园艺学报 ›› 2021, Vol. 48 ›› Issue (3): 487-504.doi: 10.16420/j.issn.0513-353x.2020-0438
鱼尚奇1,2,4, 张锐2,3,4,*(), 郭众仲1,2, 宋岩2,3, 付嘉智2,3, 武鹏雨2,3, 马治浩3
收稿日期:
2020-11-16
出版日期:
2021-03-25
发布日期:
2021-04-02
通讯作者:
张锐
E-mail:zhrgsh@163.com
基金资助:
YU Shangqi1,2,4, ZHANG Rui2,3,4,*(), GUO Zhongzhong1,2, SONG Yan2,3, FU Jiazhi2,3, WU Pengyu2,3, MA Zhihao3
Received:
2020-11-16
Online:
2021-03-25
Published:
2021-04-02
Contact:
ZHANG Rui
E-mail:zhrgsh@163.com
摘要:
为研究核桃内果皮硬化主要涉及的生物过程及生长素在硬化过程中的作用,以‘新露’核桃为研究试材,形态学观察及木质素沉积分析表明,内果皮硬化与其表面维管束分布具有密切关系,靠近维管组织附近的内果皮硬化先于远离维管的区域。IAA含量在内果皮硬化过程中呈V字形变化;IAA在5个时期平均含量最高(16.467 ng·g-1),约为IBA、ICA和ME-IAA总和的6.8倍。木质素合成中间代谢物分析显示,木质素单体对香豆醇在内果皮硬化区的含量是未硬化区的16倍,芥子醇在内果皮硬化区的含量极高,但在未硬化区未检测到存在,且随着硬化进程这两种物质在内果皮硬化区的含量总体呈上升趋势。转录组与蛋白组关联分析获得了内果皮硬化相关的差异表达基因369条,在转录水平和蛋白质水平同时存在差异的基因关联结果较好,相关系数最低为0.48124;但差异表达基因整体关联结果较差,相关系数最高为0.22112。利用Metascape构建了差异表达基因显著富集的前20个生物学功能之间的关系网络,发现内果皮硬化主要涉及苯丙烷类代谢、氧胁迫响应、细胞壁组织与生物合成和氨基糖与核酸糖代谢4个生物过程。荧光定量结果表明,AUX/IAA基因JrIAA9、JrIAA16和JrIAA27的表达量变化趋势与IAA含量的基本一致。由此推测生长素IAA在内果皮硬化过程中发挥着重要调控作用,这对后续开展露仁发生机理研究具有重要参考意义。
中图分类号:
鱼尚奇, 张锐, 郭众仲, 宋岩, 付嘉智, 武鹏雨, 马治浩. 核桃内果皮硬化期生长素动态变化及差异表达基因分析[J]. 园艺学报, 2021, 48(3): 487-504.
YU Shangqi, ZHANG Rui, GUO Zhongzhong, SONG Yan, FU Jiazhi, WU Pengyu, MA Zhihao. Dynamic Changes of Auxin and Analysis of Differentially Expressed Genes in Walnut Endocarp During Hardening[J]. Acta Horticulturae Sinica, 2021, 48(3): 487-504.
