园艺学报 ›› 2021, Vol. 48 ›› Issue (4): 689-704.doi: 10.16420/j.issn.0513-353x.2020-0860
收稿日期:
2021-01-07
出版日期:
2021-04-25
发布日期:
2021-04-29
通讯作者:
闫见敏
E-mail:yjmqhd0201@163.com
基金资助:
WANG Qi, LI Yunzhou, XU Wen, YAN Jianmin()
Received:
2021-01-07
Online:
2021-04-25
Published:
2021-04-29
Contact:
YAN Jianmin
E-mail:yjmqhd0201@163.com
摘要:
叶绿体蛋白是植物进行光合作用所必不可缺的物质。参与光合作用的大部分叶绿体蛋白在细胞质中合成,经过TOC-TIC复合体转运至叶绿体中行使其功能。本文中对参与叶绿体蛋白转运的TOC-TIC复合体、转运肽和分子伴侣蛋白的特征、作用及蛋白转运途径进行了总结,并对近年来关于叶绿体蛋白转运研究的新发现进行了介绍和评述。
中图分类号:
王琪, 李云洲, 须文, 闫见敏. 叶绿体TOC-TIC蛋白复合体转运机制研究进展[J]. 园艺学报, 2021, 48(4): 689-704.
WANG Qi, LI Yunzhou, XU Wen, YAN Jianmin. Research Advance of Protein Transport Mechanism of TOC-TIC Complexes in Plant Chloroplast[J]. Acta Horticulturae Sinica, 2021, 48(4): 689-704.
图2 不同物种中TOC 复合体系统进化树分析 分支上的数值代表置信度,比例尺0.1代表每100个氨基酸中有10个不同。
Fig. 2 Phylogenetic analysis of TOC complexes from the different species The number represents confidence and the scale of 0.10 represents 10 differences per 100 amino acids.
图3 不同物种中TIC复合体系统进化树分析 数值代表置信度,比例尺0.10代表每100个氨基酸中有10个不同。
Fig. 3 Phylogenetic analysis of TIC complexes from the different species The number represents confidence and the scale of 0.10 represents 10 differences per 100 amino acids.
组分 Component | 预测功能 Proposed function | 拟南芥中 同源基因 Homologues in Arabidopsis | 突变体 Mutant name | 缺失突变体表现型 Knockout mutant phenotype(s) | 参考文献 Reference |
---|---|---|---|---|---|
Toc159 | 识别前体蛋白 Preprotein recognition | AtToc159 | ppi2/toc159 | 白化 Albino | Bauer et al. Kubis et al. |
AtToc132 | toc132 | 无明显表型 None detected | Kubis et al. | ||
AtToc120 | toc120 | 无明显表型 None detected | Ivanova et al. Kubis et al. | ||
toc132toc120 双突变 | 白化 Albino | Kubis et al. | |||
AtToc90 | ppi4/toc90 | 无明显表型 None detected | Hiltbrunner et al. Kubis et al. | ||
ppi2ppi4 双突变 | 白化 Albino | Hiltbrunner et al. Kubis et al. | |||
Toc34 | 识别前体蛋白 Preprotein recognition | AtToc33 | ppi1/toc33 | 幼苗苍白转绿 Albino turn green | Jarvis et al. Kubis et al. |
AtToc34 | ppi3/toc34 | 影响根部发育 Stunted roots | Constan et al. | ||
Toc75 | 形成易位通道 Translocation channel | AtToc75-Ⅲ | toc75-Ⅲ | 胚胎致死 Embryo lethal | Baldwin et al. |
AtToc75-Ⅳ | toc75-IV | 质体结构异常 Etioplast defects | Baldwin et al. | ||
AtToc75-Ⅰ | — | — | Baldwin et al. | ||
Toc64 | 结合转运肽 Binding transit peptide 调控转运效率 Transport efficiency | AtToc64-Ⅲ | toc64-III | — | Qbadou et al. Aronsson et al. |
AtToc64-Ⅴ | toc64-V | — | Aronsson et al. | ||
AtToc64-Ⅰ | toc63-I | — | Aronsson et al. | ||
Tic22 | AtTic22-Ⅲ | — | — | — | |
AtTic22-Ⅳ | — | — | — | ||
Tic20 | 参与TOC-TIC超复合体形成 TOC-TIC Supercomplex | AtTic20-Ⅰ | tic20-I | 白化 Albino | Chen et al. |
AtTic20-Ⅳ | tic20-IV | 无明显表型 None detected | Hirabayashi et al. | ||
tic20-Itic20-IV 双突变 | 胚胎致死 Embryo lethal | Hirabayashi et al. Kasmati et al. | |||
AtTic20-Ⅱ | — | — | — | ||
AtTic20-Ⅴ | — | — | — | ||
Tic21 | 参与易位通道的构成 Translocation channel | AtTic21 | pic1 | 白化 Albino | Teng et al. |
Tic110 | 参与易位通道构成 Translocation channel | AtTic110 | tic110 | 胚胎致死 Embryo lethal | Kovacheva et al. |
Tic40 | 促进转运 Transport rate promotion | AtTic40 | tic40 | 浅绿色 Pale-green | Chou et al. Kovacheva et al. |
Tic55 | 氧化还原调控 Redox regulation | AtTic55 | tic55 | 无明显表型 None detected | Boij et al. |
Tic62 | 氧化还原调控 Redox regulation | AtTic62 | tic62 | — | Benz et al. |
Tic32 | 钙依赖调控 Calcium regulation | AtTic32-Ⅳa | tic32-IVa | 胚胎致死 Embryo lethal | H?rmann et al. |
AtTic32-Ⅳb | — | — | — | ||
