 445 | 49.7 | 494 | 5 300 | 缺失 Deficiency | 63× | 双单倍体 Double haploid | Linsmith et al., | |
山西杜梨 Shanxi Duli (P. betuleafolia) | Illumina HiSeq, PacBio | 511 | 532.7 | 59 522 | 46.4 | 139 | 1 570 | 1.54 | 缺失 Deficiency | 缺失 Deficiency | Dong et al., | |
草莓 Strawberry | 森林草莓 Hawaii 4 (Fragaria vesca) | Roche 454, SOLiD, Illumina HiSeq | 240 | 209.8 | 34 809 | 23 | 3 263 | 13 000 | 缺失 Deficiency | 39× | 二倍体 Diploid | Shulaev et al., |
Reikou (F. ananassa) | Roche 454, Illumina HiSeq | 692 | 698 | 45 377 | 5 | 7 598 | 46.8 | 缺失 Deficiency | 缺失 Deficiency | 八倍体 Octoploid | Hirakawa et al. | |
卡麦罗莎草莓 Camarosa (F. ananassa) | Illumina HiSeq, PacBio RS II | 813.4 | 660 | 108 087 | 36 | 25 426 | 79.9 | 缺失 Deficiency | 615× | 八倍体 Octoploid | Edger et al., | |
黄毛草莓 Ruegen(F. nilgerrensis) | Illumina HiSeq, PacBio SMRT | 276 | 270.3 | 28 780 | 43.4 | 257 | 85 000 | 缺失 Deficiency | 152× | 二倍体 Diploid | Zhang et al., | |
香蕉 Banana | 彭亨香蕉 DH-Pahang (Musa acuminata) | Sanger, Roche454, Illumina GAIIx | 523 | 472.2 | 36 542 | 44 | 7 513 | 43.1 | 缺失 Deficiency | 50× | 双单倍体 Double haploid | D'Hont et al., |
Pisang Klutuk Wulung(M. balbisiana) | Illumina HiSeq | 432.7 | 341.4 | 36 638 | 29.5 | 63 245 | 7.9 | 缺失 Deficiency | 41.4× | 二倍体 Diploid | Davey et al., | |
阿宽蕉(M. itinerans) | Illumina HiSeq | 615.2 | 462.1 | 32 456 | 38.9 | 7 194 | 33.9 | 0.25 | 120.7× | 二倍体 Diploid | Wu et al. | |
DH-PKW(M. balbisiana) | Illumina HiSeq, PacBio, | 492 | 430 | 35 148 | 55.8 | 294 | 1 830 | 缺失 Deficiency | 417× | 双单倍体 Double haploid | Wang et al., | |
桃Peach (Prunus persica) | Lovell | Sanger | 265 | 224.6 | 27 852 | 37.14 | 202 | 294 | 缺失 Deficiency | 8.47× | 二倍体 Diploid | Verde et al., |
[1] |
Ardui S, Ameur A, Vermeesch J R, Hestand M S. 2018. Single molecule real-time(SMRT)sequencing comes of age:applications and utilities for medical diagnostics. Nucleic Acids Res, 46 (5):2159-2168.