引物名称 | 引物序列(5′-3′) | 长度/bp | 退火温度/℃ |
---|---|---|---|
Primer name | Primer sequence | Length | Annealing temperature |
JrIAA9-F | TCTGGGTTCATCAGCAGCACG | 21 | 59.52 |
JrIAA9-R | TGCGATGCTGTCCTCAAGGT | 20 | 57.45 |
JrIAA16-F | AGTGCTTGACCGCACAGGTT | 20 | 57.45 |
JrIAA16-R | TGCTTGTAGGCGATGTGCCA | 20 | 57.45 |
JrIAA27-F | GCTAGCACCAAGGGCAATGGA | 21 | 59.52 |
JrIAA27-R | AGGGAAAGGGTGGGGCCTAAT | 21 | 59.52 |
JrPAL1-F | ACAACCGGCTTCCGGTACTCCT | 22 | 61.40 |
JrPAL1-R | AACGGCAACGGCAACGGCAA | 20 | 59.50 |
Jr4CL1-F | ACTGTGCGTATTGCCGCTGT | 20 | 59.52 |
Jr4CL1-R | TCGCCAAGACAATCGGTGGA | 20 | 57.45 |
JrC4H1-F | GTTAGCCCTGTTTGTAGCCGC | 21 | 57.45 |
JrC4H1-R | TTGGCCATGTCGGTGAGGTT | 20 | 57.45 |
JrC3H1-F | TTGCACGTGATCCGGCAGT | 19 | 57.32 |
JrC3H1-R | TGGTGCAGTAGGTGAGCAAGC | 21 | 59.52 |
JrF5H1-F | TTCACAGGCTTGCCGATGCT | 20 | 57.45 |
JrF5H1-R | ACATGGCCTTCGCTCACTACG | 21 | 59.52 |
JrCAD1-F | ACAACACGACCTCTGCTTGTTA | 22 | 55.81 |
JrCAD1-R | CGTTGTGGATGTTGCTGGAAGT | 22 | 57.67 |
JrCCR1-F | TTCTGCAGCGCGGTTACACT | 20 | 57.45 |
JrCCR1-R | TCACAGCCCTGAATAGCAGCA | 21 | 57.57 |
JrCOMT1-F | TCTTCTCAGATCCTCGCCCGTGTC | 24 | 62.98 |
JrCOMT1-R | TTCTCTCGGAGTCGGAGTCGTTGG | 24 | 62.98 |
JrCCOAOMT1-F | AGCGGTATTCGGGGGTTTGGT | 21 | 59.52 |
JrCCOAOMT1-R | CGTCGTGGCGCCTCCTGATG | 20 | 63.60 |
JrPER1-F | TGCTTCGCTGCTGCTGGACTCAA | 23 | 61.33 |
JrPER1-R | TCCCACCGCAACAATGCCATCTCT | 24 | 61.28 |
JrLACC1-F | AGCTGACAGTTGTGGGTGCGGATG | 24 | 62.98 |
JrLACC1-R | AGAATGGCGGTGGTGGTGGTGTTG | 24 | 62.98 |
JrLTPG1-F | TGCGGTGGTGTTGGTCGCAA | 20 | 59.50 |
JrLTPG1-R | AGCAACTGCTGGGTGCTTCG | 20 | 59.50 |
表1 qRT-PCR 定量分析引物
Table 1 The primers of qRT-PCR
引物名称 | 引物序列(5′-3′) | 长度/bp | 退火温度/℃ |
---|---|---|---|
Primer name | Primer sequence | Length | Annealing temperature |
JrIAA9-F | TCTGGGTTCATCAGCAGCACG | 21 | 59.52 |
JrIAA9-R | TGCGATGCTGTCCTCAAGGT | 20 | 57.45 |
JrIAA16-F | AGTGCTTGACCGCACAGGTT | 20 | 57.45 |
JrIAA16-R | TGCTTGTAGGCGATGTGCCA | 20 | 57.45 |
JrIAA27-F | GCTAGCACCAAGGGCAATGGA | 21 | 59.52 |
JrIAA27-R | AGGGAAAGGGTGGGGCCTAAT | 21 | 59.52 |
JrPAL1-F | ACAACCGGCTTCCGGTACTCCT | 22 | 61.40 |
JrPAL1-R | AACGGCAACGGCAACGGCAA | 20 | 59.50 |
Jr4CL1-F | ACTGTGCGTATTGCCGCTGT | 20 | 59.52 |
Jr4CL1-R | TCGCCAAGACAATCGGTGGA | 20 | 57.45 |
JrC4H1-F | GTTAGCCCTGTTTGTAGCCGC | 21 | 57.45 |
JrC4H1-R | TTGGCCATGTCGGTGAGGTT | 20 | 57.45 |
JrC3H1-F | TTGCACGTGATCCGGCAGT | 19 | 57.32 |
JrC3H1-R | TGGTGCAGTAGGTGAGCAAGC | 21 | 59.52 |
JrF5H1-F | TTCACAGGCTTGCCGATGCT | 20 | 57.45 |
JrF5H1-R | ACATGGCCTTCGCTCACTACG | 21 | 59.52 |
JrCAD1-F | ACAACACGACCTCTGCTTGTTA | 22 | 55.81 |
JrCAD1-R | CGTTGTGGATGTTGCTGGAAGT | 22 | 57.67 |
JrCCR1-F | TTCTGCAGCGCGGTTACACT | 20 | 57.45 |