Tic236 | 连接TOC与TIC TOC-TIC connection | AtTic236 | tic236 | 胚胎致死 Embryo lethal | Chen et al. |
表1 TOC/TIC亚基在拟南芥中的同源物以及敲除突变体的表型(修改自 Jarvis,2008)
Table 1 Components of the TOC/TIC chloroplast protein import machinery,their homologues in Arabidopsis,and the associated knockout mutant phenotypes(modified from Jarvis,2008)
组分 Component | 预测功能 Proposed function | 拟南芥中 同源基因 Homologues in Arabidopsis | 突变体 Mutant name | 缺失突变体表现型 Knockout mutant phenotype(s) | 参考文献 Reference |
---|---|---|---|---|---|
Toc159 | 识别前体蛋白 Preprotein recognition | AtToc159 | ppi2/toc159 | 白化 Albino | Bauer et al. Kubis et al. |
AtToc132 | toc132 | 无明显表型 None detected | Kubis et al. | ||
AtToc120 | toc120 | 无明显表型 None detected | Ivanova et al. Kubis et al. | ||
toc132toc120 双突变 | 白化 Albino | Kubis et al. | |||
AtToc90 | ppi4/toc90 | 无明显表型 None detected | Hiltbrunner et al. Kubis et al. | ||
ppi2ppi4 双突变 | 白化 Albino | Hiltbrunner et al. Kubis et al. | |||
Toc34 | 识别前体蛋白 Preprotein recognition | AtToc33 | ppi1/toc33 | 幼苗苍白转绿 Albino turn green | Jarvis et al. Kubis et al. |
AtToc34 | ppi3/toc34 | 影响根部发育 Stunted roots | Constan et al. | ||
Toc75 | 形成易位通道 Translocation channel | AtToc75-Ⅲ | toc75-Ⅲ | 胚胎致死 Embryo lethal | Baldwin et al. |
AtToc75-Ⅳ | toc75-IV | 质体结构异常 Etioplast defects | Baldwin et al. | ||
AtToc75-Ⅰ | — | — | Baldwin et al. | ||
Toc64 | 结合转运肽 Binding transit peptide 调控转运效率 Transport efficiency | AtToc64-Ⅲ | toc64-III | — | Qbadou et al. Aronsson et al. |
AtToc64-Ⅴ | toc64-V | — | Aronsson et al. | ||
AtToc64-Ⅰ | toc63-I | — | Aronsson et al. | ||
Tic22 | AtTic22-Ⅲ | — | — | — | |
AtTic22-Ⅳ | — | — | — | ||
Tic20 | 参与TOC-TIC超复合体形成 TOC-TIC Supercomplex | AtTic20-Ⅰ | tic20-I | 白化 Albino | Chen et al. |
AtTic20-Ⅳ | tic20-IV | 无明显表型 None detected | Hirabayashi et al. | ||
tic20-Itic20-IV 双突变 | 胚胎致死 Embryo lethal | Hirabayashi et al. Kasmati et al. | |||
AtTic20-Ⅱ | — | — | — | ||
AtTic20-Ⅴ | — | — | — | ||
Tic21 | 参与易位通道的构成 Translocation channel | AtTic21 | pic1 | 白化 Albino | Teng et al. |
Tic110 | 参与易位通道构成 Translocation channel | AtTic110 | tic110 | 胚胎致死 Embryo lethal | Kovacheva et al. |
Tic40 | 促进转运 Transport rate promotion | AtTic40 | tic40 | 浅绿色 Pale-green | Chou et al. Kovacheva et al. |
Tic55 | 氧化还原调控 Redox regulation | AtTic55 | tic55 | 无明显表型 None detected | Boij et al. |
Tic62 | 氧化还原调控 Redox regulation | AtTic62 | tic62 | — | Benz et al. |
Tic32 | 钙依赖调控 Calcium regulation | AtTic32-Ⅳa | tic32-IVa | 胚胎致死 Embryo lethal | H?rmann et al. |
AtTic32-Ⅳb | — | — | — | ||
Tic236 | 连接TOC与TIC TOC-TIC connection | AtTic236 | tic236 | 胚胎致死 Embryo lethal | Chen et al. |
[1] |
Akita M, Nielsen E, Keegstra K. 1997. Identification of protein transport complexes in the chloroplastic envelope membranes via chemical cross-linking. Journal of Cell Biology, 136:983-994.
pmid: 9060464 |
[2] |
America T, Hageman J, Guéra A, Rook F, Archer K, Keegstra K, Weisbeek P. 1994. Methotrexate does not block import of a DHFR fusion protein into chloroplasts. Plant Molecular Biology, 24:283-294.
doi: 10.1007/BF00020168 URL |
[3] |
Aronsson H, Boij P, Patel R, Wardle A, Töpel M, Jarvis P. 2007. Toc64/OEP64 is not essential for the efficient import of proteins into chloroplasts in Arabidopsis thaliana. Plant Journal, 52:53-68.
pmid: 17655652 |
[4] |
Baldwin A, Wardle A, Patel R, Dudley P, Park SK, Twell D, Inoue K, Jarvis P. 2005. A molecular-genetic study of the Arabidopsis Toc75 gene family. Plant Physiology, 138:1-19.