doi: 10.1093/nar/gky066 URL |
[2] |
Bentley D R, Balasubramanian S, Swerdlow H P, Smith G P, Milton J, Brown C G, Hall K P, Evers D J, Barnes C L, Bignell H R, Boutell J M, Bryant J, Carter R J, Keira Cheetham R, Cox A J, Ellis D J, Flatbush M R, Gormley N A, Humphray S J, Irving L J, Karbelashvili M S, Kirk S M, Li H, Liu X, Maisinger K S, Murray L J, Obradovic B, Ost T, Parkinson M L, Pratt M R, Rasolonjatovo I M J, Reed M T, Rigatti R, Rodighiero C, Ross M T, Sabot A, Sankar S V, Scally A, Schroth G P, Smith M E, Smith V P, Spiridou A, Torrance P E, Tzonev S S, Vermaas E H, Walter K, Wu X, Zhang L, Alam M D, Anastasi C, Aniebo I C, Bailey D M D, Bancarz I R, Banerjee S, Barbour S G, Baybayan P A, Benoit V A, Benson K F, Bevis C, Black P J, Boodhun A, Brennan J S, Bridgham J A, Brown R C, Brown A A, Buermann D H, Bundu A A, Burrows J C, Carter N P, Castillo N, Chiara E, Catenazzi M, Chang S, Neil Cooley R, Crake N R, Dada O O, Diakoumakos K D, Dominguez-Fernandez B, Earnshaw D J, Egbujor U C, Elmore D W, Etchin S S, Ewan M R, Fedurco M, Fraser L J, Fuentes Fajardo K V, Scott Furey W, George D, Gietzen K J, Goddard C P, Golda G S, Granieri P A, Green D E, Gustafson D L, Hansen N F, Harnish K, Haudenschild C D, Heyer N I, Hims M M, Ho J T, Horgan A M, Hoschler K, Hurwitz S, Ivanov D V, Johnson M Q, James T, Huw Jones T A, Kang G, Kerelska T H, Kersey A D, Khrebtukova I, Kindwall A P, Kingsbury Z, Kokko-Gonzales P I, Kumar A, Laurent M A, Lawley C T, Lee S E, Lee X, Liao A K, Loch J A, Lok M, Luo S, Mammen R M, Martin J W, McCauley P G, McNitt P, Mehta P, Moon K W, Mullens J W, Newington T, Ning Z, Ling Ng B, Novo S M, O Neill M J, Osborne M A, Osnowski A, Ostadan O, Paraschos L L, Pickering L, Pike A C, Pike A C, Chris Pinkard D, Pliskin D P, Podhasky J, Quijano V J, Raczy C, Rae V H, Rawlings S R, Chiva Rodriguez A, Roe P M, Rogers J, Rogert Bacigalupo M C, Romanov N, Romieu A, Roth R K, Rourke N J, Ruediger S T, Rusman E, Sanches-Kuiper R M, Schenker M R, Seoane J M, Shaw R J, Shiver M K, Short S W, Sizto N L, Sluis J P, Smith M A, Ernest Sohna Sohna J, Spence E J, Stevens K, Sutton N, Szajkowski L, Tregidgo C L, Turcatti G, VandeVondele S, Verhovsky Y, Virk S M, Wakelin S, Walcott G C, Wang J, Worsley G J, Yan J, Yau L, Zuerlein M, Rogers J, Mullikin J C, Hurles M E, McCooke N J, West J S, Oaks F L, Lundberg P L, Klenerman D, Durbin R, Smith A J. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456 (7218):53-59.
doi: 10.1038/nature07517 pmid: 18987734 |
[3] |
Chagne D, Crowhurst R N, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, Bianco L, Lu A, Storey R, Knabel M, Saeed M, Montanari S, Kim Y K, Nicolini D, Larger S, Stefani E, Allan A C, Bowen J, Harvey I, Johnston J, Malnoy M, Troggio M, Perchepied L, Sawyer G, Wiedow C, Won K, Viola R, Hellens R P, Brewer L, Bus V G, Schaffer R J, Gardiner S E, Velasco R. 2014. The draft genome sequence of European pear(Pyrus communis L.‘Bartlett’). PLoS ONE, 9 (4):e92644.
doi: 10.1371/journal.pone.0092644 URL |
[4] |
Chen W, Kalscheuer V, Tzschach A, Menzel C, Ullmann R, Schulz M H, Erdogan F, Li N, Kijas Z, Arkesteijn G, Pajares I L, Goetz-Sothmann M, Heinrich U, Rost I, Dufke A, Grasshoff U, Glaeser B, Vingron M, Ropers H H. 2008. Mapping translocation breakpoints by next-generation sequencing. Genome Res, 18 (7):1143-1149.
doi: 10.1101/gr.076166.108 pmid: 18326688 |
[5] |
Chin C S, Peluso P, Sedlazeck F J, Nattestad M, Concepcion G T, Clum A, Dunn C, O'Malley R, Figueroa-Balderas R, Morales-Cruz A, Cramer G R, Delledonne M, Luo C, Ecker J R, Cantu D, Rank D R, Schatz M C. 2016. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods, 13 (12):1050-1054.
doi: 10.1038/NMETH.4035 |
[6] |
Daccord N, Celton J M, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro E A, Gouzy J, Rees D, Guerif P, Muranty H, Durel C E, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, Bucher E. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet, 49 (7):1099-1106.