JrCCR1-R | TCACAGCCCTGAATAGCAGCA | 21 | 57.57 |
JrCOMT1-F | TCTTCTCAGATCCTCGCCCGTGTC | 24 | 62.98 |
JrCOMT1-R | TTCTCTCGGAGTCGGAGTCGTTGG | 24 | 62.98 |
JrCCOAOMT1-F | AGCGGTATTCGGGGGTTTGGT | 21 | 59.52 |
JrCCOAOMT1-R | CGTCGTGGCGCCTCCTGATG | 20 | 63.60 |
JrPER1-F | TGCTTCGCTGCTGCTGGACTCAA | 23 | 61.33 |
JrPER1-R | TCCCACCGCAACAATGCCATCTCT | 24 | 61.28 |
JrLACC1-F | AGCTGACAGTTGTGGGTGCGGATG | 24 | 62.98 |
JrLACC1-R | AGAATGGCGGTGGTGGTGGTGTTG | 24 | 62.98 |
JrLTPG1-F | TGCGGTGGTGTTGGTCGCAA | 20 | 59.50 |
JrLTPG1-R | AGCAACTGCTGGGTGCTTCG | 20 | 59.50 |
图1 盛花后不同天数的核桃内果皮发育的动态变化 A ~ D:‘纸皮’核桃盛花后37、44、66和80 d内果皮木质素的积累变化。E ~ J:‘新露’核桃盛花后50、57、64、71、78和85 d内果皮木质素的积累变化。K ~ L:‘新露’核桃成熟前内果皮形态。M ~ P:‘新露’核桃子房壁细胞形态。Q ~ S:‘新露’核桃成熟后内果皮形态。Te:种皮;Co:子叶;Ex:外果皮;Me:中果皮;En:内果皮;Pu:未硬化区;Sc:硬化区;Va:维管束;Iwo:子房内壁;Mwo:子房中壁;Owo:子房外壁。
Fig. 1 Dynamic changes of endocarp development of walnut in different days after florescence A-D:Changes of lignin accumulation in endocarp of the‘Zhipi’walnut during 37,44,66 and 80 days after florescence. E-J:Changes of lignin accumulation in endocarp of the‘Xinlu’walnut during 50,57,64,71,78 and 85 days after florescence. K-L:The form of endocarp of the‘Xinlu’walnut before ripening. M-P:The cell form of ovary wall of the‘Xinlu’walnut. Q-S:The form of endocarp of the‘Xinlu’walnut after ripening. Te:Testa;Co:Cotyledon;Ex:Exocarp;Me:Mesocarp;En:Endocarp;Pu:Pulpy;Sc:Sclerotic;Va:Vascular bundle;Iwo:Inner wall of ovary;Mwo:Middle wall of ovary;Owo:Outer wall of ovary.
图2 ‘新露’核桃内果皮内源激素含量 小写字母表示同一种内源生长素在不同时期在5%水平差异显著。
Fig. 2 Endogenous hormone levels in endocarp of‘Xinlu’walnut Lower case letters indicate that the same endogenous auxin has significant difference at the 5% level.
图3 木质素代谢通路和木质素合成中间代谢产物变化示意图 示意图中X代表其他物质,箭头代表代谢物生成的上下游关系。A:肉桂酸;B:L-苯丙氨酸;C:4-香豆酸;D:咖啡酸;E:阿魏酸;F:芥子酸;G:香豆醛; H:咖啡醛;I:松柏醛;J:芥子醛;K:对香豆醇;L:咖啡醇;M:松柏醇;N:芥子醇。“*”表示同一时期内果皮两个区域代谢物含量差异显著,“**”表示同一时期内果皮两个区域代谢物含量差异极显著。下同。
Fig. 3 Changes of intermediate metabolites of lignin synthesis and schematic diagram of the lignin metabolism pathway X is for something else,and the arrows represent the upstream and downstream relationships of metabolite production.A:Cinnamic acid;B:L-Phenylalanine;C:p-Coumaric acid;D:Caffeic acid;E:Ferulic acid;F:Sinapic acid;G:p-Coumaraldehyde;H:Caffeyl aldehyde;I:4-Hydroxy-3-methoxycinnamaldehyde;J:Sinapinaldehyde; K:p-Coumaryl alcohol;L:Caffeyl alcohol;M:Coniferyl alcohol;N:Sinapyl alcohol; “*”means that the content of metabolite is significantly different between the two regions of endocarp during the same period, and“**”means that the content of metabolite is extremely significanly different between the two regions of endocarp during the same period. The same below.