doi: 10.1104/pp.104.900158 URL |
[5] | Balsera M, Goetze T A, Kovacs-Bogdan E, Schurmann P, Wagner R, Buchanan B B, Soll J, Bolter B. 2009. Characterization of Tic110,a channel-forming protein at the inner envelope membrane of chloroplasts,unveils a response to Ca2+ and a stromal regulatory disulfide bridge. Biological Chemistry, 284:2603-2616. |
[6] |
Bauer J, Chen K, Hiltbunner A, Wehrli E, Eugster M, Schnell D, Kessler F. 2000. The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature, 403:203-207.
pmid: 10646606 |
[7] |
Bédard J, Jarvis P. 2005. Recognition and envelope translocation of chloroplast preproteins. Journal of Experimental Botany, 56:2287-2320.
doi: 10.1093/jxb/eri243 URL |
[8] |
Becker T, Hritz J, Vogel M, Caliebe A, Bukau B, Soll J, Schleiff E. 2004. Toc12, a novel subunit of the intermembrane space preprotein translocon of chloroplasts. Molecular Biology of the Cell, 15:5130-5144.
doi: 10.1091/mbc.e04-05-0405 URL |
[9] |
Benz J P, Soll J, Bolter B. 2009. Protein transport in organelles:the composition,function and regulation of the Tic complex in chloroplast protein import. FEBS Journal, 276:1166-1176.
doi: 10.1111/j.1742-4658.2009.06874.x URL |
[10] |
Benz J P, Stengel A, Lintala M, Lee Y H, Weber A, Philippar K, Gugel I L, Kaieda S, Ikegmi T, Mulo P, Soll J, Bolter B. 2009. Arabidopsis Tic62 and ferredoxin-NADP(H) oxidoreductase form light-regulated complexes that are integrated into the chloroplast redox poise. Plant Cell, 21:3965-3983.
doi: 10.1105/tpc.109.069815 URL |
[11] |
Bölter B, May T, Soll J. 1998. A protein import receptor in pea chloroplasts,Toc86,is only a proteolytic fragment of a larger polypeptide. FEBS Letters, 441:59-62.
doi: 10.1016/S0014-5793(98)01525-7 URL |
[12] |
Boij P, Patel R, Garcia C, Jarvis P, Aronsson H. 2009. In vivo studies on the roles of Tic55-related proteins in chloroplast protein import in Arabidopsis thaliana. Molecular Plant, 2:1397-1409.
doi: 10.1093/mp/ssp079 URL |
[13] |
Bruce B D. 2000. Chloroplast transit peptides:structure,function and evolution. Trends in Cell Biology, 10:440-447.
doi: 10.1016/S0962-8924(00)01833-X URL |
[14] |
Caliebe A, Grimm R, Kaiser G, Lubeck J, Soll J, Heins L. 1997. The chloroplastic protein import machinery contains a Rieske-type iron-sulfur cluster and a mononuclear iron-binding protein. EMBO Journal, 16:7342-7350.
pmid: 9405363 |
[15] |
Campbell J H, Hoang T, Jelokhani-Niaraki M, Smith M D. 2014. Folding and self-association of atTic 20 in lipid membranes:implications for understanding protein transport across the inner envelope membrane of chloroplasts. BMC Biochemistry, 15:29.
doi: 10.1186/s12858-014-0029-y pmid: 25551276 |
[16] |
Chen K Y, Li H M. 2007. Precursor binding to an 880-kDa Toc complex as an early step during active import of protein into chloroplasts. Plant Journal, 49:149-158.
doi: 10.1111/tpj.2007.49.issue-1 URL |
[17] |
Chen K, Chen X, Schnell D J. 2000. Initial binding of preproteins involving the Toc159 receptor can be bypassed during protein import into chloroplasts. Plant Physiology, 122:813-822.
doi: 10.1104/pp.122.3.813 URL |
[18] |
Chen Y L, Chen L J, Chu C C, Huang P K, Wen J R, Li H M. 2018. TIC 236 links the outer and inner membrane translocons of the chloroplast. Nature, 564:125-129.
doi: 10.1038/s41586-018-0713-y URL |
[19] |
Chen L J, Li H M. 2017. Stable megadalton TOC-TIC super complexes as major mediators of protein import into chloroplasts. Plant Journal, 92:178-188.
doi: 10.1111/tpj.2017.92.issue-2 URL |
[20] |
Chen X, Smith M D, Fitzpatrick L, Schnell D J. 2002. In vivo analysis of the role of atTic20 in protein import into chloroplasts. Plant Cell, 14:641-654.
doi: 10.1105/tpc.010336 URL |
[21] | Chigri F, Hormann F, Stamp A, Stammers DK, Bolter B, Soll J, Vothknecht U C. 2006. Calcium regulation of chloroplast protein translocation is mediated by calmodulin binding to Tic32. Proceedings of the National Academy of Sciences of the United States of America, 103:16051-16056. |
[22] |
Chirico W J, Waters M G, Blobel G. 1988. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature, 332:805-810.
pmid: 3282179 |
[23] |
Chotewutmontri P, Holbrook K, Bruce B D. 2017. Plastid protein targeting:preprotein recognition and translocation. International Review of Cell and Molecular Biology, 330:227-294.
doi: S1937-6448(16)30101-0 pmid: 28215533 |
[24] | Chotewutmontri P, Bruce B D. 2015. Non-native,N-terminal Hsp70 molecular motor recognition elements in transit peptides support plastid protein translocation. Journal of Biochemmistry, 290:7602-7621. |
[25] |
Chou M L, Fitzpatrick L M, Tu S L, Budziszewski G, Potter-Lewis S, Akita M, Levin J Z, Keegstra K, Li H M. 2003. Tic40,a membrane-anchored co-chaperone homolog in the chloroplast protein translocon. EMBO Journal, 22:2970-2980.