doi: 10.1038/ng.3886 |
[7] |
Davey M W, Gudimella R, Harikrishna J A, Sin L W, Khalid N, Keulemans J. 2013. A draft Musa balbisiana genome sequence for molecular genetics in polyploid,inter- and intra-specific Musa hybrids. BMC Genomics, 14 (1):683.
doi: 10.1186/1471-2164-14-683 URL |
[8] |
D'Hont A, Denoeud F, Aury J M, Baurens F C, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da S C, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengelle J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, Mckain M R, Leebens-Mack J, Burgess D, Freeling M, Mbeguie-A-Mbeguie D, Chabannes M, Wicker T, Panaud O, Barbosa J, Hribova E, Heslop-Harrison P, Habas R, Rivallan R, Francois P, Poiron C, Kilian A, Burthia D, Jenny C, Bakry F, Brown S, Guignon V, Kema G, Dita M, Waalwijk C, Joseph S, Dievart A, Jaillon O, Leclercq J, Argout X, Lyons E, Almeida A, Jeridi M, Dolezel J, Roux N, Risterucci A M, Weissenbach J, Ruiz M, Glaszmann J C, Quetier F, Yahiaoui N, Wincker P. 2012. The banana( Musa acuminata)genome and the evolution of monocotyledonous plants. Nature, 488 (7410):213-217.
doi: 10.1038/nature11241 URL |
[9] |
Dong X, Wang Z, Tian L, Zhang Y, Qi D, Huo H, Xu J, Li Z, Liao R, Shi M, Wahocho S A, Liu C, Zhang S, Tian Z, Cao Y. 2020. De novo assembly of a wild pear( Pyrus betuleafolia)genome. Plant Biotechnol J, 18 (2):581-595.
doi: 10.1111/pbi.v18.2 URL |
[10] |
Edger P P, Poorten T J, VanBuren R, Hardigan M A, Colle M, McKain M R, Smith R D, Teresi S J, Nelson A, Wai C M, Alger E I, Bird K A, Yocca A E, Pumplin N, Ou S, Ben-Zvi G, Brodt A, Baruch K, Swale T, Shiue L, Acharya C B, Cole G S, Mower J P, Childs K L, Jiang N, Lyons E, Freeling M, Puzey J R, Knapp S J. 2019. Origin and evolution of the octoploid strawberry genome. Nat Genet, 51 (3):541-547.
doi: 10.1038/s41588-019-0356-4 URL |
[11] |
Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S. 2009. Real-time DNA sequencing from single polymerase molecules. Science, 323 (5910):133-138.
doi: 10.1126/science.1162986 URL |
[12] |
Hirakawa H, Shirasawa K, Kosugi S, Tashiro K, Nakayama S, Yamada M, Kohara M, Watanabe A, Kishida Y, Fujishiro T, Tsuruoka H, Minami C, Sasamoto S, Kato M, Nanri K, Komaki A, Yanagi T, Guoxin Q, Maeda F, Ishikawa M, Kuhara S, Sato S, Tabata S, Isobe S N. 2014. Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species. DNA Res, 21 (2):169-181.
doi: 10.1093/dnares/dst049 URL |
[13] |
Imelfort M, Edwards D. 2009. De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform, 10 (6):609-618.
doi: 10.1093/bib/bbp039 URL |
[14] |
Jaillon O, Aury J M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del F C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe M E, Valle G, Morgante M, Caboche M, Adam-Blondon A F, Weissenbach J, Quetier F, Wincker P. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449 (7161):463-467.
doi: 10.1038/nature06148 URL |
[15] |
Ji P, Zhang Y, Wang J, Zhao F. 2017. MetaSort untangles metagenome assembly by reducing microbial community complexity. Nat Commun, 8:14306.
doi: 10.1038/ncomms14306 URL |
[16] |
Laver T, Harrison J, O'Neill P A, Moore K, Farbos A, Paszkiewicz K, Studholme D J. 2015. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol Detect Quantif, 3:1-8.
doi: 10.1016/j.bdq.2015.02.001 URL |
[17] |
Li X, Kui L, Zhang J, Xie Y, Wang L, Yan Y, Wang N, Xu J, Li C, Wang W, van Nocker S, Dong Y, Ma F, Guan Q. 2016. Improved hybrid de novo genome assembly of domesticated apple (Malus × domestica). Gigascience, 5 (1):35.