比对组 Group name | 关联水平 Type of correlations | 蛋白质数量 Number of proteins | 基因数量 Number of genes | 关联数量 Number of correlations |
---|---|---|---|---|
57 d-VS-71 d | 鉴定Identification | 6 776 | 75 654 | 6 751 |
定量Quantitative | 6 765 | 75 654 | 6 740 | |
差异表达Differentially expressed | 545 | 8 339 | 110 | |
57 d-VS-85 d | 鉴定 Identification | 6 776 | 76 053 | 6 756 |
定量Quantitative | 6 770 | 76 053 | 6 750 | |
差异表达Differentially expressed | 1 260 | 9 985 | 300 |
表2 转录组与蛋白组关联统计
Table 2 Association statistics of transcriptome and proteome
比对组 Group name | 关联水平 Type of correlations | 蛋白质数量 Number of proteins | 基因数量 Number of genes | 关联数量 Number of correlations |
---|---|---|---|---|
57 d-VS-71 d | 鉴定Identification | 6 776 | 75 654 | 6 751 |
定量Quantitative | 6 765 | 75 654 | 6 740 | |
差异表达Differentially expressed | 545 | 8 339 | 110 | |
57 d-VS-85 d | 鉴定 Identification | 6 776 | 76 053 | 6 756 |
定量Quantitative | 6 770 | 76 053 | 6 750 | |
差异表达Differentially expressed | 1 260 | 9 985 | 300 |
图4 比对组(57 d-VS-71 d和57 d-VS-85 d)差异表达基因富集分析 条形图代表差异基因富集条目,颜色代表P值。P值越小表示富集的条目越可靠,即-Log10(P)值越大表示富集的条目越可靠。A1:M00138黄酮和花葵素的生物合成;A2:ath00520:氨基糖和核苷酸糖代谢;A3:GO:0044036:细胞壁大分子物质代谢过程;A4:GO:0009408:对热的响应;A5:GO:0019751:多元醇代谢过程;A6:GO:0017144:药物代谢过程;A7:GO:0016052:碳水化合物分解过程;A8:GO:0006979:对氧化应激的响应;A9:GO:0010038:对金属离子的响应;B1:ath00940:苯丙烷类生物合成;B2:GO:0046686:对镉离子的响应;B3:GO:0017144:药物代谢过程;B4:ath00360:苯丙氨酸代谢;B5:GO:0009266:对温度刺激的响应;B6:GO:0071554:细胞壁组织或生物发生;B7:ath01230:氨基酸的生物合成;B8:GO:0006826:铁离子转运;B9:GO:0051186:辅助因子代谢过程;B10:GO:0009226:核苷酸糖生物合成过程;B11:GO:0009636:对有毒物质的响应;B12:ath00500:淀粉和蔗糖代谢;B13:GO:0006575:细胞修饰氨基酸代谢过程;B14:GO:0009072:芳香族氨基酸家族代谢过程;B15:GO:0006457:蛋白质折叠;B16:M00002:糖酵解相关;B17:ath00960:莨菪烷,哌啶和吡啶生物合成;B18:GO:0042133:神经递质代谢过程;B19:GO:0018298:蛋白质-嗜铬细胞连锁;B20:GO:0010431:种子成熟。
Fig. 4 Enrichment analysis of differentially expressed genes in comparison group(57 d-VS-71 d and 57 d-VS-85 d) Bar graph of enriched terms across input gene lists, colored by p-values. The smaller the p value is,the more reliable the enriched item is,i.e. the larger the -log10 (p) value is, the more reliable the enriched item is. A1:M00138:Flavonoid biosynthesis, naringenin => pelargonidin;A2:ath00520:Amino sugar and nucleotide sugar metabolism;A3:GO:0044036:Cell wall macromolecule metabolic process;A4:GO:0009408:Response to heat;A5:GO:0019751:Polyol metabolic process;A6:GO:0017144:Drug metabolic process;A7:GO:0016052:Carbohydrate catabolic process;A8:GO:0006979:Response to oxidative stress;A9:GO:0010038:Response to metal ion;B1:ath00940:Phenylpropanoid biosynthesis;B2:GO:0046686:Response to cadmium ion;B3:GO:0017144:Drug metabolic process;B4:ath00360:Phenylalanine metabolism;B5:GO:0009266:Response to temperature stimulus;B6:GO:0071554:Cell wall organization or biogenesis;B7:ath01230:Biosynthesis of amino acids;B8:GO:0006826:Iron ion transport;B9:GO:0051186:Cofactor metabolic process;B10:GO:0009226:Nucleotide-sugar biosynthetic process;B11:GO:0009636:Response to toxic substance;B12:ath00500:Starch and sucrose metabolism;B13:GO:0006575:Cellular modified amino acid metabolic process;B14:GO:0009072:Aromatic amino acid family metabolic process;B15:GO:0006457:Protein folding;B16:M00002:Glycolysis, core module involving three-carbon compounds;B17:ath00960:Tropane, piperidine and pyridine alkaloid biosynthesis;B18:GO:0042133:Neurotransmitter metabolic process;B19:GO:0018298:Protein-chromophore linkage. B20:GO:0010431:Seed maturation.