doi: 10.1093/emboj/cdg281 URL |
[26] |
Chu C C, Li H M. 2012. The amino-terminal domain of chloroplast Hsp93 is important for its membrane association and functions in vivo. Plant Physiol, 158:1656-1665.
doi: 10.1104/pp.112.193300 URL |
[27] |
Cline K, Werner-Washburne M, Andrews J, Keegstra K. 1984. Thermolysin is a suitable protease for probing the surface of intact pea chloroplasts. Plant Physiology, 75:675-678.
doi: 10.1104/pp.75.3.675 URL |
[28] |
Constan D, Patel R, Keegstra K, Jarvis P. 2004. An outer envelope membrane component of the plastid protein import apparatus plays an essential role in Arabidopsis. Plant Journal, 38:93-106.
pmid: 15053763 |
[29] |
Drescher A, Ruf S, Calsa TJr, Carrer H, Bock R. 2000. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant Journal, 22:97-104.
pmid: 10792825 |
[30] |
Duy D, Wanner G, Meda A R, von Wiren N, Soll J, Philippar K. 2007. PIC1,an ancient permease in Arabidopsis chloroplasts,mediates iron transport. Plant Cell, 19:986-1006.
doi: 10.1105/tpc.106.047407 URL |
[31] |
Geissler A, Chacinska A, Truscott K N, Wiedemann N, Brandner K, Sickmann A, Meyer H E, Meisinger C, Pfanner N, Rehling P. 2002. The mitochondrial presequence translocase:an essential role of Tim50 in directing preproteins to the import channel. Cell, 111:507-518.
pmid: 12437924 |
[32] |
Gutensohn M, Schulz B, Nicolay P, Flügge U I. 2000. Functional analysis of the two Arabidopsis homologues of Toc34,a component of the chloroplast protein import apparatus. Plant Journal, 23:771-783.
pmid: 10998188 |
[33] |
Halperin T, Ostersetzer O, Adam Z. 2001. ATP-dependent association between subunits of Clp protease in pea chloroplasts. Planta, 213:614-619.
URL pmid: 11556794 |
[34] |
Heins L, Mehrle A, Hemmler R, Wagner R, Küchler M, Sveshnikov D, Soll J. 2002. The preprotein conducting channel at the inner envelope membrane of plastids. EMBO Journal, 21:2616-2625.
pmid: 12032074 |
[35] |
Hennessy F, Nicoll W S, Zimmermann R, Cheetham M E, Blatch G L. 2005. Not all J domains are created equal:implications for the specificity of Hsp40-Hsp70 interactions. Protein Science, 14:1697-1709.
pmid: 15987899 |
[36] | Hiltbrunner A, Grunig K, Alvarez-Huerta M, Infanger S, Bauer J, Kessler F. 2004. AtToc90,a new GTP-binding component of the Arabidopsis chloroplast protein import machinery. Plant Mloecular Biology, 54:427-440. |
[37] |
Hinnah S C, Hill K, Wagner R, Schlicher T, Soll J. 1997. Reconstitution of a chloroplast protein import channel. EMBO Journal, 16:7351-7360.
pmid: 9405364 |
[38] |
Hinnah S C, Wagner R, Sveshnikova N, Harrer R, Soll J. 2002. The chloroplast protein import channel Toc75:pore properties and interaction with transit peptides. Biophysical Journal, 83:899-911.
doi: 10.1016/S0006-3495(02)75216-8 URL |
[39] |
Hirabayashi Y, Kikuchi S, Oishi M, NakaiIn M. 2011. In vivo studies on the roles of two closely related Arabidopsis Tic 20 proteins,AtTic20-I and AtTic20-IV. Plant Cell Physiology, 52:469-478.
doi: 10.1093/pcp/pcr010 URL |
[40] |
Hirsch S, Muckel E, Heemeyer F, von Heijne G, Soll J. 1994. A receptor component of the chloroplast protein translocation machinery. Science, 266:1989-1992.
doi: 10.1126/science.7801125 URL |
[41] | Hörmann F, Küchler M, Sveshnikov D, Oppermann U, Li Y, Soll J. 2004. Tic32,an essential component in chloroplast biogenesis. Jounarl of Biochemistry, 279:34756-34762. |
[42] | Inaba T, Li M, Alvarez-Huerta M, Kessler F, Schnell D J. 2003. AtTic 110 functions as a scaffold for coordinating the stromal events of protein import into chloroplasts. Jounarl of Biochemistry, 278:38617-38627. |
[43] |
Inaba T, Alvarez-Huerta M, Li M, Bauer J, Ewers C, Kessler F, Schnell D J. 2005. Arabidopsis Tic110 is essential for the assembly and function of the protein import machinery of plastids. Plant Cell, 17:1482-1496.
doi: 10.1105/tpc.105.030700 URL |
[44] |
Inoue K, Potter D. 2004. The chloroplastic protein translocation channel Toc75 and its paralog OEP80 represent two distinct protein families and are targeted to the chloroplastic outer envelope by different mechanisms. Plant Journal, 39:354-365.