doi: 10.1186/s13742-016-0139-0 URL |
[18] |
Li Y, Wang L R. 2020. Genetic resources,reeding programs in China,and gene mining of peach:a review. Horticultural Plant Journal, 6 (4):205-215.
doi: 10.1016/j.hpj.2020.06.001 URL |
[19] | Linsmith G, Rombauts S, Montanari S, Deng C H, Celton J M, Guerif P, Liu C, Lohaus R, Zurn J D, Cestaro A, Bassil N V, Bakker L V, Schijlen E, Gardiner S E, Lespinasse Y, Durel C E, Velasco R, Neale D B, Chagne D, van de Peer Y, Troggio M, Bianco L. 2019. Pseudo-chromosome-length genome assembly of a double haploid“Bartlett”pear(Pyrus communis L.). BioRxiv,651778. |
[20] | Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M. 2012. Comparison of next-generation sequencing systems. J Biomed Biotechnol, 2012 (7):251364. |
[21] |
Lu H, Giordano F, Ning Z. 2016. Oxford nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics, 14 (5):265-279.
doi: 10.1016/j.gpb.2016.05.004 URL |
[22] |
Margulies M, Egholm M, Altman W E, Attiya S, Bader J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen Z, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C, Alenquer M L, Jarvie T P, Jirage K B, Kim J B, Knight J R, Lanza J R, Leamon J H, Lefkowitz S M, Lei M, Li J, Lohman K L, Lu H, Makhijani V B, McDade K E, McKenna M P, Myers E W, Nickerson E, Nobile J R, Plant R, Puc B P, Ronan M T, Roth G T, Sarkis G J, Simons J F, Simpson J W, Srinivasan M, Tartaro K R, Tomasz A, Vogt K A, Volkmer G A, Wang S H, Wang Y, Weiner M P, Yu P, Begley R F, Rothberg J M. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437 (7057):376-380.
pmid: 16056220 |
[23] |
Niedringhaus T P, Milanova D, Kerby M B, Snyder M P, Barron A E. 2011. Landscape of next-generation sequencing technologies. Anal Chem, 83 (12):4327-4341.
doi: 10.1021/ac2010857 URL |
[24] | Qiao Xin, Li Meng, Yin Hao, Li Lei-yan, Wu Jun, Zhang Shao-ling. 2014. Advances in whole genome sequencing of fruit trees. Acta Horticulturae Sinica, 41 (1):165-177. (in Chinese) |
乔鑫, 李梦, 殷豪, 李雷廷, 吴俊, 张绍铃. 2014. 果树全基因组测序研究进展. 园艺学报, 41 (1):165-177. | |
[25] |
Rhoads A, Au K F. 2015. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics, 13 (5):278-289.
doi: 10.1016/j.gpb.2015.08.002 URL |
[26] |
Roach M J, Johnson D L, Bohlmann J, van Vuuren H, Jones S, Pretorius I S, Schmidt S A, Borneman A R. 2018. Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar Chardonnay. PLoS Genet, 14 (11):e1007807.
doi: 10.1371/journal.pgen.1007807 URL |
[27] |
Rothberg J M, Leamon J H. 2008. The development and impact of 454 sequencing. Nat Biotechnol, 26 (10):1117-1124.
doi: 10.1038/nbt1485 URL |
[28] |
Schuster S C. 2008. Next-generation sequencing transforms today’s biology. Nat Methods, 5 (1):16-18.
doi: 10.1038/nmeth1156 URL |
[29] |
Shendure J, Ji H. 2008. Next-generation DNA sequencing. Nat Biotechnol, 26 (10):1135-1145.
doi: 10.1038/nbt1486 URL |
[30] |
Shimizu T, Tanizawa Y, Mochizuki T, Nagasaki H, Yoshioka T, Toyoda A, Fujiyama A, Kaminuma E, Nakamura Y. 2017. Draft sequencing of the heterozygous diploid genome of Satsuma( Citrus unshiu Marc.)using a hybrid assembly approach. Front Genet, 8:180.