比对组 | 亚组类型 | 斯皮尔曼相关系数(R) |
---|---|---|
Group name | Type of subgroup | Spearman correlation coefficient |
57 d-VS-71 d | DEPs_DEGs | 0.481 24 |
DEPs_DEGs_Same Trend | 0.802 57 | |
DEPs_DEGs_Opposite | -0.821 57 | |
DEPs_NDEGs | 0.020 74 | |
NDEPs_DEGs | 0.123 15 | |
NDEPs_NDEGs | 0.045 00 | |
ALL | 0.073 99 | |
57 d-VS-85 d | DEPs_DEGs | 0.700 65 |
DEPs_DEGs_Same Trend | 0.833 35 | |
DEPs_DEGs_Opposite | -0.573 34 | |
DEPs_NDEGs | 0.225 70 | |
NDEPs_DEGs | 0.356 13 | |
NDEPs_NDEGs | 0.085 44 | |
ALL | 0.221 12 |
表 3 差异表达基因mRNA表达量和蛋白表达量之间的相关系数
Table 3 Correlation coefficient between mRNA expression and protein expression of the differentially expressed genes
比对组 | 亚组类型 | 斯皮尔曼相关系数(R) |
---|---|---|
Group name | Type of subgroup | Spearman correlation coefficient |
57 d-VS-71 d | DEPs_DEGs | 0.481 24 |
DEPs_DEGs_Same Trend | 0.802 57 | |
DEPs_DEGs_Opposite | -0.821 57 | |
DEPs_NDEGs | 0.020 74 | |
NDEPs_DEGs | 0.123 15 | |
NDEPs_NDEGs | 0.045 00 | |
ALL | 0.073 99 | |
57 d-VS-85 d | DEPs_DEGs | 0.700 65 |
DEPs_DEGs_Same Trend | 0.833 35 | |
DEPs_DEGs_Opposite | -0.573 34 | |
DEPs_NDEGs | 0.225 70 | |
NDEPs_DEGs | 0.356 13 | |
NDEPs_NDEGs | 0.085 44 | |
ALL | 0.221 12 |
图6 核桃内果皮硬化相关功能网路 图为显著富集排名前20个生物学功能簇的条目间的可视化关系网络图。为了作图方便,每个生物学功能簇中选取具有最佳P-value的条目,但条目数不超过15个。在20个生物学功能簇中,总条目数不超过250个。每一个节点代表一个条目,条目之间的成员相似度 > 0.3时,条目之间用线连接在一起。Pic1中不同颜色代表不同的生物学功能簇,同一生物学功能簇中的条目具有相同颜色。生物学功能簇的名称为在一个生物学功能簇中用具有最显著统计意义的条目的名称。Pic2中不同颜色代表条目的 P-value的转换值[Log10(P)],颜色越深表示条目显著性越高。A:苯丙烷类代谢过程;B:对氧化应激的响应;C:细胞壁组织或生物发生;D:对金属离子的响应;E:对温度刺激的响应;F:黄酮类化合物生物合成;G:黄酮及柚皮素合成;H:半纤维素代谢过程;I:氨基糖和核苷酸糖代谢;J:小分子物质生物合成过程;K:对有毒物质的响应;L:苯丙烷类分解代谢过程;M:S-腺苷甲硫氨酸生物合成过程;N:蛋白质的折叠;O:对缺水的响应;P:香豆素生物合成过程;Q:对紫外线的响应;R:淀粉和蔗糖代谢;S:细胞对有毒物质的响应;T:小分子物质分解过程。
Fig. 6 Network of the enriched function for hardening of walnut endocarp The picture shows the visual relationship network among the Terms of the clusters that were enriched the top 20 significantly. For the convenience of drawing,selected the Terms with the best P-value in each cluster,but the number of Term does not exceed 15. In 20 clusters,the total number of Term does not exceed 250. Each node represents a Term. When the member similarity between Term > 0.3,the Term is connected by edges. Different colors in Pic1 represent different clusters,and Term in the same cluster has the same color. The name of the cluster is the name of the term with the most significant statistical significance in a cluster. Different colors in Pic2 represent the conversion value of Term's P-value[Log10(P)]. The darker the color,the higher the significance of Term. A:Phenylpropanoid metabolic process;B:Response to oxidative stress;C:Cell wall organization or biogenesis;D:Response