doi: 10.1111/tpj.2004.39.issue-3 URL |
[45] | Inoue H, Li M, Schnell D J. 2013. An essential role for chloroplast heat shock protein 90 (Hsp90C)in protein import into chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 110:3173-3178. |
[46] |
Ivanova Y, Smith M D, Chen K, Schnell D J. 2004. Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids. Molecular Biology of the Cell, 15:3379-3392.
doi: 10.1091/mbc.e03-12-0923 URL |
[47] | Jackson D T, Froehlich J E, Keegstra K. 1998. The hydrophilic domain of Tic110,an inner envelope membrane component of the chloroplastic protein translocation apparatus,faces the stromal compartment. Biological Chemistry, 273:16583-16588. |
[48] |
Jarvis Р, Chen L J, Li H M, Peto C A, Fankhauser C, Chory J. 1998. An Arabidopsis mutant defective in the plastid general protein import apparatus. Science, 282:100-103.
doi: 10.1126/science.282.5386.100 URL |
[49] |
Jarvis P. 2008. Targeting of nucleus-encoded proteins to chloroplasts in plants. The New Phytologist, 179 (2):257-285.
doi: 10.1111/nph.2008.179.issue-2 URL |
[50] |
Kampinga H, Craig E. 2010. The HSP70 chaperone machinery:J proteins as drivers of functional specificity. Nature Reviews Molecular Cell Biology, 11:579-592.
doi: 10.1038/nrm2941 URL |
[51] |
Kasmati A R, Topel M, Patel R, Murtaza G, Jarvis P. 2011. Molecular and genetic analyses of Tic20 homologues in Arabidopsis thaliana chloroplasts. Plant Journal, 66:877-889.
doi: 10.1111/j.1365-313X.2011.04551.x URL |
[52] |
Kessler F, Blobel G, Patel H A, Schnell D J. 1994. Identification of two GTP-binding proteins in the chloroplast protein import machinery. Science, 266:1035-1039.
doi: 10.1126/science.7973656 URL |
[53] | Kessler F, Blobel G. 1996. Interaction of the protein import and folding machineries in the chloroplast. Proceedings of the National Academy of Sciences of the United States of America, 93:7684-7689. |
[54] |
Kessler F, Schnell D J. 2006. The function and diversity of plastid protein import pathways:a multilane GTPase highway into plastids. Traffic, 7:248-257.
pmid: 16497220 |
[55] |
Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, lde T, Nakai M. 2013. Uncovering the protein translocon at the chloroplast inner envelopemembrane. Science, 339:571-574.
doi: 10.1126/science.1229262 URL |
[56] |
Kikuchi S, Hirohashi T, Nakai M. 2006. Characterization of the preprotein translocon at the outer envelope membrane of chloroplasts by blue native PAGE. Plant Cell Physiology, 47:363-371.
doi: 10.1093/pcp/pcj002 URL |
[57] |
Kikuchi S, Oishi M, Hirabayashi Y, Lee D W, Hwang L, Nakai M. 2009. A 1-megadalton translocation complex containing Tic20 and Tic21 mediates chloroplast protein import at the inner envelope membrane. Plant Cell, 21:1781-1797.
doi: 10.1105/tpc.108.063552 pmid: 19531596 |
[58] |
Kouranov A, Schnell D J. 1997. Analysis of the interactions of preproteins with the import machinery over the course of protein import into chloroplasts. The Journal of Cell Biology, 139:1677-1685.
doi: 10.1083/jcb.139.7.1677 URL |
[59] |
Kouranov A, Chen X, Fuks B, Schnell D J. 1998. Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. The Journal of Cell Biology, 143:991-1002.
doi: 10.1083/jcb.143.4.991 URL |
[60] |
Kovacheva S, Bédard J, Patel R, Dudley P, Twell D, Ríos G, Koncz C, Jarvis P. 2005. In vivo studies on the roles of Tic110,Tic40 and Hsp93 during chloroplast protein import. Plant Journal, 41:412-428.
pmid: 15659100 |
[61] |
Kovacs-Bogdan E, Benz J P, Soll J, Bolter B. 2011. Tic 20 forms a channel independent of Tic110 in chloroplasts. BMC Plant Biology, 11:133.
doi: 10.1186/1471-2229-11-133 URL |
[62] | Kovacs-Bogdan E, Soll J, Bolter B. 2010. Protein import into chloroplasts:the Tic complex and its regulation. Biochimica et Biophysica Acta, 1803:740-747. |
[63] |
Kubis S, Patel R, Combe J, Bédard J, Kovacheva S, Lilley K, Biehl A, Leister D, Ríos G, Koncz C, Jarvis P. 2004. Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell, 16:2059-2077.
doi: 10.1105/tpc.104.023309 URL |
[64] |
Kubis S, Baldwin A, Patel R, Razzaq A, Dupree P, Lilley K, Kurth J, Leister D, Jarvis P. 2003. The Arabidopsis ppi1 mutant is specifically defective in the expression,chloroplast import,and accumulation of photosynthetic proteins. Plant Cell, 15:1859-1871.
doi: 10.1105/tpc.012955 URL |
[65] |
Lee D W, Lee S, Lee G J, Lee K H, Kim S, Cheong G W, Hwang I. 2006. Functional characterization of sequence motifs in the transit peptide of Arabidopsis small subunit of rubisco. Plant Physiology, 140:466-483.
doi: 10.1104/pp.105.074575 URL |
[66] |
Lee D W, Kim J K, Lee S, Choi S, Kim S, Hwang I. 2008. Arabidopsis nuclear-encoded plastid transit peptides contain multiple sequence subgroups with distinctive chloroplast-targeting sequence motifs. Plant Cell, 20:1603-1622.