doi: 10.3389/fgene.2017.00180 URL |
[31] |
Shulaev V, Sargent D J, Crowhurst R N, Mockler T C, Folkerts O, Delcher A L, Jaiswal P, Mockaitis K, Liston A, Mane S P, Burns P, Davis T M, Slovin J P, Bassil N, Hellens R P, Evans C, Harkins T, Kodira C, Desany B, Crasta O R, Jensen R V, Allan A C, Michael T P, Setubal J C, Celton J M, Rees D J, Williams K P, Holt S H, Ruiz R J, Chatterjee M, Liu B, Silva H, Meisel L, Adato A, Filichkin S A, Troggio M, Viola R, Ashman T L, Wang H, Dharmawardhana P, Elser J, Raja R, Priest H D, Bryant D J, Fox S E, Givan S A, Wilhelm L J, Naithani S, Christoffels A, Salama D Y, Carter J, Lopez G E, Zdepski A, Wang W, Kerstetter R A, Schwab W, Korban S S, Davik J, Monfort A, Denoyes-Rothan B, Arus P, Mittler R, Flinn B, Aharoni A, Bennetzen J L, Salzberg S L, Dickerman A W, Velasco R, Borodovsky M, Veilleux R E, Folta K M. 2011. The genome of woodland strawberry (Fragaria vesca). Nat Genet, 43 (2):109-116.
doi: 10.1038/ng.740 URL |
[32] | Torpdahl M, Löfström C, Nielsen E M. 2010. Whole genome sequencing. Methods in Molecular Biology, 628 (6):215. |
[33] |
Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek J A, Costa G, McKernan K, Sidow A, Fire A, Johnson S M. 2008. A high-resolution,nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res, 18 (7):1051-1063.
doi: 10.1101/gr.076463.108 pmid: 18477713 |
[34] |
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar S K, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald L M, Gutin N, Lanchbury J, Macalma T, Mitchell J T, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu V T, King S T, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater M M, Masiero S, Lasserre P, Lespinasse Y, Allan A C, Bus V, Chagne D, Crowhurst R N, Gleave A P, Lavezzo E, Fawcett J A, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens R P, Durel C E, Gutin A, Bumgarner R E, Gardiner S E, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R. 2010. The genome of the domesticated apple( Malus × domestica Borkh.). Nat Genet, 42 (10):833-839.
doi: 10.1038/ng.654 |
[35] |
Velculescu V E, Zhang L, Zhou W, Vogelstein J, Basrai M A, Bassett D J, Hieter P, Vogelstein B, Kinzler K W. 1997. Characterization of the yeast transcriptome. Cell, 88 (2):243-251.
pmid: 9008165 |
[36] |
Verde I, Abbott A G, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori M T, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel L A, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein D M, Xuan P, Del F C, Aramini V, Copetti D, Gonzalez S, Horner D S, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arus P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar D S. 2013. The high-quality draft genome of peach( Prunus persica)identifies unique patterns of genetic diversity,domestication and genome evolution. Nat Genet, 45 (5):487-494.
doi: 10.1038/ng.2586 URL |
[37] |
Wang L, He F, Huang Y, He J, Yang S, Zeng J, Deng C, Jiang X, Fang Y, Wen S, Xu R, Yu H, Yang X, Zhong G, Chen C, Yan X, Zhou C, Zhang H, Xie Z, Larkin R M, Deng X, Xu Q. 2018. Genome of wild mandarin and domestication history of mandarin. Mol Plant, 11 (8):1024-1037.
doi: S1674-2052(18)30187-4 pmid: 29885473 |
[38] |
Wang X, Xu Y, Zhang S, Cao L, Huang Y, Cheng J, Wu G, Tian S, Chen C, Liu Y, Yu H, Yang X, Lan H, Wang N, Wang L, Xu J, Jiang X, Xie Z, Tan M, Larkin R M, Chen L L, Ma B G, Ruan Y, Deng X, Xu Q. 2017. Genomic analyses of primitive,wild and cultivated citrus provide insights into asexual reproduction. Nat Genet, 49 (5):765-772.
