[1] |
Bartel D P. 2004. MicroRNAs:genomics,biogenesis,mechanism,and function. Cell, 116 (2):281-297.
pmid: 14744438
|
[2] |
Feng Lei, Xia Rui, Liu Yuanlong. 2019. Comprehensive characterization of miRNA and PHAS loci in the diploid strawberry( Fragaria vesca)genome. Horticultural Plant Journal, 5 (6):255-267.
doi: 10.1016/j.hpj.2019.11.004
|
[3] |
Gou J Y, Felippes F F, Liu C J, Weigel D, Wang J W. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell, 23 (4):1512-1522.
doi: 10.1105/tpc.111.084525
URL
|
[4] |
Khraiwesh B, Zhu J K, Zhu J. 2012. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta, 1819 (2):137-148.
|
[5] |
Liu X, Zhang X, Sun B, Hao L, Liu C, Zhang D, Xie X. 2019. Genome-wide identification and comparative analysis of drought-related microRNAs in two maize inbred lines with contrasting drought tolerance by deep sequencing. PLoS ONE, 14 (7):e0219176.
doi: 10.1371/journal.pone.0219176
URL
|
[6] |
Martin R C, Liu P P, Goloviznina N A, Nonogaki H. 2010. microRNA,seeds,and Darwin?:diverse function of miRNA in seed biology and plant responses to stress. Journal of Experimental Botany, 61 (9):2229-2234.
doi: 10.1093/jxb/erq063
pmid: 20335408
|
[7] |
Masahito S, Tomotsugu K, Nobutaka M, Masaru O T. 2009. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant & Cell Physiology, 50 (12):2133-2145.
|
[8] |
Osmont K S, Sibout R, Hardtke C S. 2007. Hidden branches:developments in root system architecture. Annu Rev Plant Biol, 58:93-113.
pmid: 17177637
|
[9] |
Ruimin G, Ying W, Gruber M Y, Hannoufa A. 2018. miR156/SPL 10 modulates lateral root development,branching and leaf morphology in Arabidopsis by silencing AGAMOUS-LIKE 79. Frontiers in Plant Science, 8:2226.
doi: 10.3389/fpls.2017.02226
URL
|
[10] |
Wang X, Yu G, Zhao J, Cui N, Yu Y, Fan H. 2019. Functional identification of Corynespora cassiicola-responsive miRNAs and their targets in cucumber. Frontiers in Plant Science, 10:668.
doi: 10.3389/fpls.2019.00668
URL
|
[11] |
Wu G, Park M Y, Conway S R, Wang J W, Weigel D, Poethig R S. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 138 (4):750-759.
doi: 10.1016/j.cell.2009.06.031
URL
|
[12] |
Xu M, Hu T, Zhao J, Park M, Earley K, Wu G, Yang L, Poethig R. 2016. Developmental functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE( SPL)genes in Arabidopsis thaliana. PLoS Genetics, 12 (8):e1006263.
doi: 10.1371/journal.pgen.1006263
URL
|
[13] |
Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G. 2012. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. The Plant Cell, 24 (2):415-427.
doi: 10.1105/tpc.111.094144
URL
|
[14] |
Yu N, Cai W, Wang S, Wang S, Shan C, Wang L, Chen X. 2010. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. The Plant Cell, 22 (7):2322-2335.
doi: 10.1105/tpc.109.072579
URL
|
[15] |
Yu N, Niu Q, Ng K, Chua N. 2015. The role of miR156/SPLs modules in Arabidopsis lateral root development. The Plant Journal, 83 (4):673-685.
doi: 10.1111/tpj.12919
pmid: 26096676
|
[16] |
Zhang Ning, Si Huai-jun, Li Xue-cai, Wang Di. 2004. An efficient transformation system of potato mediated by Agrobacterium tumefaciens. Chinese Potato Journal,(3):132-135. (in Chinese)
|
|
张宁, 司怀军, 李学才, 王蒂. 2004. 根癌农杆菌介导的马铃薯高效遗传转化体系的研究. 中国马铃薯,(3):132-135.
|
[17] |
Zhou T, Wu B, Liu X, Liu S, Wang R, Chen X, Fan Z. 2019. Analyses of miRNA functions in maize using a newly developed ZMBJ-CMV-2b N81- STTM vector. Frontiers in Plant Science, 10:1277.
doi: 10.3389/fpls.2019.01277
URL
|