doi: 10.1105/tpc.108.060541 URL |
[67] |
Lee D W, Woo S, Geem K R, Hwang I. 2015. Sequence motifs in transit peptides act as independent functional units and can be transferred to new sequence contexts. Plant Physiol, 169:471-484.
doi: 10.1104/pp.15.00842 URL |
[68] |
Lee D W, Kim S J, Oh Y J, Choi B, Lee J, Hwang I. 2016. Arabidopsis BAG1 functions as a cofactor in Hsc70-mediated proteasomal degradation of unimported plastid proteins. Molecular Plant, 9:1428-1431.
doi: 10.1016/j.molp.2016.06.005 URL |
[69] |
Lee D W, Yoo Y J, Razzak M A, Hwang I. 2018. Prolines in transit peptides are crucial for efficient preprotein translocation into chloroplasts. Plant Physiology, 176:663-677.
doi: 10.1104/pp.17.01553 URL |
[70] |
Lee S, Lee D W, Lee Y, Mayer U, Stierhof Y D, Lee S, Jurgens G, Hwang I. 2009. Heat shock protein cognate 70-4 and an E3 ubiquitin ligase,CHIP,mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Plant Cell, 21:3984-4001.
doi: 10.1105/tpc.109.071548 URL |
[71] |
Li Baozhu, Zhao Xiaoliang, Peng Lei. 2014. Research advances in the development and regulation of plant chloroplasts. Chinese Bulletin of Botany, 49 (3):337-345. (in Chinese)
doi: 10.3724/SP.J.1259.2014.00337 URL |
李保珠, 赵孝亮, 彭雷. 2014. 植物叶绿体发育及调控研究进展. 植物学报, 49:337-345. | |
[72] |
Li H M, Chen L J. 1997. A novel chloroplastic outer membrane-targeting signal that functions at both termini of passenger polypeptides. Journal of Biological Chemistry, 272:10968-10974.
doi: 10.1074/jbc.272.16.10968 URL |
[73] |
Li H M, Chiu C C. 2010. Protein transport into chloroplasts. Annual Review of Plant Biology, 61:157-180.
doi: 10.1146/annurev-arplant-042809-112222 URL |
[74] |
Li H M, Teng Y S. 2013. Transit peptide design and plastid import regulation. Trends in Plant Science, 18:360-366.
doi: 10.1016/j.tplants.2013.04.003 URL |
[75] |
Liu L, McNeilage R T, Shi L X, Theg S M. 2014. ATP requirement for chloroplast protein import is set by the Km for ATP hydrolysis of stromal Hsp70 in Physcomitrella patens. Plant Cell, 26:1246-1255.
doi: 10.1105/tpc.113.121822 URL |
[76] |
Lubeck J, Soll J, Akita M, Nielsen E, Keegstra K. 1996. Topology of IEP110,a component of the chloroplastic protein import machinery present in the inner envelope membrane. EMBO Journal, 15:4230-4238.
doi: 10.1002/embj.1996.15.issue-16 URL |
[77] | Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D. 2002. Evolutionary analysis of Arabidopsis,cyanobacterial,and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 99:12246-12251. |
[78] |
May T, Soll J. 2000. 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell, 12:53-63.
pmid: 10634907 |
[79] |
McFadden G I. 2001. Chloroplast origin and integration. Plant Physiology, 125:50-53.
doi: 10.1104/pp.125.1.50 URL |
[80] |
Morgenthaler J J, Marsden M P F, Price C A. 1975. Factors affecting the separation of photosynthetically competent chloroplasts in gradients of silica sols. Archives of Biochemistry and Biophysics, 168:289-301.
doi: 10.1016/0003-9861(75)90253-2 URL |
[81] | Nakai M. 2018. New perspectives on chloroplast protein import. Plant & Cell Physiology, 59 (6):1111-1119. |
[82] | Nakai M. 2015. The TIC complex uncovered: the alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts. Biochimica et Biophysica Acta, 1847:957-967. |
[83] | Nelson N, Ben-Shem A. 2004. The complex architecture of oxygenic photosynthesis. Nature reviews. Molecular and Cellular Biology, 5:971-982. |
[84] |
Nielsen E, Akita M, Davila-Aponte J, Keegstra K. 1997. Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO Journal, 16:935-946.
pmid: 9118955 |
[85] |
Olsen L J, Keegstra K. 1992. The binding of precursor proteins to chloroplasts requires nucleoside triphosphates in the intermembrane space. The Journal of Biological Chemistry, 267:433-439.
doi: 10.1016/S0021-9258(18)48513-4 URL |
[86] |
Ouyang M, Li X Y, Zhang J, Feng P Q, Pu H, Kong L X, Bai Z C H, Rong L W, Xu X M, Chi W, Wang Q, Chen F, Lu C M, Shen J R, Zhang L X. 2020. Liquid-liquid phase transition drives intra-chloroplast cargo sorting. Cell, 180 (6):1144-1159.
doi: S0092-8674(20)30222-1 pmid: 32169217 |
[87] | Pain D, Blobel G. 1987. Protein import into chloroplasts requires a chloroplast ATPase. Proceedings of the National Academy of Sciences of the United States of America, 84:3288-3292. |
[88] |
Park E, Menetret J F, Gumbart J C, Ludtke S J, Li W, Whynot A, Rapoport T A, Akey C W. 2014. Structure of the SecY channel during initiation of protein translocation. Nature, 506:102-106.