doi: 10.1038/ng.3839 URL |
[39] |
Wang Z, Miao H, Liu J, Xu B, Yao X, Xu C, Zhao S, Fang X, Jia C, Wang J, Zhang J, Li J, Xu Y, Wang J, Ma W, Wu Z, Yu L, Yang Y, Liu C, Guo Y, Sun S, Baurens F C, Martin G, Salmon F, Garsmeur O, Yahiaoui N, Hervouet C, Rouard M, Laboureau N, Habas R, Ricci S, Peng M, Guo A, Xie J, Li Y, Ding Z, Yan Y, Tie W, D'Hont A, Hu W, Jin Z. 2019. Musa balbisiana genome reveals subgenome evolution and functional divergence. Nat Plants, 5 (8):810-821.
doi: 10.1038/s41477-019-0452-6 URL |
[40] |
Wu G A, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J, Takita M A, Labadie K, Poulain J, Couloux A, Jabbari K, Cattonaro F, Del F C, Pinosio S, Zuccolo A, Chapman J, Grimwood J, Tadeo F R, Estornell L H, Munoz-Sanz J V, Ibanez V, Herrero-Ortega A, Aleza P, Perez-Perez J, Ramon D, Brunel D, Luro F, Chen C, Farmerie W G, Desany B, Kodira C, Mohiuddin M, Harkins T, Fredrikson K, Burns P, Lomsadze A, Borodovsky M, Reforgiato G, Freitas-Astua J, Quetier F, Navarro L, Roose M, Wincker P, Schmutz J, Morgante M, Machado M A, Talon M, Jaillon O, Ollitrault P, Gmitter F, Rokhsar D. 2014. Sequencing of diverse mandarin,pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol, 32 (7):656-662.
doi: 10.1038/nbt.2906 |
[41] |
Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan M A, Tao S, Korban S S, Wang H, Chen N J, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull R E, Bennetzen J L, Wang J, Zhang S. 2013. The genome of the pear( Pyrus bretschneideri Rehd.). Genome Res, 23 (2):396-408.
doi: 10.1101/gr.144311.112 URL |
[42] |
Wu W, Yang Y L, He W M, Rouard M, Li W M, Xu M, Roux N, Ge X J. 2016. Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus. Sci Rep, 6:31586.
doi: 10.1038/srep31586 URL |
[43] |
Xu Q, Chen L L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W B, Hao B H, Lyon M P, Chen J, Gao S, Xing F, Lan H, Chang J W, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas M K, Zeng W, Guo F, Cao H, Yang X, Xu X W, Cheng Y J, Xu J, Liu J H, Luo O J, Tang Z, Guo W W, Kuang H, Zhang H Y, Roose M L, Nagarajan N, Deng X X, Ruan Y. 2013. The draft genome of sweet orange (Citrus sinensis). Nat Genet, 45 (1):59-66.
doi: 10.1038/ng.2472 URL |
[44] |
Zhang C M, Hao Y J. 2020. Advances in genomic,transcriptomic,and metabolomic analyses of fruit quality in fruit crops. Horticultural Plant Journal, 6 (4):205-215.
doi: 10.1016/j.hpj.2020.06.001 URL |
[45] |
Zhang J, Lei Y, Wang B, Li S, Yu S, Wang Y, Li H, Liu Y, Ma Y, Dai H, Wang J, Zhang Z. 2020. The high-quality genome of diploid strawberry ( Fragaria nilgerrensis)provides new insights into anthocyanin accumulation. Plant Biotechnol J, 18 (9):1908-1924.
doi: 10.1111/pbi.v18.9 URL |
[46] |
Zhang L, Hu J, Han X, Li J, Gao Y, Richards C M, Zhang C, Tian Y, Liu G, Gul H, Wang D, Tian Y, Yang C, Meng M, Yuan G, Kang G, Wu Y, Wang K, Zhang H, Wang D, Cong P. 2019. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat Commun, 10 (1):1494.
doi: 10.1038/s41467-019-09518-x pmid: 30940818 |
[47] |
Zhang Y, Barthe G, Grosser J W, Wang N. 2016. Transcriptome analysis of root response to citrus blight based on the newly assembled Swingle citrumelo draft genome. BMC Genomics, 17:485.