to metal ion;E:Response to temperature stimulus;F:Flavonoid biosynthesis;G:Flavanone biosynthesis,phenylalanine => naringenin;H:Hemicellulose metabolic process;I:Amino sugar and nucleotide sugar metabolism;J:Small molecule biosynthetic process;K:Response to toxic substance;L:Phenylpropanoid catabolic process;M:S-adenosylmethionine biosynthetic process;N:Protein folding;O:Response to water deprivation;P:Coumarin biosynthetic process;Q:Response to UV;R:Starch and sucrose metabolism;S:Cellular response to toxic substance;T:Small molecule catabolic process.
图8 核桃内果皮硬化期3个生长素相关基因的表达 不同大写字母表示同一基因在不同时期在1%水平差异显著。
Fig. 8 Expression of three auxin related genes in walnut endocarp at sclerosis stage Different capital indicates there are significant difference in same gene at the 1% level in different periods.
图9 木质素合成途径相关的12个基因的表达 “*”表示同一时期内果皮两个区域基因表达差异显著,“**”表示同一时期内果皮两个区域基因表达差异极显著。
Fig. 9 Expression of 12 genes related to lignin synthesis pathway “*”means that the expression of gene is significant difference between the two regions of endocarp during the same period,and“**”means that the expression of gene is extremely significant difference between the two regions of endocarp during the same period.
[1] | Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. 2009. MEME SUITE:tools for motif discovery and searching. Nucleic Acids Res, 37 (2):202-208. |
[2] | Bailey T L, Williams N, Misleh C, Li W W. 2006. MEME:discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res, 34 (2):369-373. |
[3] | Bureau of Statistics of Xinjiang Uygur Autonomous Region. 2016. Xinjiang statistical yearbook. Beijing: China Statistical Press. (in Chinese) |
新疆维吾尔自治区统计局. 2016. 新疆统计年鉴. 北京: 中国统计出版社. | |
[4] |
Hou Y X, Wang X T, Zhu Z J, Sun M X, Li M L, Hou L P. 2020. Expression analysis of genes related to auxin metabolism at different growth stages of Pak Choi. Horticultural Plant Journal, 6 (1):25-33.
doi: 10.1016/j.hpj.2019.12.003 URL |
[5] | Jin Lixin, Chen Menghua, Wang Yulian, Zhang Xuemei, Li Baoguo. 2015. Research progress on walnut shell development. Northern Horticulture,(5):183-187. (in Chinese) |
靳丽鑫, 陈梦华, 王玉莲, 张雪梅, 李保国. 2015. 核桃坚果硬壳发育研究进展. 北方园艺,(5):183-187. | |
[6] | Li Junnan, Yan Xiaojie, Li Shuhang, Zhang Rongshu. 2018. Plants AUX/IAA gene family:research progress. Chinese Agricultural Science Bulletin, 34 (15):89-92. (in Chinese) |
李俊男, 燕晓杰, 李枢航, 张荣沭. 2018. 植物 AUX/IAA基因家族研究进展. 中国农学通报, 34 (15):89-92. | |
[7] |
Lin R Z, Li R Q, Lu A M, Zhu J Y, Chen Z D. 2016. Comparative flower development of Juglans regia, Cyclocarya paliurus and Engelhardia spicata:homology of floral envelopes in Juglandaceae. Botanical Journal of the Linnean Society, 181:279-293.