doi: 10.1038/nature12720 URL |
[89] |
Perry S E, Keegstra K. 1994. Envelope membrane proteins that interact with chloroplastic precursor proteins. Plant Cell, 6:93-105.
pmid: 8130644 |
[90] |
Pfeffer S, Dudek J, Schaffer M, Ng B G, Albert S, Plitzko J M, Baumeister W, Zimmermann R, Freeze H H, Engel B D, Förster F. 2017. Dissecting the molecular organization of the translocon-associated protein complex. Nature Communication, 8:14516.
doi: 10.1038/ncomms14516 URL |
[91] |
Qbadou S, Becker T, Mirus O, Tews L, Soll J, Schleiff E. 2006. The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO Journal, 25:1836-1847.
doi: 10.1038/sj.emboj.7601091 URL |
[92] | Rensink W A, Schnell D J, Weisbeek P J. 2000. The transit sequence of ferredoxin contains different domains for translocation across the outer and inner membrane of the chloroplast envelope. Journal of Cell Biology, 275:10265-10271. |
[93] |
Reumann S, Inoue K, Keegstra K. 2005. Evolution of the general protein import pathway of plastids. Molecular Membrane Biology, 22:73-86.
doi: 10.1080/09687860500041916 URL |
[94] |
Sauer R T, Baker T A. 2011. AAA+ proteases:ATP-fueled machines of protein destruction. Annual Review of Biochemistry, 80:587-612.
doi: 10.1146/annurev-biochem-060408-172623 URL |
[95] |
Schirmer E C, Glover J R, Singer M A, Lindquist S. 1996. HSP100/Clp proteins:a common mechanism explains diverse functions. Trends in Biochemical Sciences, 21:289-296.
pmid: 8772382 |
[96] |
Schleiff E, Soll J, Küchler M, Kuhlbrandt W, Harrer R. 2003. Characterization of the translocon of the outer envelope of chloroplasts. Journal of Cell Biology, 160:541-551.
pmid: 12591914 |
[97] |
Schnell D J, Blobel G, Keegstra K, Kessler F, Ko K, Soll J. 1997. A consensus nomenclature for the protein-import components of the chloroplast envelope. Trends in Cell Biology, 7:303-304.
doi: 10.1016/S0962-8924(97)01111-2 URL |
[98] |
Schnell D J, Kessler F, Blobel G. 1994. Isolation of components of the chloroplast protein import machinery. Science, 266:1007-1012.
doi: 10.1126/science.7973649 URL |
[99] |
Seedorf M, Waegemann K, Soll J. 1995. A constituent of the chloroplast import complex represents a new type of GTP-binding protein. Plant Journal, 7:401-411.
pmid: 7757113 |
[100] | Shi L X, Theg S M. 2013. The chloroplast protein import system:from algae to trees. Biochimica et Biophysica Acta, 1833:314-331. |
[101] | Smith M D, Rounds C M, Wang F, Chen K, Afitlhile M, Schnell D J. 2004. AtToc 159 is a selective transit peptide receptor for the import of nucleus-encoded chloroplast proteins. Journal of Cell Biology, 165:323-334. |
[102] |
Sohrt K, Soll J. 2000. Toc64,a new component of the protein translocon of chloroplasts. Journal of Cell Biology, 148:1213-1221.
pmid: 10725334 |
[103] |
Sokolenko A, Lerbs-Mache S, Altschmied L, Herrmann R G. 1998. Clp protease complexes and their diversity in chloroplasts. Planta, 207:286-295.
pmid: 9951729 |
[104] | Soll J, Schleiff E. 2004. Protein import into chloroplasts. Molecular and Cellular Biology, 5:198-208. |
[105] | Stahl T, Glockmann C, Soll J, Heins L. 1999. Tic40,a new“old”subunit of the chloroplast protein import translocon. Biological Chemistry, 274:37467-37472. |
[106] |
Stengel A, Benz P, Balsera M, Soll J, Bölter B. 2008. Tic62-redox-regulated translocon composition and dynamics. Journal of Biological Chemistry, 283:6656-6667.
doi: 10.1074/jbc.M706719200 URL |
[107] |
Su P H, Li H M. 2010. Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. Plant Cell, 22:1516-1531.
doi: 10.1105/tpc.109.071415 URL |
[108] | Sveshnikova N, Soll J, Schleif E. 2000. Toc34 is a preprotein receptor regulated by GTP and phosphorylation. Proceedings of the National Academy of Sciences, 97:4973-4978. |
[109] |
Teng Y S, Chan P T, Li H M. 2012. Differential age-dependent import regulation by signal peptides. PLoS Biology, 10:e1001416.
doi: 10.1371/journal.pbio.1001416 URL |
[110] |
Teng Y S, Su Y S, Chen L J, Lee Y J, Hwang L, Li H M. 2006. Tic 21 is an essential translocon component for protein translocation across the chloroplast inner envelope membrane. Plant Cell, 18:2247-2257.
doi: 10.1105/tpc.106.044305 URL |
[111] |
Theg S M, Bauerle C, Olsen L J, Selman B R, Keegstra K. 1989. Internal ATP is the only energy requirement for the translocation of precursor proteins across chloroplastic membranes. Journal of Biological Chemistry, 264:6730-6736.