doi: 10.1186/s12864-016-2779-y URL |
[48] | Zhou Y, Minio A, Massonnet M, Solares E A, Gaut B S. 2019. Structural variants,clonal propagation,and genome evolution in grapevine (Vitis vinifera). BioRxiv:508119. |
[49] |
Zhu C, Zheng X, Huang Y, Ye J, Chen P, Zhang C, Zhao F, Xie Z, Zhang S, Wang N, Li H, Wang L, Tang X, Chai L, Xu Q, Deng X. 2019. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus (Fortunella hindsii). Plant Biotechnol J, 17 (11):2199-2210.
doi: 10.1111/pbi.v17.11 URL |
[1] | 王晓晨, 聂子页, 刘先菊, 段 伟, 范培格, 梁振昌, . 脱落酸对‘京香玉’葡萄果实单萜物质合成的影响[J]. 园艺学报, 2023, 50(2): 237-249. |
[2] | 叶子茂, 申晚霞, 刘梦雨, 王 彤, 张晓楠, 余 歆, 刘小丰, 赵晓春, . R2R3-MYB转录因子CitMYB21对柑橘类黄酮生物合成的影响[J]. 园艺学报, 2023, 50(2): 250-264. |
[3] | 张 欣, 漆艳香, 曾凡云, 王艳玮, 谢培兰, 谢艺贤, 彭 军. 香蕉枯萎病菌Dicer-like基因的功能分析[J]. 园艺学报, 2023, 50(2): 279-294. |
[4] | 宋艳红, 陈亚铎, 张晓玉, 宋 盼, 刘丽锋, 李 刚, 赵 霞, 周厚成, . 森林草莓FvbHLH130转录因子调控植株提前开花[J]. 园艺学报, 2023, 50(2): 295-306. |
[5] | 于婷婷, 李 欢, 宁源生, 宋建飞, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果GRAS全基因组鉴定及其对生长素的响应分析[J]. 园艺学报, 2023, 50(2): 397-409. |
[6] | 梁嘉莉, 吴启松, 陈广全, 张 荣, 徐春香, 冯淑杰, . 香蕉叶斑病病原菌芭蕉新拟盘多毛孢的鉴定[J]. 园艺学报, 2023, 50(2): 410-420. |
[7] | 翟含含, 翟宇杰, 田义, 张叶, 杨丽, 温陟良, 陈海江. 桃SAUR家族基因分析及PpSAUR5功能鉴定[J]. 园艺学报, 2023, 50(1): 1-14. |
[8] | 蒋靖东, 韦壮敏, 王楠, 朱晨桥, 叶俊丽, 谢宗周, 邓秀新, 柴利军. 山金柑四倍体资源的发掘与鉴定[J]. 园艺学报, 2023, 50(1): 27-35. |
[9] | 袁馨, 徐云鹤, 张雨培, 单楠, 陈楚英, 万春鹏, 开文斌, 翟夏琬, 陈金印, 甘增宇. 猕猴桃后熟过程中ABA响应结合因子AcAREB1调控AcGH3.1的表达[J]. 园艺学报, 2023, 50(1): 53-64. |
[10] | 杜玉玲, 杨凡, 赵娟, 刘书琪, 龙超安. 新鱼腥草素钠对柑橘指状青霉的抑菌作用[J]. 园艺学报, 2023, 50(1): 145-152. |
[11] | 何成勇, 赵晓丽, 许腾飞, 高德航, 李世访, 王红清. 草莓病毒1山东分离物全基因组分析[J]. 园艺学报, 2023, 50(1): 153-160. |
[12] | 李镇希, 潘睿翾, 许美容, 郑正, 邓晓玲. 柑橘黄龙病菌双重实时荧光PCR检测方法的建立[J]. 园艺学报, 2023, 50(1): 188-196. |
[13] | 邢柱东, 吕福堂, 郭尚敬, 张演义. 新品种‘聊大红金’桃[J]. 园艺学报, 2023, 50(1): 225-226. |
[14] | 韩晓蕾, 张彩霞, 刘 锴, 杨 安, 严家帝, 李武兴, 康立群, 丛佩华. 中熟苹果新品种‘中苹优蕾’[J]. 园艺学报, 2022, 49(S2): 1-2. |
[15] | 宋健坤, 杨英杰, 李鼎立, 马春晖, 王彩虹, 王 然. 梨新品种‘鲁秀’[J]. 园艺学报, 2022, 49(S2): 3-4. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司