doi: 10.1111/boj.12413 URL |
[8] |
Pinney K, Polito V S. 1983. English walnut fruit growth and development. Scientia Horticulturae, 21 (1):19-28.
doi: 10.1016/0304-4238(83)90182-6 URL |
[9] | Wang Ping, Lu Shixiong, Liang Guoping, Ma Zonghuan, Li Wenfang, Mao Juan, Chen Baihong. 2019. Bioinformatics identification and expression analysis of Trihelix transcription factor family in apple. Acta Horticulturae Sinica, 46 (11):2082-2098. (in Chinese) |
王萍, 卢世雄, 梁国平, 马宗桓, 李文芳, 毛娟, 陈佰鸿. 2019. 苹果Trihelix转录因子家族生物信息学鉴定与基因表达分析. 园艺学报, 46 (11):2082-2098. | |
[10] |
Wu G L, Liu Q L, Teixeira da Silva J A. 2009. Ultrastructure of pericarp and seed capsule cells in the developing walnut(Juglans regia L.)fruit. South African Journal of Botany, 75 (1):128-136.
doi: 10.1016/j.sajb.2008.09.001 URL |
[11] | Xiao Ling, Xu Yaoping, Zhao Xiangui, Luo Jihua. 1998. The developmental anatomy on the pericarp of Juglans regia L. Acta Botanica Boreali-Occidentalia Sinica,(4):104-107+185-186. (in Chinese) |
肖玲, 胥耀平, 赵先贵, 骆吉花. 1998. 核桃果皮的发育解剖学研究. 西北植物学报,(4):104-107+185-186. | |
[12] | Yu Shangqi, Jia Changlu, Song Yan, Liu Chunhua, Guo Yongcui, Zhang Wentao, Chen Liping, Zhang Rui. 2019. Screening and functional prediction of differential expression genes at lignification stage of endocarp in‘Zhipi’walnut. Journal of Fruit Science, 36 (4):410-420. (in Chinese) |
鱼尚奇, 贾昌路, 宋岩, 刘春花, 郭永翠, 张文涛, 陈立平, 张锐. 2019. 纸皮核桃内果皮硬化期差异表达基因筛选及功能预测. 果树学报, 36 (4):410-420. | |
[13] | Zhang Weiwei, Liu Fuzhong, Zhang Ying, Zhao Zhen, Chen Yuhui, Lian Yong. 2014. Cloning and Characterization of IAA Family Gene SmIAA19 in Eggplant. Acta Horticulturae Sinica, 41 (11):2231-2240. (in Chinese) |
张伟伟, 刘富中, 张映, 赵祯, 陈钰辉, 连勇. 2014. 茄子生长素诱导基因 SmIAA19的克隆和分析. 园艺学报, 41 (11):2231-2240. | |
[14] | Zhao Shugang, Liu Kai, Wen Jing, Wang Hongxia, Zhang Zhihua, Hua Lei. 2019. Effect of GA 3 and 6-BA on the development of walnut shell. Acta Horticulturae Sinica, 46 (11):2119-2128. (in Chinese) |
赵书岗, 刘凯, 文菁, 王红霞, 张志华, 滑磊. 2019. GA 3和6-BA对核桃果壳发育的影响. 园艺学报, 46 (11):2119-2128. | |
[15] | Zheng Yanfu. 1986. Breeding of fine varieties of Xinfeng,Xinguang and Xinlu walnut. Xinjiang Agricultural Sciences,(3):26-27. (in Chinese) |
郑炎甫. 1986. 新丰、新光、新露核桃优良品种的选育. 新疆农业科学,(3):26-27. | |
[16] |
Zheng L W, Gao C, Zhao C D, Zhang L Z, Han M Y, An N, Ren X L. 2019. Effects of brassinosteroid associated with auxin and gibberellin on apple tree growth and gene expression patterns. Horticultural Plant Journal, 5 (3):93-108.