doi: 10.1016/S0021-9258(18)83490-1 URL |
[112] | Timmis J N, Ayliffe M A, Huang C Y, Martin W. 2004. Endosymbiotic gene transfer:organelle genomes forge eukaryotic chromosomes. Genetics, 5:123-135. |
[113] |
Tranel P J, Keegstra K. 1996. A novel,bipartite transit peptide targets OEP 75 to the outer membrane of the chloroplastic envelope. Plant Cell, 8:2093-2104.
pmid: 8953773 |
[114] | Tranel P J, Froehlich J, Goyal A, Keegstra K. 1995. A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway. EMBO Journal, 1:2436-2446. |
[115] | Vothknecht U C, Soll J. 2000. Protein import:the hitchhikers guide into chloroplasts. Biological Chemistry, 381:887-897. |
[116] |
Waegemann K, Soll J. 1991. Characterization of the protein import apparatus in isolated outer envelopes of chloroplasts. Plant Journal, 1:149-158.
doi: 10.1111/tpj.1991.1.issue-2 URL |
[117] |
Wu C, Seibert F S, Ko K. 1994. Identification of chloroplast envelope proteins in close physical proximity to a partially translocated chimeric precursor protein. Journal of Biological Chemistry, 269:32264-32271.
doi: 10.1016/S0021-9258(18)31630-2 URL |
[118] |
Yan J M, Campbell J H, Glick B R, Smith M D, Liang Y. 2014. Molecular characterization and expression analysis of chloroplast protein import components in tomato (Solanum lycopersicum). PLoS ONE, 9 (4):e95088.
doi: 10.1371/journal.pone.0095088 URL |
[119] |
Yu T S, Li H. 2001. Chloroplast protein translocon components at Toc159 and at Toc33 are not essential for chloroplast biogenesis in guard cells and root cells. Plant Physiology, 127:90-96.
doi: 10.1104/pp.127.1.90 URL |
[1] | 丁志杰, 包金波, 柔鲜古丽, 朱甜甜, 李雪丽, 苗浩宇, 田新民. 新疆野苹果与‘元帅’‘金冠’的叶绿体基因组比对研究[J]. 园艺学报, 2022, 49(9): 1977-1990. |
[2] | 蒋思思, 袁军, 周文君, 钮根花, 周俊琴. 薄壳山核桃(Carya illinoinensis)叶绿体基因组及其特征分析[J]. 园艺学报, 2022, 49(8): 1772-1784. |
[3] | 王莹, 秦阳阳, 曾婷, 廖平, 张伟, 周彦, 周常勇. 柑橘黄脉病毒侵染对柠檬光合特性和叶绿体超微结构的影响[J]. 园艺学报, 2022, 49(4): 861-867. |
[4] | 汤晨茜, 仇志欣, 檀超, 钱羽铭, 陈昕. 陕甘花楸叶绿体基因组及其与爪瓣花楸的系统关系[J]. 园艺学报, 2022, 49(3): 641-654. |
[5] | 王晋, 王新宇, 沈渊博, 张清花, 娄茜棋, 张世杰, 赵攀, 梁燕. 番茄果实叶绿体发育调控及其应用的研究进展[J]. 园艺学报, 2022, 49(12): 2669-2682. |
[6] | 宋芸, 贾孟君, 曹亚萍, 李政, 贺嘉欣, 王勇飞, 张鑫瑞, 乔永刚. 连翘叶绿体基因组特征分析[J]. 园艺学报, 2022, 49(1): 187-199. |
[7] | 朱俊飞, 李鑫, 董康挺, 唐志菲, 边秀举, 王丽宏, 李会彬, 孙鑫博. 转匍匐翦股颖AsHSP26.8a拟南芥株系的光合作用研究[J]. 园艺学报, 2021, 48(8): 1619-1625. |
[8] | 李泳潭,张 军*,黄亚丽,范建敏,张益文,左力辉. 杜梨叶绿体基因组分析[J]. 园艺学报, 2020, 47(6): 1021-1032. |
[9] | 高 源,王大江,王 昆*,丛佩华*,张彩霞,李连文,朴继成. 基于叶绿体DNA分析的楸子种质遗传多样性研究[J]. 园艺学报, 2020, 47(5): 853-863. |
[10] | 李 倩1,郭其强2,高 超2,李慧娥1,*. 贵州威宁红花油茶的叶绿体基因组特征分析[J]. 园艺学报, 2020, 47(4): 779-787. |
[11] | 郑 祎, 张 卉, 王钦美, 高 悦, 张志宏, 孙玉新. 大花君子兰叶绿体基因组及其特征[J]. 园艺学报, 2020, 47(12): 2439-2450. |
[12] | 杨亚蒙1,焦 健2,樊秀彩1,张 颖1,姜建福1,李 民1,刘崇怀1,*. 桑叶葡萄叶绿体基因组及其特征分析[J]. 园艺学报, 2019, 46(4): 635-648. |
[13] | 王海波,王 帅,王孝娣,史祥宾,王志强,刘凤之*. 葡萄叶片衰老过程中不同光质对其光合和叶绿体超微结构的影响[J]. 园艺学报, 2019, 46(2): 205-214. |
[14] | 党江波1,宋 琴1,李 彩2,郭启高1,梁国鲁1,*. 园艺植物中三倍体的应用现状及育种前景分析[J]. 园艺学报, 2018, 45(9): 1813-1830. |
[15] | 芮文婧1,王晓敏1,2,3,*,张倩男1,胡学义3,胡新华4,付金军4,高艳明1,2,3,李建设1,2,3,*. 番茄353份种质资源表型性状遗传多样性分析[J]. 园艺学报, 2018, 45(3): 561-570. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司