doi: 10.1016/j.hpj.2019.04.006 URL |
[17] | Zheng Zhifeng, Zou Ju Chun, Hua Bo, Zhang Hongjian, Wang Rong. 2006. Study on chemical components of walnut shell. Journal of Southwest Forestry University(Natural Sciences),(2):33-36. (in Chinese) |
郑志锋, 邹局春, 花勃, 张宏健, 汪蓉. 2006. 核桃壳化学组分的研究. 西南林学院学报,(2):33-36. | |
[18] |
Zhou Y Y, Zhou B, Pache L, Chang M, Khodabakhshi A H, Tanaseichuk O, Benner C, Chanda S K. 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10 (1):1523-1533.
doi: 10.1038/s41467-019-09234-6 URL |
[1] | 蒋 彧, 涂勋良, 何俊蓉. 国兰叶色突变体叶片差异表达基因分析[J]. 园艺学报, 2023, 50(2): 371-381. |
[2] | 于婷婷, 李 欢, 宁源生, 宋建飞, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果GRAS全基因组鉴定及其对生长素的响应分析[J]. 园艺学报, 2023, 50(2): 397-409. |
[3] | 郑清波, 鲍泽洋, 蓝青青, 周钰雯, 周雨菲, 郑彩霞, 李 旭, . 童性与生长素对不定根发生的影响研究进展[J]. 园艺学报, 2023, 50(2): 441-450. |
[4] | 刘艺平, 倪梦辉, 吴芳芳, 刘红利, 贺丹, 孔德政. 荷花花器官性状与SSR标记的关联分析[J]. 园艺学报, 2023, 50(1): 103-115. |
[5] | 蔺海娇, 梁雨晨, 李玲, 马军, 张璐, 兰振颖, 苑泽宁. 薰衣草CBF途径相关耐寒基因挖掘与调控网络分析[J]. 园艺学报, 2023, 50(1): 131-144. |
[6] | 赵雪艳, 王琪, 王莉, 王方圆, 王庆, 李艳. 基于比较转录组的延胡索组织差异性表达分析[J]. 园艺学报, 2023, 50(1): 177-187. |
[7] | 季琳琳, 陈素传, 吴志辉, 常 君, 韩文妍, 陶汝鹏. 早花山核桃新品种‘宁国山核桃2号’[J]. 园艺学报, 2022, 49(S2): 53-54. |
[8] | 邢文曦, 王泽亮, 吴泞孜, 李丕军, 王 静. 核桃良种‘盐源早’[J]. 园艺学报, 2022, 49(S1): 33-34. |
[9] | 胡若琳, 王佳丽, 杨慧勤, 袁超, 牛义, 汤青林, 魏大勇, 田时炳, 杨洋, 王志敏. 茄子生长素响应因子SmARF5对分枝发育的影响[J]. 园艺学报, 2022, 49(9): 1895-1906. |
[10] | 薛维文, 周显芳, 张昭其, 方方. 果蔬采后木质素积累及其调控对品质的影响研究进展[J]. 园艺学报, 2022, 49(9): 2023-2036. |
[11] | 蒋思思, 袁军, 周文君, 钮根花, 周俊琴. 薄壳山核桃(Carya illinoinensis)叶绿体基因组及其特征分析[J]. 园艺学报, 2022, 49(8): 1772-1784. |
[12] | 周徐子鑫, 杨威, 毛美琴, 薛彦斌, 马均. 金边红苞凤梨叶色突变体色素鉴定及类胡萝卜素合成限速基因筛选[J]. 园艺学报, 2022, 49(5): 1081-1091. |
[13] | 沈楠, 张荆城, 王成晨, 边银丙, 肖扬. 香菇子实体发育过程中的转录组研究[J]. 园艺学报, 2022, 49(4): 801-815. |
[14] | 夏铭, 李经纬, 罗章瑞, 祖贵东, 王娅, 张万萍. 外源褪黑素影响萝卜生长及对链格孢菌抗性的机理研究[J]. 园艺学报, 2022, 49(3): 548-560. |
[15] | 张瑞, 张夏燚, 赵婷, 王双成, 张仲兴, 刘博, 张德, 王延秀. 基于转录组分析垂丝海棠响应盐碱胁迫的分子机制[J]. 园艺学报, 2022, 49(2): 237-251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司